

Domain Adaptation with Auxiliary Target Domain-Oriented Classifier

Jian Liang¹, Dapeng Hu¹, and Jiashi Feng^{2,1}

¹ National University of Singapore (NUS)

² Sea AI Lab (SAIL)

Outline

• Background

Method

• Experiments

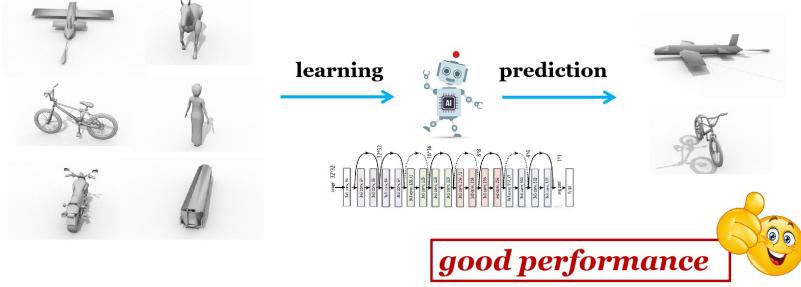
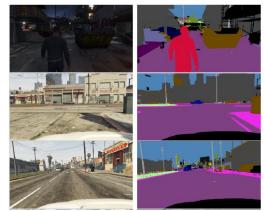
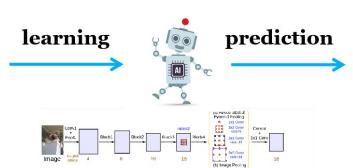




Figure 1: Test data comes from the **same distribution** as training data!

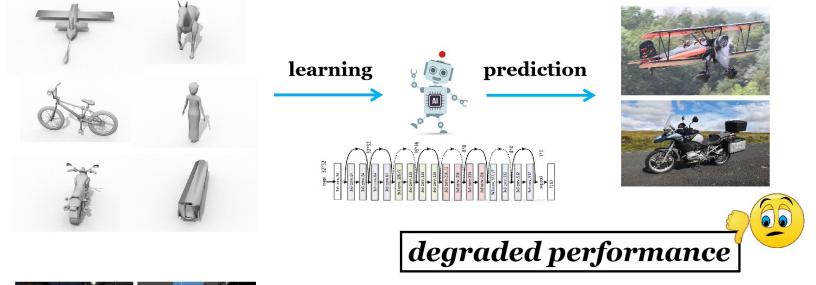
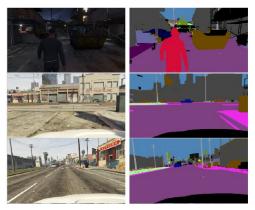
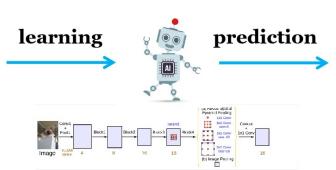
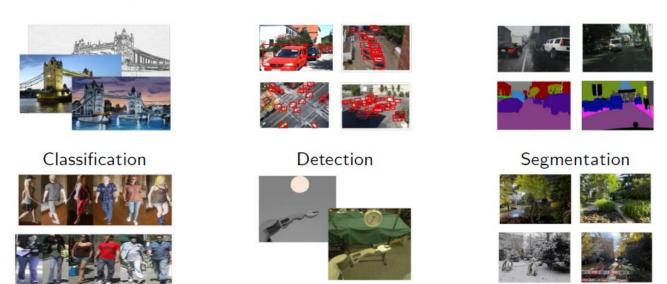




Figure 2: Test data and training data come from **different distributions!**



Re-identification

- Unsupervised Domain Adaptation (DA)
 - Source Domain \mathcal{D}_s : n_s labeled samples $\{x_s^i, y_s^i\}_{i=1}^{n_s}$ from $P_S(X, Y)$;
 - Target Domain \mathcal{D}_t : n_t unlabeled samples $\{x_t^i,?\}_{i=1}^{n_t}$ from $P_T(X,Y)$;
 - Goal: Use $\{x_t^i\}_{i=1}^{n_t}$ during training (transductive) and learn a good classifier to get the values of ? under domain shift (i.e., $P_S \neq P_T$).

Control

Visual Localization

Credit to Gabriela Csurka, TaskCV-2019 talk.

