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Understanding and Mitigating Dimensional
Collapse in Federated Learning

Yujun Shi Jian Liang Wenqing Zhang Chuhui Xue Vincent Y. F. Tan Song Bai

Abstract—Federated learning aims to train models collaboratively across different clients without sharing data for privacy considera-
tions. However, one major challenge for this learning paradigm is the data heterogeneity problem, which refers to the discrepancies
between the local data distributions among various clients. To tackle this problem, we first study how data heterogeneity affects the
representations of the globally aggregated models. Interestingly, we find that heterogeneous data results in the global model suffering
from severe dimensional collapse, in which representations tend to reside in a lower-dimensional space instead of the ambient space.
This dimensional collapse phenomenon severely curtails the expressive power of models, leading to significant degradation in the
performance. Next, via experiments, we make more observations and posit two reasons that result in this phenomenon: 1) dimensional
collapse on local models; 2) the operation of global averaging on local model parameters. In addition, we theoretically analyze the
gradient flow dynamics to shed light on how data heterogeneity result in dimensional collapse. To remedy this problem caused by the
data heterogeneity, we propose FEDDECORR, a novel method that can effectively mitigate dimensional collapse in federated learning.
Specifically, FEDDECORR applies a regularization term during local training that encourages different dimensions of representations to be
uncorrelated. FEDDECORR, which is implementation-friendly and computationally-efficient, yields consistent improvements over various
baselines on five standard benchmark datasets including CIFAR10, CIFAR100, TinyImageNet, Office-Caltech10, and DomainNet. Our
code can be found at https://github.com/bytedance/FedDecorr.

Index Terms—Federated Learning, Representation Learning, Distribution Shift, Dimensional Collapse.

✦

1 INTRODUCTION

W ITH the rapid development of deep learning and
the availability of large amounts of data, concerns

regarding data privacy have been attracting increasingly
more attention from industry and academia. To address
this concern, [1] propose Federated Learning—a decentralized
training paradigm enabling collaborative training across
different clients without sharing data.

One major challenge in federated learning is the po-
tential discrepancies in the distributions of local training
data among clients, which is known as the data heterogeneity
problem. In particular, analyses in this paper focus on the
heterogeneity of label distributions (see Fig. 1(a) for an exam-
ple). Such discrepancies can result in drastic disagreements
between the local optima of the clients and the desired
global optimum, which may lead to severe performance
degradation of the global model. Previous works attempt-
ing to tackle this challenge mainly focus on the model
parameters, either during local training [2], [3] or global
aggregation [4]. However, these methods usually result in
an excessive computation burden or high communication
costs [5] because deep neural networks are typically heavily
over-parameterized. In contrast, in this work, we focus on
the representation space of the model and study the impact
of data heterogeneity.
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To commence, we study how heterogeneous data af-
fects the global model in federated learning in Sec. 3.1.
Specifically, we compare representations produced by global
models trained under different degrees of data heterogene-
ity. Since the singular values of the covariance matrix pro-
vide a comprehensive characterization of the distribution
of high-dimensional embeddings, we use it to study the
representations output by each global model. Interestingly,
we find that as the degree of data heterogeneity increases,
more singular values tend to evolve towards zero. This ob-
servation suggests that stronger data heterogeneity causes
the trained global model to suffer from more severe dimen-
sional collapse, whereby representations are biased towards
residing in a lower-dimensional space (or manifold). A
graphical illustration of how heterogeneous training data
affect output representations is shown in Fig. 1(b-c). Our
observations suggest that dimensional collapse might be
one of the key reasons why federated learning methods
struggle under data heterogeneity. Essentially, dimensional
collapse is a form of oversimplification in terms of the model,
where the representation space is not being fully utilized to
discriminate diverse data of different classes.

