Learning Discriminative Geodesic Flow Kernel for Unsupervised Domain Adaptation

Jianze Wei

Joint work with Jian Liang, Ran He, Jinfeng Yang

Domain adaptation

A large gap between machine (artificial) intelligence and human intelligence

Domain adaptation

A large gap between machine (artificial) intelligence and human intelligence

Domain adaptation

A large gap between machine (artificial) intelligence and human intelligence

Domain adaptation

leveraging the prior knowledge from source domain on the similar task of target domain and alleviating the affect of manual labeling.

Domain adaptation

A large gap between machine (artificial) intelligence and human intelligence

Domain adaptation

leveraging the prior knowledge from source domain on the similar task of target domain and alleviating the affect of manual labeling.

the label of the target data is unavailable

```
Unsupervised domain adaptation
```

Revisiting GFK

Middle space

contain the information of source and target domains

Revisiting GFK

Middle space

contain the information of source and target domains

Source space

Middle space

Target space

Revisiting GFK

Middle space

contain the information of source and target domains

Source space

Target space

space

Revisiting GFK

Middle space

contain the information of source and target domains

Source space

Middle space

Target space

Domain-invariant space

Domain-invariant space

¥ ★ 🔹 Labeled source data

Domain-invariant space has a good property of domain-invariance

Domain-invariant space

✓ ★ ★ Labeled source data
✓ ☆ ☆ Unlabeled target data

Domain-invariant space has a good property of domain-invariance, but it is **not** class-discriminative

Zhu *et al*. 2002 Fujiwara *et al*. 2014 Long *et al*. 2014

Label propagation

The hidden script behind LP

The sample should be more likely to have the same label as the nearest samples.

Zhu *et al*. 2002 Fujiwara *et al*. 2014 Long *et al*. 2014

Label propagation

The hidden script behind LP

The sample should be more likely to have the same label as the nearest samples. Maximizing the consistency between pseudo label structure and data structure. **Objective function:**

$$\operatorname{Min} \ell(X, Y) + \lambda \sum_{i,j} H_{i,j} \left\| Y_i - Y_j \right\|_2^2$$

s t $H^{\mathrm{T}}H = I$

Zhu *et al*. 2002 Fujiwara *et al*. 2014 Long *et al*. 2014

Label propagation

The hidden script behind LP

The sample should be more likely to have the same label as the nearest samples. Maximizing the consistency between pseudo label structure and data structure. a) probabilistic transition matrix *H* according to

$$h(\mathbf{x}_j, \mathbf{x}_i) = \frac{\exp\{-\frac{(\mathbf{z}_i^{\infty} - \mathbf{z}_j^{\infty})^2}{\sigma^2}\}}{\sum_{i=1}^{n_s + n_t} \exp\{-\frac{(\mathbf{z}_i^{\infty} - \mathbf{z}_j^{\infty})^2}{\sigma^2}\}}$$
$$= \frac{\exp\{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{G}(\mathbf{x}_i - \mathbf{x}_j)}{\sigma^2}\}}{\sum_{i=1}^{n_s + n_t} \exp\{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{G}(\mathbf{x}_i - \mathbf{x}_j)}{\sigma^2}\}},$$

b) Compute the soft label L using

$$\mathbf{L} = \begin{bmatrix} \sum_{i=1}^{n_s+n_t} h(\mathbf{x}_1, \mathbf{x}_i) \mathbf{l}_i \\ \vdots \\ \sum_{i=1}^{n_s+n_t} h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_i) \mathbf{l}_i \end{bmatrix}$$
$$= \begin{bmatrix} h(\mathbf{x}_1, \mathbf{x}_1) & \cdots & h(\mathbf{x}_1, \mathbf{x}_{n_s+n_t}) \\ \vdots & \vdots \\ h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_1) & \cdots & h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_{n_s+n_t}) \end{bmatrix} \begin{bmatrix} \mathbf{l}_1 \\ \vdots \\ \mathbf{l}_{n_s+n_t} \end{bmatrix}$$
$$= \mathbf{H}^{\mathrm{T}} \mathbf{L},$$

GFK

a) Initializ the source basis P_s and the target basis P_t using PLS and PCA respectively

b) Compute the Geodesic Flow Kernel *G* according to $\mathbf{G} = \begin{bmatrix} \mathbf{P}_s \mathbf{U}_1 & \mathbf{R}_s \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_1 & \mathbf{\Lambda}_2 \\ \mathbf{\Lambda}_2 & \mathbf{\Lambda}_3 \end{bmatrix} \begin{bmatrix} \mathbf{U}_1^{\mathrm{T}} \mathbf{P}_s^{\mathrm{T}} \\ \mathbf{U}_2^{\mathrm{T}} \mathbf{R}_s^{\mathrm{T}} \end{bmatrix},$ and

$$\mathbf{P}_S^{\mathrm{T}} \mathbf{P}_T = \mathbf{U}_1 \boldsymbol{\Gamma} \mathbf{V}^{\mathrm{T}}, \mathbf{R}_S^{\mathrm{T}} \mathbf{P}_T = -\mathbf{U}_2 \boldsymbol{\Sigma} \mathbf{V}^{\mathrm{T}}$$

