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Motivation
Massive explosion of rich “content” emerges on the web.

Here we main focus on visual 
and textual descriptions for 
cross-modal learning.
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Problem Definition (cont’d)

“Pisa”– text cues – Pisa
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If no such exact tags 
exists for these images, 
how we can find them?

“Pisa”– (implicitly) – Pisa 



Problem Definition

Given one sentence for example, if  these news/videos/images 
above have no associated textual tags, how can we discover the 
most related heterogeneous content? 

Query

Which pictures do we mostly want?

× √××
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Cognitive Science
How human/animal learns: First input easy samples and
gradually involve more into training from easy to complex

Image taken from http://gr.xjtu.edu.cn/web/dymeng/6
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History
Curriculum Learning (Bengio et al. 2009) or self-paced learning 
(Kumar et al 2010) is a recently proposed learning paradigm that is 
inspired by the learning process of humans and animals.

The samples are not learned randomly but organized in a 
meaningful order which illustrates from easy to gradually more 
complex ones. 

Easy sample smaller loss to the already learned model.

Complex sample        bigger loss to the already learned model.
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Basic Self-Paced Model

where

min
𝑤𝑤,𝑣𝑣∈ 0,1 𝑛𝑛𝐸𝐸 𝑤𝑤, 𝑣𝑣; 𝜆𝜆 = �

𝑖𝑖=1

𝑛𝑛

𝑣𝑣𝑖𝑖𝐿𝐿 𝑦𝑦𝑖𝑖 ,𝑔𝑔 𝑥𝑥𝑖𝑖 ,𝑤𝑤 + 𝑝𝑝(𝑤𝑤) + 𝑓𝑓(𝐯𝐯; 𝜆𝜆)
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𝑓𝑓(𝐯𝐯; 𝜆𝜆) = −𝝀𝝀�
𝑖𝑖

𝑣𝑣𝑖𝑖

Loss function term

One of the most simplified self-paced 
regularizers proposed in (Kumar et al. 2010)

Following works (Jiang et al. 2015, Zhao et al. 2015 ) proposed 
more extension of explicit self-paced regularizers, and implicit 
regularizers are further investigated in (Fan et al. 2016) .



Basic Self-Paced Model (cont’d)

where

min
𝑤𝑤,𝑣𝑣∈ 0,1 𝑛𝑛𝐸𝐸 𝑤𝑤, 𝑣𝑣; 𝜆𝜆 = �

𝑖𝑖=1

𝑛𝑛

𝑣𝑣𝑖𝑖𝐿𝐿 𝑦𝑦𝑖𝑖 ,𝑔𝑔 𝑥𝑥𝑖𝑖 ,𝑤𝑤 + 𝑝𝑝(𝑤𝑤) + 𝑓𝑓(𝐯𝐯; 𝜆𝜆)
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𝑓𝑓(𝐯𝐯; 𝜆𝜆) = −𝝀𝝀�
𝑖𝑖

𝑣𝑣𝑖𝑖

Loss function term

One of the most simplified self-paced 
regularizers proposed in (Kumar et al. 2010)

Optimization Algorithm (Alternating  Search)

Fixing v, it turns out to be a standard classification sub-
problem.

Fixing w, i

i

1 if ,
0 if .iv

λ
λ

≤
=  >







Basic Self-Paced Model (cont’d)

where

min
𝑤𝑤,𝑣𝑣∈ 0,1 𝑛𝑛𝐸𝐸 𝑤𝑤, 𝑣𝑣; 𝜆𝜆 = �

𝑖𝑖=1

𝑛𝑛

𝑣𝑣𝑖𝑖𝐿𝐿 𝑦𝑦𝑖𝑖 ,𝑔𝑔 𝑥𝑥𝑖𝑖 ,𝑤𝑤 + 𝑝𝑝(𝑤𝑤) + 𝑓𝑓(𝐯𝐯; 𝜆𝜆)
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𝑓𝑓(𝐯𝐯; 𝜆𝜆) = −𝝀𝝀�
𝑖𝑖

𝑣𝑣𝑖𝑖

Loss function term

One of the most simplified self-paced 
regularizers proposed in (Kumar et al. 2010)

Expected Advantages:

 Help find a better local minima (as a regularizer)
 Speed the convergence of training towards the global 

minimum (for convex problem)
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Prior Work
Probability based learning algorithms, subspace based learning 
algorithms and deep learning based algorithms have been 
developed to alleviate this gap (Wang et al. 2015). 

Until the 20th century, 
the slough and its side 
channels and associated 
ponds and lakes were 
part of the  ….

Image space Text space

Common subspace

Supervised method
GMLDA (Sharma et al. 
2012)
- Intra-class and Inter-

class constraints

Unsupervised method
CCA (Hardoon et al. 
2004)
- Pairwise constraints
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Prior Work (cont’d)

Category Methods Merits Demerits

Unsupervised 
methods

CCA, PLS, BLM 
etc.

No command for 
label information

Not effectively 
alleviate the 

semantic gap

Supervised 
methods

CDFE, GMLDA, 
GMMFA, LCFS 

etc.