Based on the observations made on the global model,
we continue to explore the reasons for this phenomenon. To
start with, since the global model is a result of the aggrega-
tion of local models, we conjecture that one reason behind
dimensional collapse of the global model is the dimensional
collapse of local models. To validate this conjecture, we
visualize the local models in terms of the singular values
of the representation covariance matrices in Sec. 3.2. We
observe similar dimensional collapse phenomenon as in
global models.

Next in Sec. 3.3, we investigate whether the operation
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of global averaging itself will cause dimensional collapse.
Specifically, we compare the representations produced by
global and local models in terms of the singular values of
their representation covariance matrices. Surprisingly, we
find the singular values of global model are consistently
lower than that of local models. This suggests that the global
averaging operation, which averages parameters of local
models into one global model, leads to dimensional collapse
on the global model comparing to the original local models.

To further develop a more rigorous understanding on
the dimensional collapse, we analyze the gradient flow
dynamics of local training in Sec. 3.4. Interestingly, we
show theoretically that heterogeneous data drive the weight
matrices of the local models to be biased to being low-
rank, which further results in representation dimensional
collapse.

Inspired by the observations and analyses above, we
develop a method to mitigate dimensional collapse during
local training in Sec. 4. In particular, we propose a novel
federated learning method called FEDDECORR. FEDDECORR
adds a regularization term during local training to encour-
age the Frobenius norm of the correlation matrix of repre-
sentations to be small. We show theoretically and empiri-
cally that this proposed regularization term can effectively
mitigate dimensional collapse (see Fig. 1(d) for example).
Next, in Sec. 5, through extensive experiments on stan-
dard benchmark datasets including CIFAR10, CIFAR100,
TinyImageNet, Office-Caltech10, DomainNet, we show that
FEDDECORR consistently improves over baseline federated
learning methods. In addition, we find that FEDDECORR
yields more dramatic improvements in more challenging
federated learning setups such as stronger heterogeneity
or a larger number of clients. Lastly, FEDDECORR has ex-
tremely low computation overhead and can be built on top
of any existing federated learning baseline method, which
makes it widely applicable.

Our contributions are summarized as follows. First, we
discover through experiments that stronger data hetero-
geneity in federated learning leads to greater dimensional
collapse for the global model. Second, we discover two
underlying reasons behind dimensional collapse of the
global model, namely dimensional collapse of the local
models and the operation of global averaging on local
model parameters. Third, we develop a theoretical under-
standing of the dynamics behind our empirical discovery
that connects data heterogeneity and dimensional collapse.
Fourth, based on the motivation of mitigating dimensional
collapse, we propose a novel method called FEDDECORR,
which yields consistent improvements under various data
heterogeneity settings while being implementation-friendly
and computationally-efficient.

This work extends our previous conference work pre-
sented in ICLR2023: Towards Understanding and Mitigating
Dimensional Collapse in Federated Learning. Comparing to
the conference version, we make the following substantial
improvements:

• We discover a new reason that can lead to dimensional
collapse on the global model, namely the operation of
averaging local model parameters. We also empirically
show that our proposed method FEDDECORR can alle-

viate the adverse outcomes due to dimensional collapse
from this newly uncovered reason.

• Different from the conference version, we empirically
show that FEDDECORR can even be employed beyond
label heterogeneity and improve the classification per-
formance in federated learning under domain heterogene-
ity.

• We add significantly more experiments to better vali-
date our proposed method FEDDECORR. This includes:
1) experiments demonstrating the effectiveness of FED-
DECORR on a new type of label heterogeneity par-
tition: pathological non-iid partition; 2) comparisons
in terms of computational efficiencies between FED-
DECORR and previous methods; 3) comparisons be-
tween FEDDECORR and other decorrelation methods; 4)
experiments on different neural network architectures.

• We have polished writing of the abstract, introduction,
methodology, experiment sections and included more
thorough discussion on related works.