LP

a) Construct the probabilistic
 transition matrix *H* according to

$$h(\mathbf{x}_j, \mathbf{x}_i) = \frac{\exp\{-\frac{(\mathbf{z}_i^{\infty} - \mathbf{z}_j^{\infty})^2}{\sigma^2}\}}{\sum_{i=1}^{n_s + n_t} \exp\{-\frac{(\mathbf{z}_i^{\infty} - \mathbf{z}_j^{\infty})^2}{\sigma^2}\}} = \frac{\exp\{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{G}(\mathbf{x}_i - \mathbf{x}_j)}{\sigma^2}\}}{\sum_{i=1}^{n_s + n_t} \exp\{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{G}(\mathbf{x}_i - \mathbf{x}_j)}{\sigma^2}\}},$$

b) Compute the soft label *L* using

$$\mathbf{L} = \begin{bmatrix} \sum_{i=1}^{n_s+n_t} h(\mathbf{x}_1, \mathbf{x}_i) \mathbf{l}_i \\ \vdots \\ \sum_{i=1}^{n_s+n_t} h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_i) \mathbf{l}_i \end{bmatrix}$$
$$= \begin{bmatrix} h(\mathbf{x}_1, \mathbf{x}_1) & \cdots & h(\mathbf{x}_1, \mathbf{x}_{n_s+n_t}) \\ \vdots & \vdots \\ h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_1) & \cdots & h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_{n_s+n_t}) \end{bmatrix} \begin{bmatrix} \mathbf{l}_1 \\ \vdots \\ \mathbf{l}_{n_s+n_t} \end{bmatrix}$$
$$= \mathbf{H}^{\mathrm{T}} \mathbf{L},$$

GFK

a) Initializ the source basis P_s and the target basis P_t using PLS and PCA respectively

b) Compute the Geodesic Flow Kernel *G* according to $\mathbf{G} = \begin{bmatrix} \mathbf{P}_s \mathbf{U}_1 & \mathbf{R}_s \mathbf{U}_2 \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_1 & \mathbf{\Lambda}_2 \\ \mathbf{\Lambda}_2 & \mathbf{\Lambda}_3 \end{bmatrix} \begin{bmatrix} \mathbf{U}_1^{\mathrm{T}} \mathbf{P}_s^{\mathrm{T}} \\ \mathbf{U}_2^{\mathrm{T}} \mathbf{R}_s^{\mathrm{T}} \end{bmatrix},$ and

$$\mathbf{P}_{S}^{\mathsf{T}}\mathbf{P}_{T} = \mathbf{U}_{1}\mathbf{\Gamma}\mathbf{V}^{\mathsf{T}}, \mathbf{R}_{S}^{\mathsf{T}}\mathbf{P}_{T} = -\mathbf{U}_{2}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}$$

LP

a) Construct the probabilistic transition matrix **H** according to

$$h(\mathbf{x}_j, \mathbf{x}_i) = \frac{\exp\{-\frac{(\mathbf{z}_i^{\infty} - \mathbf{z}_j^{\infty})^2}{\sigma^2}\}}{\sum_{i=1}^{n_s + n_t} \exp\{-\frac{(\mathbf{z}_i^{\infty} - \mathbf{z}_j^{\infty})^2}{\sigma^2}\}} = \frac{\exp\{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{G}(\mathbf{x}_i - \mathbf{x}_j)}{\sigma^2}\}}{\sum_{i=1}^{n_s + n_t} \exp\{-\frac{(\mathbf{x}_i - \mathbf{x}_j)^T \mathbf{G}(\mathbf{x}_i - \mathbf{x}_j)}{\sigma^2}\}},$$

b) Compute the soft label *L* using

$$\mathbf{L} = \begin{bmatrix} \sum_{i=1}^{n_s+n_t} h(\mathbf{x}_1, \mathbf{x}_i) \mathbf{l}_i \\ \vdots \\ \sum_{i=1}^{n_s+n_t} h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_i) \mathbf{l}_i \end{bmatrix}$$
$$= \begin{bmatrix} h(\mathbf{x}_1, \mathbf{x}_1) & \cdots & h(\mathbf{x}_1, \mathbf{x}_{n_s+n_t}) \\ \vdots & \vdots \\ h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_1) & \cdots & h(\mathbf{x}_{n_s+n_t}, \mathbf{x}_{n_s+n_t}) \end{bmatrix} \begin{bmatrix} \mathbf{l}_1 \\ \vdots \\ \mathbf{l}_{n_s+n_t} \end{bmatrix}$$
$$= \mathbf{H}^{\mathrm{T}} \mathbf{L},$$