Previous DA Methods - (I) Input-level Pixel Transfer

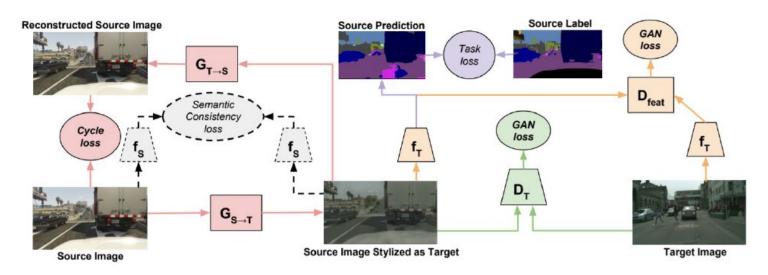


Figure 3: Cycle-consistent adversarial adaptation (CyCADA) ¹ overview.

Homan, Judy, et al. "CyCADA:
 Cycle-Consistent Adversarial
 Domain Adaptation." In ICML 2018.

Previous DA Methods - (II) Feature-level Alignment

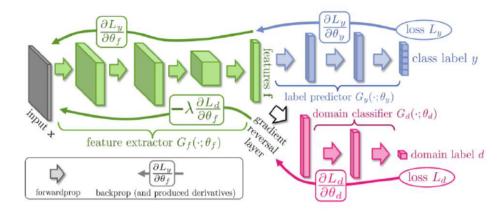


Figure 4: Unsupervised Domain Adaptation by Backpropagation (DANN) ² overview.

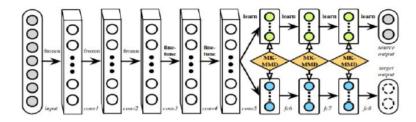


Figure 5: Deep Adaptation Networks (DAN) ³ overview.

² Ganin, Yaroslav, and Victor Lempitsky. "Unsupervised Domain Adaptation by Backpropagation." In ICML 2015.

³ Long, Mingsheng, et al. "Learning Transferable Features with Deep Adaptation Networks." In ICML 2015.

Previous DA Methods - (III) Output-level Regularization

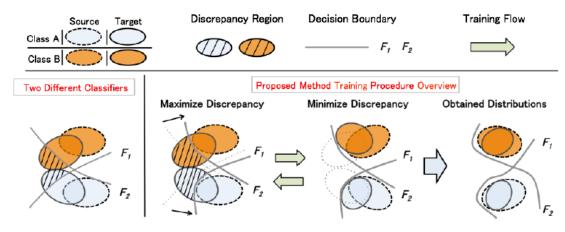


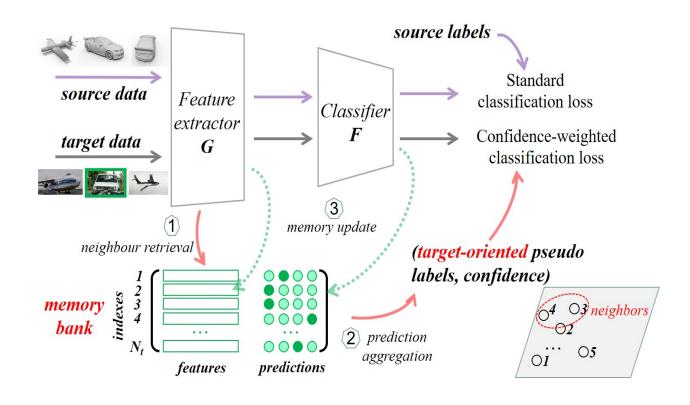
Figure 6: Maximum classifier discrepancy (MCD) ⁴ overview.

Or exploit the low-density separation principle:

- entropy minimization
- pseudo-labeling / self-training
- virtual adversarial training
- consistency regularization

⁴ Saito, Kuniaki, et al. "Maximum classifier discrepancy for unsupervised domain adaptation." In CVPR 2018.

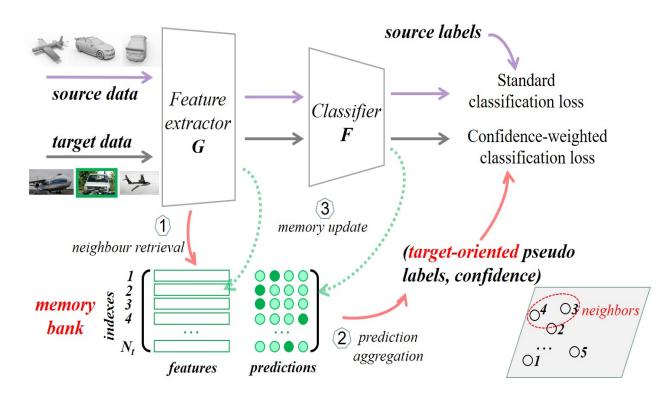
Outline


• Background

Method

• Experiments

Method - Framework



✓ We argue that the degraded performance on the target domain mainly results from the bias learned in the classifier.