Using label 
information to bridge 

the semantic gap

Need lots of 
labelled data

Labelled
Data

Semantic 
Gap

Summary 
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Framework
 Semantic labels are expensive;
 In the semantic level, hard heterogeneous pairs and 

mismatching pairs exist.
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Formulation
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min
𝐔𝐔𝑎𝑎,𝐔𝐔𝑏𝑏

‖𝐔𝐔𝑎𝑎𝑇𝑇𝐗𝐗𝑎𝑎 − 𝐔𝐔𝑏𝑏𝑇𝑇𝐗𝐗𝑏𝑏‖𝐹𝐹2 + 𝛷𝛷(𝐔𝐔𝑎𝑎 ,𝐔𝐔𝑏𝑏)

min
𝐔𝐔𝑎𝑎,𝐔𝐔𝑏𝑏,𝐘𝐘

∑
𝑝𝑝∈ 𝑎𝑎,𝑏𝑏

||𝐔𝐔𝑝𝑝𝑇𝑇𝐗𝐗𝑝𝑝 − 𝐘𝐘‖𝐹𝐹2 + 𝛷𝛷(𝐔𝐔𝑎𝑎 ,𝐔𝐔𝑏𝑏)

𝑠𝑠. 𝑡𝑡. 𝐘𝐘 ∈ 0,1 𝑐𝑐×𝑛𝑛,∑
𝑖𝑖
𝑌𝑌𝑖𝑖,𝑗𝑗 = 1,∀𝑗𝑗 ∈ [1,𝑛𝑛].

Pseudo Labels

min
𝐔𝐔𝑎𝑎,𝐔𝐔𝑏𝑏,𝐘𝐘,𝑣𝑣

�
𝑝𝑝∈{𝑎𝑎,𝑏𝑏}

�
𝑖𝑖=1

𝑛𝑛

𝑣𝑣𝑖𝑖 ℓ𝑝𝑝,𝑖𝑖 + 𝛽𝛽 �
}𝑝𝑝∈{𝑎𝑎,𝑏𝑏

||𝐔𝐔𝑝𝑝||𝐹𝐹2 + 𝑓𝑓(𝐯𝐯; 𝑘𝑘)

𝑠𝑠. 𝑡𝑡. 𝐘𝐘 ∈ {0,1}𝑐𝑐×𝑛𝑛,�
𝑖𝑖

𝑐𝑐

𝑌𝑌𝑖𝑖,𝑗𝑗 = 1,∀𝑗𝑗 ∈ [1,𝑛𝑛].
Self-Paced 
Manner



Formulation (cont’d)
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min
𝐔𝐔𝑎𝑎,𝐔𝐔𝑏𝑏

‖𝐔𝐔𝑎𝑎𝑇𝑇𝐗𝐗𝑎𝑎 − 𝐔𝐔𝑏𝑏𝑇𝑇𝐗𝐗𝑏𝑏‖𝐹𝐹2 + 𝜱𝜱(𝐔𝐔𝒂𝒂,𝐔𝐔𝒃𝒃)

Multimodal Locality Preserving Term

Intra-modal Similarity

Inter-modal Similarity

Gaussian kernel function

𝑊𝑊 = 𝛾𝛾𝑊𝑊𝑎𝑎 𝑊𝑊𝑎𝑎𝑏𝑏

𝑊𝑊𝑏𝑏𝑎𝑎 𝛾𝛾𝑊𝑊𝑏𝑏

Similarity Matrices 𝜱𝜱 𝐔𝐔𝑎𝑎 ,𝐔𝐔𝑏𝑏 = ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾ℒ𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑎𝑎
= ∑

𝑝𝑝∈ 𝑎𝑎,𝑏𝑏
𝑡𝑡𝑟𝑟(𝐔𝐔𝑝𝑝𝑇𝑇𝐗𝐗𝑝𝑝𝐋𝐋𝑝𝑝𝑝𝑝𝐗𝐗𝑝𝑝𝑇𝑇𝐔𝐔𝑝𝑝)

𝑊𝑊𝑖𝑖𝑗𝑗
𝑝𝑝 = � �𝑑𝑑(x𝑝𝑝𝑖𝑖 , x𝑝𝑝

𝑗𝑗 , xp
j ∈ Nr xpi 𝑜𝑜𝑟𝑟 xpi ∈ Nr xp

j

0, otherwise.