2 RELATED WORKS

2.1 Federated Learning
Federated Learning is a decentralized learning paradigm
proposed originally in [1]. It strives to train a effective
machine learning model without collecting local data of
each client. As a first step to solving this problem, [1]
proposed FedAvg, which adopts a simple averaging scheme
to aggregate local models into the global model. However,
under data heterogeneity, FedAvg suffers from unstable and
slow convergence, resulting in performance degradation. To
tackle this challenge, previous works either improve local
training [2], [3], [6]–[12] or global aggregation [4], [13]–
[15], [15]–[18]. Most of these methods focus on the model
parameter space, which may result in high computation
or communication cost due to deep neural networks being
over-parameterized. For example, [2] requires computing
regularization terms based on all model parameters, which
can be very computational intensive; [3] requires exchang-
ing extra information between the server and clients that is
of the same size as the model parameters. Different from
these works, [19], [20] propose to adjust the model output
logit during local training to counter the label heterogeneity,
which is much more efficient. However, one major problem
of these methods is that their application is restricted to
the scenario of label heterogeneity. [6] focuses on model
representations and uses a contrastive loss to maximize
agreements between representations of local models and
the global model. However, one drawback of [6] is that it
requires additional forward passes during training, which
almost doubles the training cost. In this work, based on our
study of how data heterogeneity affects model representa-
tions, we propose an effective yet highly efficient method to
handle heterogeneous data.

Another research trend is in personalized federated
learning [21]–[28], which aims to train personalized local
models for each client. In this work, we apply FEDDECORR
on a personalized federated learning baseline, namely
FedBN [28], under the domain heterogeneity setting.

Besides the parameters-sharing-based federated learn-
ing settings mentioned before, another setting of federated
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(a) Data Heterogeneity

Fig. 1: (a) illustrates data heterogeneity in terms of number of samples per class. (b), (c), (d) show representations
(normalized to the unit sphere) of global models trained under homogeneous data, heterogeneous data, and heterogeneous
data with FEDDECORR, respectively. Only (c) suffers dimensional collapse. (b), (c), (d) are produced with ResNet20 on
CIFAR10. Best viewed in color.

learning is vertical federated learning [29]–[32]. Under this
setting, different features instead of different data samples are
being split across different clients. Moreover, the informa-
tion being exchanged between the server and the clients are
the intermediate activation of neural networks. In this work,
however, we only focus on the more popular horizontal
federated learning setting.

2.2 Model Fusion

Another direction related to Federated Learning is Model
Fusion, which also study how to better merge different
models so that the performance of the merged model does
not decrease. However, there are two major distinctions
between these two similar topics: 1) model fusion includes
studying how to merge two models independently trained
on the exact same dataset [33]–[37] while federated learning
only focuses fusing models trained on different datasets; 2)
training data are usually strictly inaccessible in federated
learning, but it is not the case for model fusion [37]. [38] first
investigate how to align neural network output units with
matching algorithms. Later, [33]–[35], [37] further explore
the idea of permuting neurons for better fusing different
models. [36] directly averaging weights of different fine-
tuned models and achieves the state-of-the-art performance
on ImageNet.

2.3 Dimensional Collapse

Dimensional collapse is the phenomenon of model output
representations being biased towards residing in a lower
dimensional space (or manifold) instead of the full ambi-
ent space. This phenomenon has been studied in metric
learning [39], self-supervised learning (SSL) [40]–[42], and
class incremental learning (CIL) [43]. Specifically, [39] in-
vestigates the relation between dimensional collapse and
generalization capability of deep metric learning models;
[40]–[42] study how to prevent dimensional collapse in SSL;
[43] proposes to handle dimensional collapse at the initial
phase to improve CIL performance. In this work, however,
we focus on federated learning and discover two distinct
factors that can cause representations to suffer dimensional

collapse: strong local data heterogeneity and the operation
of averaging model parameters of local clients. To the best
of our knowledge, this work is the first to discover and
analyze dimensional collapse of representations in federated
learning.