✓ To address this, we propose a new pseudo-labeling framework termed Auxiliary Target
 Domain-Oriented Classifier
 (ATDOC) for DA problems.

Method – Details of ATDOC-NC

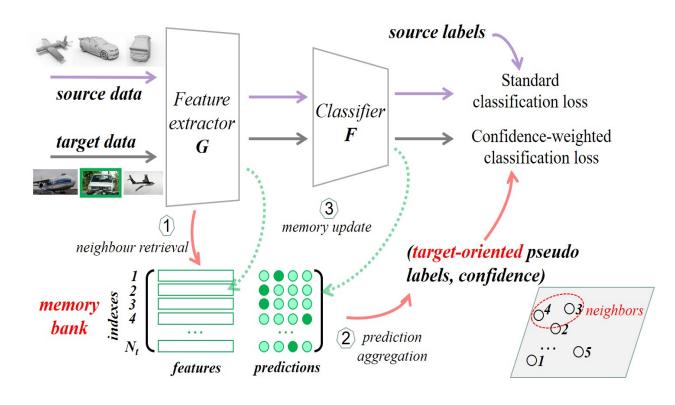
✓ Pseudo labels are obtained via nearest centroid classifier (NC).

Updating centroids:

$$c_{j} = \sum_{i \in B_{t}} \mathbb{1}_{[j=\hat{y}_{i}]} G(x_{i}^{t}) / \sum_{i \in B_{t}} \mathbb{1}_{[j=\hat{y}_{i}]},$$

$$c_{j}^{m} = \gamma c_{j} + (1 - \gamma) c_{j}^{m}, \ m = 1, 2, \dots, K,$$

Obtaining pseudo labels:


$$\hat{y}_i = \arg\min_{j=1}^K d\left(G(x_i^t), c_j^m\right), \ i = 1, 2, \dots, N_t,$$

Loss function:

$$\mathcal{L}_{nc} = -\frac{\lambda}{N_{tu}} \sum_{i=1}^{N_{tu}} \log p_{i,\hat{y}_i}.$$

Method – Details of ATDOC-NA

✓ Pseudo labels are obtained via neighborhood aggregation (NA).

Updating memory bank:

$$\check{p}_{i,k}^m = p_{i,k}^2 / \sum_i p_{i,k}^2$$
 Class balancing

Obtaining pseudo labels:

$$\hat{q}_i = \frac{1}{m} \sum_{j \neq i, j \in \mathcal{N}_i} \check{p}_j$$

Loss function:

$$\mathcal{L}_{na} = -\frac{\lambda}{N_{tu}} \sum_{i=1}^{N_{tu}} \hat{q}_{i,\hat{y}_i} \log p_{i,\hat{y}_i}.$$

Outline

• Background

Method

• Experiments

• Results for Closed-set Unsupervised DA

Table 3. Accuracy (%) on Office-Home for closed-set UDA (ResNet-50).

Method	Ar→Cl	Ar→Pr	Ar→Re	Cl→Ar	Cl→Pr	Cl→Re	Pr→Ar	Pr→Cl	Pr→Re	Re→Ar	Re→Cl	Re→Pı	Avg.
ResNet-50 [25]	44.9	66.3	74.3	51.8	61.9	63.6	52.4	39.1	71.2	63.8	45.9	77.2	59.4
MinEnt [22]	51.0	71.9	77.1	61.2	69.1	70.1	59.3	48.7	77.0	70.4	53.0	81.0	65.8
BNM [16]	56.7	77.5	81.0	67.3	76.3	77.1	65.3	55.1	82.0	73.6	57.0	84.3	71.1
MCC [30]	56.3	77.3	80.3	67.0	77.1	77.0	66.2	55.1	81.2	73.5	57.4	84.1	71.0
Pseudo-labeling	54.1	74.1	78.4	63.3	72.8	74.0	61.7	51.0	78.9	71.9	56.6	81.9	68.2
ATDOC-NC	54.4	77.6	80.8	66.5	75.6	75.8	65.9	51.9	81.1	72.7	57.0	83.5	70.2
ATDOC-NA	58.3	78.8	82.3	69.4	78.2	78.2	67.1	56.0	82.7	72.0	58.2	85.5	72.2
CDAN+E [48]	54.6	74.1	78.1	63.0	72.2	74.1	61.6	52.3	79.1	72.3	57.3	82.8	68.5
+ BSP [9]	57.1	73.4	77.5	64.2	71.8	74.3	64.0	56.7	81.0	73.4	59.1	83.3	69.6
+ BNM [16]	58.1	77.2	81.1	67.5	75.3	77.2	65.5	56.8	82.6	74.1	59.9	84.6	71.7
+ MCC [30]	58.9	77.6	80.7	67.0	75.1	77.1	65.8	56.8	82.2	73.9	59.8	84.5	71.6
+ Pseudo-labeling	57.3	76.6	79.2	66.6	74.0	76.6	66.1	53.6	81.0	74.3	58.9	84.2	70.7
+ ATDOC-NC	55.9	76.3	80.3	63.8	75.7	76.4	63.9	53.7	81.7	71.6	57.7	83.3	70.0
+ ATDOC-NA	60.2	77.8	82.2	68.5	78.6	77.9	68.4	58.4	83.1	74.8	61.5	87.2	73.2
SAFN [76]	52.0	71.7	76.3	64.2	69.9	71.9	63.7	51.4	77.1	70.9	57.1	81.5	67.3
CADA-P [35]	56.9	76.4	80.7	61.3	75.2	75.2	63.2	54.5	80.7	73.9	61.5	84.1	70.2
DCAN [42]	54.5	75.7	81.2	67.4	74.0	76.3	67.4	52.7	80.6	74.1	59.1	83.5	70.5
SHOT [45]	57.1	<i>78.1</i>	81.5	68.0	78.2	78.1	67.4	54.9	82.2	73.3	58.8	84.3	71.8