𝑊𝑊𝑎𝑎𝑏𝑏 = 𝑊𝑊𝑏𝑏𝑎𝑎 = 𝐘𝐘𝑇𝑇𝐘𝐘



Optimization Algorithm

Alternating Minimization Methods
 Initialing v and Y;
 Fixing Y and v, solve Ua, Ub ;
 Fixing Ua, Ub and v, solve Y;
 Fixing Ua, Ub and Y, solve v;
 Update similarity matrices W and parameter k  u*k 
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min
𝐔𝐔{𝑎𝑎,𝑏𝑏},𝐯𝐯,𝐘𝐘

�

}𝑝𝑝∈{𝑎𝑎,𝑏𝑏

�
𝑖𝑖=1

𝑛𝑛

𝑣𝑣𝑖𝑖 ℓ𝑝𝑝,𝑖𝑖 + 𝛼𝛼ℒ(𝐔𝐔𝑎𝑎,𝐔𝐔𝑏𝑏) + 𝛽𝛽 �
}𝑝𝑝∈{𝑎𝑎,𝑏𝑏

| |𝐔𝐔𝑝𝑝||𝐹𝐹2 + 𝑓𝑓(𝐯𝐯;𝑘𝑘)

𝑠𝑠. 𝑡𝑡. 𝐘𝐘 ∈ {0,1}𝑐𝑐×𝑛𝑛,�
𝑖𝑖

𝑐𝑐

𝑌𝑌𝑖𝑖,𝑗𝑗 = 1,∀𝑗𝑗 ∈ [1,𝑛𝑛].



Optimization Algorithm (cont’d)
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a) Solve Ua and Ub , when Y, v are fixed.

Differentiating the objective function with respect to 
and setting it to zero.

Convex 
subproblem



Optimization Algorithm (cont’d)
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b) Solve Y,  when             , v are fixed.

Y has the discrete constraints, resulting in a NP hard problem. 
Inspired by (Shen et al. 2015), we can optimize Y column by column, 
i.e., optimize one column of Y with all the other columns fixed.

c) Solve v, when            , Y are fixed.

Compute the loss of each sample and 
determine v.
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Datasets
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Dataset # Class # Training/test 
instances

# Image/text 
features

VOC 20 2,808/2,841 512/399

Wiki 10 1,300/1,566 128/10

Wiki++ 10 1,300/1,566 4,096/5,000

LabelMe 8 1,600/1,086 512/470

After more than 15 years away from the 
theatre, Sorkin found himself easing his way 
back into playwrighting in 2005 when he took 
to revising his play ''A Few Good Men'' for a 
revival at the London West End theatre, the 
Haymarket. It had been a while since he had 
originally written the play and so he gave it a 
polish. 

Chelsea‘s highest appearance-maker is ex-
captain Ron Harris, who played in 795 first-
class games for the club between 1961 and 
1980.For the appearance and goalscoring 
records of all Chelsea players, see  This record 
is unlikely to be broken in the near future; 
Chelsea’s current highest appearance-
maker is Frank Lampard …

'person'
'person'
'frame'
'frame'

'tvmonitor'
'table'
'plate'

'tvstand'

'horse'
'person'

'mountain'
'grass'



Evaluation Criteria
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Mean Average Precision (MAP)

• The cosine distance is utilized to measure the 
similarity of projected feature pairs.

• The higher MAP indicates the better performance.

 Precision-Scope curve

 Precision-Recall curve



Baseline Methods
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 Unsupervised methods

• CCA (Hardoon et al. 2004), PLS (Sharma and Jacobs 
2011), GMBLM (Sharma et al. 2012)

• UCDFE, UGMLDA, UGMMFA (the unsupervised 
version of  CDFE, GMLDA and GMMFA, which assume 
the clustering result as pseudo semantic labels)

 Supervised methods
• CDFE (Lin and Tang 2006), GMLDA (Sharma et al. 

2012), GMMFA (Sharma et al. 2012), LCFS (Wang et 
al. 2013) and JFSSL (Wang et al. 2015)



Performances
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• MAP scores of unsupervised SCSM and other methods on 
all four datasets.



Performances (cont’d)
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 Retrieval examples by
user tags queries on the
PASCAL-VOC dataset by
the proposed SCSM.



Performances (cont’d)
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 Retrieval examples by
text query “In 1994,
Angus and ……” on the
Wiki dataset by the
proposed SCSM.



Performances (cont’d)
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 MAP of different
methods on the Wiki++
dataset w.r.t. each
category.



Performances (cont’d)
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 Retrieval examples by image
queries on the LabelMe
dataset by the proposed
SCSM and supervised
GMLDA.



Convergence Analysis
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 It is obvious to prove that the employed alternative minimization
strategy can converge to a local optimum. However, under the self-
paced framework, our learning algorithm is hard to guarantee the
global convergence.



Parameter Analysis
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 The analysis on parameter sensitivity shows that SCSM is very robust to
model parameters which can achieve stable and superior performance
under a wide range of parameter values.
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Conclusions
Experimental results show that, our SCSM not only surpasses the unsupervised 
methods (e.g., CCA, GMBLM), but also outperforms some supervised methods 
(e.g., CDFE, GMLDA and LCFS). As an unsupervised method, the reasons for the 
better performance of our SCSM may lie in threefold.
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 One image often contain several semantic concepts. Hence the 
grouping results may be a complementary when feature 
representations are enough powerful.

 Pseudo group label is inaccurate. Since clustering is a non-convex 
problem, self-paced learning can help avoid the local minima.

 Besides, multimodal graph helps preserve the inter- and intra-
similarities in the subspace.
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