2.4 Gradient Flow Dynamics

[44], [45] introduce the gradient flow dynamics framework
to analyze the dynamics of multi-layer linear neural net-
works under the ℓ2-loss and find deeper neural networks
that are biased towards low-rank solution during optimiza-
tion. Following their works, [40] finds two factors that cause
dimensional collapse in contrastive self-supervised learning,
namely, strong data augmentation and implicit regulariza-
tion from depth. [46] use gradient flow dynamics to analyze
how non-contrastive self-supervised learning methods can
circumvent mode collapse. Different from previous works,
we focus on federated learning with the cross-entropy loss.
More importantly, our analysis focuses on understanding
dimensional collapse caused by data heterogeneity in fed-
erated learning instead of the depth of neural networks or
strong data augmentations.

2.5 Feature Decorrelation

Feature decorrelation had been used for different pur-
poses, such as preventing mode collapse in self-supervised
learning [41], [42], [47], [48], boosting generalization [49]–
[51], and improving class incremental learning [43]. Among
these works, [47]–[49], [51] apply regularization terms on
the representations during training to reduce correlation
among different dimension of model output representa-
tions, while [41], [42], [50] apply whitening to explicitly
enforce decorrelated representations. In this work, we apply
feature decorrelation to counter the undesired dimensional
collapse caused by data heterogeneity in federated learning.
In addition, we adopt the regularization-based decorrelation
approach instead of whitening. This is because the computa-
tion procedure of whitening is much more complicated than
that of decorrelation regularization.
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Fig. 2: Data heterogeneity causes dimensional collapse on
global models. We plot the singular values of the covariance
matrix of representations in descending order. The x-axis
(k) is the index of singular values and the y-axis is the
logarithm of the singular values. This figure shows that
stronger heterogeneity results in a more drastic decrease in
the singular values for an arbitrary k, indicating stronger
dimensional collapse.

3 DIMENSIONAL COLLAPSE FROM DATA HETERO-
GENEITY

In this section, we first empirically visualize and compare
representations of global models trained under different
degrees of data heterogeneity in Sec. 3.1. Next, we provide
empirical analyses in Sec. 3.2 and Sec. 3.3 and uncover two
distinct reasons behind dimensional collapse on the global
models. Finally, to theoretically understand our observa-
tions, we analyze the gradient flow dynamics in Sec. 3.4.

3.1 Empirical Observations on the Global Model

We first empirically demonstrate that stronger data hetero-
geneity causes more severe dimensional collapse on the
global model. Specifically, we first separate the training
samples of CIFAR100 into 10 splits, each corresponding to
the local data of one client. To simulate data heterogeneity
among clients as in previous works [6], [15], [52], we sample
a probability vector pc = (pc,1, pc,2, . . . , pc,K) ∼ DirK(α)
and allocate a pc,k proportion of instances of class c ∈
[C] = {1, 2, . . . , C} to client k ∈ [K], where DirK(α) is
the Dirichlet distribution with K categories and α is the
concentration parameter. A smaller α implies stronger data
heterogeneity (α = ∞ corresponds to the homogeneous
setting). We let α ∈ {0.01, 0.05, 0.25,∞}.

For each of the settings generated by different α’s, we ap-
ply FedAvg [1] to train a MobileNetV2 [53] with CIFAR100
(observations on other federated learning methods, model
architectures, or datasets are similar and are provided in the
Supplementary Material Sec. C). Next, for each of the four
trained global models, we compute the covariance matrix
Σ = 1

N

∑N
i=1(zi − z̄)(zi − z̄)⊤ of the representations over

the N test data points in CIFAR100. Here zi is the i-th test
data point and z̄ = 1

N

∑N
i=1 zi is their average.
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Fig. 3: Data heterogeneity causes dimensional collapse on
local models. We plot the singular values of the covariance
matrix of representations in descending order. The x-axis (k)
is the index of singular values and the y-axis is the logarithm
of the singular values. This figure also shows that stronger
heterogeneity results in more drastic decrease in the singular
values for an arbitrary k, indicating stronger dimensional
collapse similarly to Fig. 2.