GFK

- a) Initializ the source basis P_s and the target basis P_t using PLS and PCA respectively
- b) Compute the Geodesic Flow Kernel *G*

- a) Construct the probabilistic transition matrix **H**
- b) Compute the soft label *L*

GFK

- a) Initialize the source basis P_s and the target basis P_t using PLS and PCA respectively
- b) Compute the Geodesic Flow Kernel *G*

- a) Construct the probabilistic transition matrix **H**
- b) Compute the soft label *L*

GFK

- a) Update the target basis P_t using PLS
- b) Compute the Geodesic Flow Kernel *G*

- a) Construct the probabilistic transition matrix **H**
- b) Compute the soft label *L*

GFK

- a) Update the target basis P_t using PLS
- b) Compute the Geodesic Flow Kernel *G*

- a) Construct the probabilistic transition matrix **H**
- b) Compute the soft label *L*

GFK

- a) Update the target basis P_t using PLS
- b) Compute the Geodesic Flow Kernel *G*

- a) Construct the probabilistic transition matrix **H**
- b) Compute the soft label *L*

Gong et al. 2012

Experiment

- Object recognition

Office-Caltech dataset

- Four domains
- Features
 - Bag-of-SURF
- Classifier
 - 1-NN

Gong *et al.* 2012 Zhang *et al.* 2017

Experiment

- Object recognition

Gong *et al.* 2012 Zhang *et al.* 2017

Experiment

- Object recognition

Blitzer et al. 2007

Experiment

- Sentiment adaptation

Multi-domain sentiment dataset

- Four domains
- Features
 - Bag-of-SURF
- Classifier
 - 1-NN

Blitzer *et al.* 2007 Gong *et al.* 2012 Zhang *et al.* 2017

Experiment

- Sentiment adaptation

Blitzer *et al.* 2007 Gong *et al.* 2012 Zhang *et al.* 2017

Experiment

- Sentiment adaptation

- Convergence analysis

Degradation cases are marked as the lines with dots.

Ours model can quickly converge within 10 iterations.

- [Blitzer *et al.* 2007] J. Blitzer, M. Dredze, and F. Pereira, "Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification," in ACL, 2007, pp. 440–447.
- [Cheng *et al.* 2011] V. Cheng and C. Li, "Classification probabilistic pca with application in domain adaptation," in PAKDD, 2011, pp. 75–86.
- [Fujiwara et al. 2014] Y. Fujiwara and G. Irie, "Efficient label propagation," in ICML, 2014, pp. 784–792.
- [Gopalan *et al.* 2011] R. Gopalan, R. Li, and R. Chellappa, "Domain adaptation for object recognition: An unsupervised approach," in ICCV, 2011, pp. 999–1006.
- [Gong *et al.* 2012]B. Gong, Y. Shi, F. Sha, and K. Grauman, "Geodesic flow kernel for unsupervised domain adaptation," in CVPR, 2012, pp. 2066–2073.
- [Li et al. 2014] W. Li, L. Duan, D. Xu, and I. Tsang, "Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation," TPAMI, vol. 36, no. 6, pp. 1134–1148, 2014.
- [Long et al. 2014] M. Long, J. Wang, G. Ding, Jiaguang Sun, and Philip S Yu, "Transfer joint matching for unsupervised domain adaptation," in CVPR, 2014, pp. 1410–1417.
- [Long et al. 2013] M. Long, J. Wang, G. Ding, Jiaguang Sun, and Philip S Yu, "Transfer feature learning with joint distribution adaptation," in ICCV, 2013, pp. 2200–2207.
- [Long et al. 2014]M. Long, J. Wang, G. Ding, Sinno Jialin Pan, and S Yu Philip, "Adaptation regularization: A general framework for transfer learning," TKDE, vol. 26, no. 5, pp. 1076–1089, 2014.
- [Sun et al. 2016] B. Sun, J. Feng, and K. Saenko, "Return of frustratingly easy domain adaptation," in AAAI, 2016, pp. 2058–2065.
- [Zhang *et al.* 2017] J. Zhang, W. Li, and P. Ogunbona, "Joint geometrical and statistical alignment for visual domain adaptation," in CVPR, 2017, pp. 1859–1867.
- [Zhu *et al.* 2002] X. Zhu and Z. Ghahramani, "Learning from labeled and unlabeled data with label propagation," Technical Report CMUCALD-02-107, 2002.