• Results for Semi-supervised DA

Table 4. Accuracy (%) on DomainNet-126 for Semi-supervised DA (SSDA) using a ResNet-34 backbone.

Method	$C \rightarrow S$		$C \to S$ $P \to C$		$\mathrm{P} ightarrow \mathrm{R}$		$R \rightarrow C$		$R \rightarrow P$		$R \rightarrow S$		$S\toP$		Average	
	1-shot	3-shot	1-shot	3-shot	1-shot	3-shot	1-shot	3-shot	1-shot	3-shot	1-shot	3-shot	1-shot	3-shot	1-shot	3-shot
ResNet-34 [25]	54.8	57.9	59.2	63.0	73.7	75.6	61.2	63.9	64.5	66.3	52.0	56.0	60.4	62.2	60.8	63.6
MinEnt [22]	56.3	61.5	67.7	71.2	76.0	78.1	66.1	71.6	68.9	70.4	60.0	63.5	62.9	66.0	65.4	68.9
MCC [30]	56.8	60.5	62.8	66.5	75.3	76.5	65.5	67.2	66.9	68.1	57.6	59.8	63.4	65.0	64.0	66.2
BNM [16]	58.4	62.6	69.4	72.7	77.0	79.5	69.8	73.7	69.8	71.2	61.4	65.1	64.1	67.6	67.1	70.3
Pseudo-labeling	62.5	64.5	67.6	70.7	78.3	79.3	70.9	72.9	69.2	70.7	62.0	64.8	67.0	68.6	68.2	70.2
ATDOC-NC	58.1	62.2	65.8	70.2	76.9	78.7	69.2	72.3	69.8	70.6	60.4	65.0	65.5	68.1	66.5	69.6
ATDOC-NA	65.6	66.7	72.8	74.2	81.2	81.2	74.9	76.9	71.3	72.5	65.2	64.6	68.7	70.8	71.4	72.4
MixMatch [3]	59.3	62.7	66.7	68.7	74.8	78.8	69.4	72.6	67.8	68.8	62.5	65.6	66.3	67.1	66.7	69.2
w/ Pseudo-labeling	59.6	62.6	67.5	69.6	74.8	78.6	70.0	73.0	68.6	69.3	63.2	65.9	66.6	67.3	67.2	69.5
w/ ATDOC-NC	60.2	63.4	65.2	69.5	75.0	78.9	68.4	73.0	68.7	70.1	60.9	64.5	65.3	67.1	66.2	69.5
w/ ATDOC-NA	64.6	65.9	70.7	72.2	80.3	80.8	74.0	75.2	70.2	71.2	65.7	67.7	68.5	69.4	70.6	71.8
MME [59]	56.3	61.8	69.0	71.7	76.1	78.5	70.0	72.2	67.7	69.7	61.0	61.9	64.8	66.8	66.4	68.9
BiAT [29]	57.9	61.5	71.6	74.6	77.0	78.6	73.0	74.9	68.0	68.8	58.5	62.1	63.9	67.5	67.1	69.7
Meta-MME [40]	-	62.8	-	72.8	-	79.2	-	73.5	-	70.3	-	63.8	-	68.0	-	70.1
APE [32]	56.7	63.1	72.9	76.7	76.6	79.4	70.4	76.6	70.8	72.1	63.0	67.8	64.5	66.1	67.6	71.7

• Results for Partial-set Unsupervised DA

Table 5. Accuracy (%) on Office-Home for Partial-set UDA (PDA) using a ResNet-50 backbone.