Finally, we apply the singular value decomposition
(SVD) on each of the covariance matrices and visualize the
top 100 singular values in Fig. 2. If we define a small value
τ as the threshold for a singular value to be significant (e.g.,
log τ = −2), we observe that for the homogeneous setting,
all the singular values are significant, i.e., they surpass τ .
However, as α decreases, the number of singular values
exceeding τ monotonically decreases. This implies that with
stronger heterogeneity among local training data, the rep-
resentation vectors produced by the trained global model
tend to reside in a lower-dimensional space, corresponding
to more severe dimensional collapse.

3.2 Empirical Observations on Local Models

Since the global model is obtained by aggregating locally
trained models on each client, we posit that one reason
behind the dimensional collapse on the global model is the
dimensional collapse of local models. To further validate
this conjecture, we continue to study whether increasing
data heterogeneity will also lead to more severe dimensional
collapse on locally trained models.

Specifically, for different α’s, we visualize the locally
trained model of one client (visualizations on local models
of other clients are similar and are provided in the Supple-
mentary Materials Sec. D). Following the same procedure
as in Sec. 3.1, we plot the singular values of covariance
matrices of representations produced by the local models.
We observe from Fig. 3 that locally trained models demon-
strate the same trend as the global models—namely, that the
presence of stronger data heterogeneity causes more severe
dimensional collapse. These experiments corroborate that
the global model inherit the adverse dimensional collapse
phenomenon from the local models.
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Fig. 4: Global averaging causes dimensional collapse. We compare representations between local and global models under
different degrees of data heterogeneity. The x-axis (k) represents the indices of the singular values and the y-axis is the
logarithm of the singular values. R defined in Eqn. (1) are computed and are shown on top-right corner. In heterogeneous
scenarios such as (a-c), averaging local models into a global model results in a drop in the singular values for every k.

3.3 Comparisons Between Local and Global Models
To further understand why the global model suffers from
dimensional collapse under data heterogeneity, we provide
comparisons between representations produced by local
and global models. Specifically, under different α’s, we plot
the singular values of the covariance matrices of local and
global model’s output representations in Fig. 4. We also
define the following metric R to quantitatively compare the
curves of local and global models:

R =
1

K

K∑
k=1

log
λ
(l)
k

λ
(g)
k

, (1)

where K is the total number of singular values, λ(l)
k and λ

(g)
k

are the k-th singular value of local and global model curve,
respectively. Smaller R indicates a smaller gap between the
two curves.

From the results, we observe that for the homogeneous
case (Fig. 4(d)), the curves for local and global models are
almost the same, indicating that global averaging will not
incur dimensional collapse on global model in this case.

However, as the heterogeneity becomes more severe
(Fig. 4(a-c)), the curve of the global model is always below
that of the local model, and the gap between them increase.
Therefore, we have demonstrated that under data hetero-
geneity, the operation of global averaging on local models
will also lead to dimensional collapse on the global model.

Although we have identified two distinct reasons for the
dimensional collapse of the global model, the dimensional
collapse on the local models is the more prominent one
according to our visualizations.

3.4 A Theoretical Explanation for Dimensional Col-
lapse
Based on the previous empirical observations, we now
develop a theoretical understanding to explain why hetero-
geneous training data causes dimensional collapse for the
learned representations.

Since we have observed that the dimensional collapse
on local models is the more prominent factor that leads to
global model dimensional collapse, we focus our attention
on local models in this section. Without loss of generality,

we study local training of one arbitrary client. Specifically,
we first analyze the gradient flow dynamics of the model
weights during the local training. This analysis shows how
heterogeneous local training data drives the model weights
towards being low-rank, which leads to dimensional col-
lapse for the representations.

3.4.1 Setups and Notations

We denote the number of training samples as N , the di-
mension of input data as din, and total number of classes
as C . The i-th sample is denoted as Xi ∈ Rdin , and its
corresponding one-hot encoded label is yi ∈ RC . The
collection of all N training samples is denoted as X =
[X1, X2 . . . , XN ] ∈ Rdin×N , and the N one-hot encoded
training labels are denoted as y = [y1,y2, . . . ,yN ] ∈ RC×N .

For simplicity in exposition, we follow [44], [45] and
[40] and analyze linear neural networks (without nonlinear
activation layers). We consider an (L + 1)-layer (where
L ≥ 1) linear neural network trained using the cross entropy
loss under gradient flow (i.e., gradient descent with an
infinitesimally small learning rate). The weight matrix of
the i-th layer (i ∈ [L + 1]) at the optimization time step t is
denoted as Wi(t). The dynamics can be expressed as

Ẇi(t) = − ∂

∂Wi
ℓ(W1(t), . . . ,WL+1(t)), (2)

where ℓ denotes the cross-entropy loss.
In addition, at the optimization time step t and given the

input data Xi, we denote zi(t) ∈ Rd as the output represen-
tation vector (d being the dimension of the representations)
and γi(t) ∈ RC as the output softmax probability vector. We
have

γi(t) = softmax(WL+1(t)zi(t))

= softmax(WL+1(t)WL(t) . . .W1(t)Xi).
(3)

We define µc =
Nc

N , where Nc is number of data samples
belonging to class c. We denote ec as the C-dimensional
one-hot vector where only the c-th entry is 1 (and the others
are 0). In addition, let γ̄c(t) = 1

Nc

∑N
i=1 γi(t)1{yi = ec} and

X̄c =
1
Nc

∑N
i=1 Xi1{yi = ec}.
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3.4.2 Analysis on Gradient Flow Dynamics

Since our goal is to analyze model representations zi(t),
we focus on weight matrices that directly produce repre-
sentations (i.e., the first L layers). We denote the product
of the weight matrices of the first L layers as Π(t) =
WL(t)WL−1(t) . . .W1(t) and analyze the behavior of Π(t)
under the gradient flow dynamics. In particular, we derive
the following result for the singular values of Π(t).

Theorem 1 (Informal). Assuming that the mild conditions as
stated in Supplementary Materials Sec. A.3 hold. Let σk(t) for
k ∈ [d] be the k-th largest singular value of Π(t). Then,

σ̇k(t) = NL (σk(t))
2− 2

L

×
√
(σk(t))

2
L +M (uL+1,k(t))

⊤G(t)vk(t), (4)

where uL+1,k(t) is the k-th left singular vector of WL+1(t),
vk(t) is the k-th right singular vector of Π(t), M is a constant,
and G(t) is defined as

G(t) =
C∑

c=1

µc(ec − γ̄c(t))X̄
⊤
c , (5)

and where µc, ec, γ̄c(t), X̄c are defined after Eqn. (3).

The proof of the precise version of Theorem 1 is provided
in Supplementary Materials Sec. A.

Based on Theorem 1, we are able to explain why greater
data heterogeneity causes Π(t) to be biased to become
lower-rank. Note that strong data heterogeneity causes local
training data of one client being highly imbalanced in terms
of the number of data samples per class (recall Fig. 1(a)).
This implies that µc, which is the proportion of the class c
data, will be close to 0 for some classes.

Next, based on the definition of G(t) in Eqn. (5),
more µc’s being close to 0 leads to G(t) being bi-
ased towards a low-rank matrix. If this is so, the term
(uL+1,k(t))

⊤G(t)vk(t) in Eqn. (4) will only be significant
(large in magnitude) for fewer values of k. This is because
uL+1,k(t) and vk(t) are both singular vectors, which are
orthogonal among different k’s. This further leads to σ̇k(t)
on the left-hand side of Eqn. (4), which is the evolving rate
of σk, being small for most of the k’s throughout training.
These observations imply that only relatively few singular
values of Π(t) will increase significantly after training.

Furthermore, Π(t) being biased towards being low-rank
will directly lead to dimensional collapse for the representa-
tions. To see this, we simply write the covariance matrix of
the representations in terms of Π(t) as

Σ(t) =
1

N

N∑
i=1

(zi(t)− z̄(t))(zi(t)− z̄(t))⊤

= Π(t)

(
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)⊤
)
Π(t)⊤.