Method	$Ar{\rightarrow}Cl$	$Ar{ ightarrow}Pr$	$Ar{ ightarrow}Re$	$Cl \rightarrow Ar$	$Cl \rightarrow Pr$	Cl→Re	$Pr{ ightarrow}Ar$	$Pr{ ightarrow}Cl$	$Pr{ ightarrow}Re$	$Re{\rightarrow}Ar$	$Re{\rightarrow}Cl$	$Re{\rightarrow} Pr$	Avg.
ResNet-50 [25]	43.5	67.8	78.9	57.5	56.2	62.2	58.1	40.7	74.9	68.1	46.1	76.3	60.9
MinEnt [22]	45.7	73.3	81.6	64.6	66.2	73.0	66.0	52.4	78.7	74.8	56.7	80.8	67.8
MCC [30]	54.1	75.3	79.5	63.9	66.3	71.8	63.3	55.1	78.0	70.4	55.7	76.7	67.5
BNM [16]	54.6	77.2	81.1	64.9	67.9	72.8	62.6	55.7	79.4	70.5	54.7	77.6	68.2
Pseudo-labeling	51.9	70.7	77.5	61.7	62.4	67.8	62.9	54.1	73.8	70.4	56.7	75.0	65.4
ATDOC-NC	59.5	80.3	83.8	71.8	71.6	79.7	70.6	59.4	82.2	78.4	61.1	81.5	73.3
ATDOC-NA	60.1	76.9	84.5	72.8	71.2	80.9	73.9	61.8	83.8	77.3	60.4	80.4	73.7
ETN [6]	59.2	77.0	79.5	62.9	65.7	75.0	68.3	55.4	84.4	75.7	57.7	84.5	70.5
SAFN [76]	58.9	76.3	81.4	70.4	73.0	77.8	72.4	55.3	80.4	75.8	60.4	79.9	71.8
$RTNet_{adv}$ [12]	63.2	80.1	80.7	66.7	69.3	77.2	71.6	53.9	84.6	77.4	57.9	85.5	72.3

• Results for Semi-supervised Learning (SSL)

Table 6. Accuracy (%) on Office-Home and DomainNet-126 for scarce-labeled SSL (ResNet-50).

Dataset		Off	ice-H	ome		DomainNet-126						
Method	Ar	Cl	Pr	Re	Avg.	С	P	R	S	Avg.		
ResNet-50 [25]	48.7	42.1	68.9	66.6	56.6	41.6	46.2	66.4	33.3	46.9		
MinEnt [22]	51.7	44.5	72.4	68.9	59.4	43.8	48.6	68.8	35.4	49.2		
MCC [30]	58.9	47.7	77.4	74.3	64.6	45.7	49.5	70.9	38.5	51.2		
BNM [16]	59.0	46.0	76.5	71.5	63.2	44.8	47.2	69.9	35.5	49.4		
Pseudo-labeling	47.3	41.4	71.4	66.1	56.6	41.0	46.3	72.5	33.1	48.2		
ATDOC-NC	56.0	43.4	76.6	72.9	62.2	45.6	51.5	72.2	35.2	51.1		
ATDOC-NA	59.1	46.6	78.4	75.9	65.0	54.7	60.0	75.5	38.6	57.2		
MixMatch [3]	52.2	41.9	73.1	69.1	59.1	41.2	38.7	64.3	34.2	44.6		
w/ Pseudo-labeling	53.4	42.5	72.6	69.5	59.5	40.4	39.1	64.7	34.1	44.6		
w/ ATDOC-NC	54.6	44.4	72.7	71.0	60.7	41.2	38.3	63.4	34.4	44.3		
w/ ATDOC-NA	56.4	48.3	74.7	75.2	63.6	49.9	51.4	72.8	40.8	53.7		

Summary

- ✓ we propose ATDOC, a new framework to combat classifier bias that provides a new perspective of addressing domain shift.
- ✓ we exploit the memory bank and develop two types of **non-parametric classifiers**, not involving complicated network architectures with extra parameters.
- ✓ despite its simplicity, ATDOC achieves competitive or better results than prior state-of-the-arts under a variety of DA settings, e.g., PDA and SSDA.
- ✓ we study an SSL setting with only a few annotated data points available and find ATDOC performs better than other SSL techniques even without domain shift.

Thanks for listening!

• If you require any further information, feel free to contact me.

Email: liangjian92@gmail.com

• Code is available at https://github.com/tim-learn/ATDOC/.

code