(6)

From Eqn. (6), we observe that if Π(t) evolves to being
a lower-rank matrix, Σ(t) will also tend to be lower-rank,
which corresponds to the stronger dimensional collapse
observed in Fig. 3.

Algorithm 1 PyTorch-style Pseudocode for FEDDECORR.

# function calculating FedDecorr regularization term
# z: a batch of representation
# beta: regularization coefficient of FedDecorr
def FedDecorr(z, beta):

# N: batch size
# d: representation dimension
N,d = z.shape

# z-score normalization
z = (z - z.mean(0)) / z.std(0)

# estimate correlation matrix
corr_mat = 1/N*torch.matmul(z.t(), z)

# calculate FedDecorr loss
loss_fed_decorr = (corr_mat.pow(2)).mean()

return beta*loss_fed_decorr

4 MITIGATING DIMENSIONAL COLLAPSE WITH
FEDDECORR

4.1 Method Development
Motivated by the above observations and analyses on di-
mensional collapse caused by data heterogeneity in feder-
ated learning, we explore how to mitigate excessive dimen-
sional collapse.

Since dimensional collapse on the local models is the
major reason for the dimensional collapse on the global
model, we propose to alleviate the problem during local
training. One natural way to achieve this is to add the
following regularization term on the representations during
training

Lsingular(w,X) =
1

d

d∑
i=1

(
λi −

1

d

d∑
j=1

λj

)2

, (7)

where λi is the i-th singular value of the covariance matrix
of the representations. Essentially, Lsingular penalizes the
variance among the singular values, thus discouraging the
tail singular values from collapsing to 0, mitigating dimen-
sional collapse. However, this regularization term is not
practical as it requires calculating all the singular values,
which is computationally expensive.

Therefore, to derive a computationally-cheap training
objective, we first apply the z-score normalization on all the
representation vectors zi as follows: ẑi = (zi− z̄)/

√
Var(z).

This results in the covariance matrix of ẑi being equal to its
correlation matrix (i.e., the matrix of correlation coefficients).
The following proposition suggests a more convenient cost
function to regularize.

Proposition 1. For a d-by-d correlation matrix K with singular
values (λ1, . . . , λd), we have:

d∑
i=1

(
λi −

1

d

d∑
j=1

λj

)2

= ∥K∥2F − d. (8)

The proof of Proposition 1 can be found in Supple-
mentary Materials Sec. B. This proposition suggests that
regularizing the Frobenius norm of the correlation matrix
∥K∥F achieves the same effect as minimizing Lsingular. In
contrast to the singular values, ∥K∥F can be computed
efficiently.

To leverage this proposition, we propose a novel method,
FEDDECORR, which regularizes the Frobenius norm of the
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Fig. 5: FEDDECORR effectively mitigates dimensional col-
lapse for the local models. For each heterogeneity parameter
α ∈ {0.01, 0.05}, we apply FEDDECORR and plot the sin-
gular values of the representation covariance matrix. The
x-axis (k) is the index of singular values. With FEDDECORR,
the tail singular values are prevented from dropping to 0
too rapidly.

correlation matrix of the representation vectors during local
training on each client. Formally, the proposed regulariza-
tion term is defined as:

LFedDecorr(w,X) =
1

d2
∥K∥2F, (9)

where w is the model parameters, K is the correlation
matrix of the representations. The overall objective of each
local client is

min
w

ℓ(w,X,y) + βLFedDecorr(w,X), (10)

where ℓ is the cross entropy loss, and β is the regularization
coefficient of FEDDECORR. The pseudocode for calculating
FEDDECORR loss is provided in Alg. 1.

4.2 Effectiveness of FEDDECORR

To witness the efficacy of LFedDecorr in mitigating di-
mensional collapse, we implement the method with and
without LFedDecorr under the heterogeneous setting where
α ∈ {0.01, 0.05} and compare the results.

Firstly, we visualize the representations of locally trained
models. We plot our results in Fig. 5. As expected, applying
FEDDECORR encourages the tail singular values to not col-
lapse to 0, thus effectively mitigating dimensional collapse
for the local models.

Next, we compare representations of local and global
models to verify whether FEDDECORR can alleviate the di-
mensional collapse caused by global averaging. Our results
are shown in Fig. 6. We observe that applying FEDDECORR
helps to effectively reduce the R defined in Eqn. 1, indicat-
ing smaller gap between curves of the singular values of the
local and global models, thus mitigating the dimensional
collapse from global averaging.

Finally, we visualize representations of the global model.
The results are shown in Fig. 7, which illustrates that ap-
plying FEDDECORR can indeed eventually alleviate dimen-
sional collapse for the global model.

In this section, we have shown that applying FED-
DECORR can help to mitigate the two factors behind the
dimensional collapse on the global model as studied in
Sec. 3.2 and Sec. 3.3.

5 EXPERIMENTS

5.1 Experimental Setups

Datasets: In our experiment, we simulate the Federated
Learning scenarios of having multiple clients for local
training and one parameter server performing global ag-
gregation. We adopt three datasets, namely CIFAR10 [54],
CIFAR100 [54], and TinyImageNet [55], to evaluate under
label heterogeneity settings. CIFAR10 and CIFAR100 both
have 50, 000 training samples and 10, 000 test samples, and
the size of each image is 32×32. TinyImageNet contains 200
classes, with 100, 000 training samples and 10, 000 testing
samples, and each image is 64× 64.

We use two schemes to generate local data for each
client. The first method involves sampling a probability vec-
tor pc = (pc,1, pc,2, . . . , pc,K) ∼ DirK(α) and allocating a
pc,k proportion of instances of class c ∈ [C] = {1, 2, . . . , C}
to client k ∈ [K], where DirK(α) is the Dirichlet distribution
with K categories and α is the concentration parameter;
α ↓ 0 means an increasing level of heterogeneity. This
method follows [6], [15], [52]. The second method follows
the pathological non-iid partition in [1] and assigns data of
M classes to each client. Under such a partition, smaller M
implies stronger heterogeneity. In the following sections, we
refer to the first partition scheme as the Dirichlet partition
and the second scheme as the pathological non-iid partition.

We use two datasets, namely Office-Caltech10 [56] and
DomainNet [57], to evaluate the performance of our and
competing methods under domain heterogeneity. Office-
Caltech10 is a dataset acquired in different cameras or
environments, containing 4 domains in total. DomainNet
is a dataset with images from different styles, containing 6
domains in total. We use data of one domain as the local
data of one client.

Implementation Details: For label heterogeneity exper-
iments, we use a MobileNetV2 [53]. We run 100 com-
munication rounds for experiments on the CIFAR10/100
datasets and 50 communication rounds on the TinyIma-
geNet dataset. We conduct local training for 10 epochs in
each communication round using SGD optimizer with a
learning rate of 0.01, a momentum of 0.9, and a batch
size of 64. The weight decay is set to 10−5 for CIFAR10
and 10−4 for CIFAR100 and TinyImageNet. We apply the
data augmentation of [58] in CIFAR100 and TinyImageNet
experiments. The β of FEDDECORR (i.e., β in Eqn. (10)) is
tuned to be 0.1 (See ablation study in Sec. 5.5).

In domain heterogeneity experiments, we follow the set-
tings in [28]. Specifically, we use an AlexNet [59] with Batch-
Normalization [60] for all experiments. We run 300 commu-
nication rounds for all experiments on Office-Caltech10 and
DomainNet. We conduct local training for 1 epoch in each
communication round using SGD optimizer with a learning
rate of 0.01, an SGD momentum parameter of 0.9, and a
batch size of 64. The weight decay is set to 10−5. When
applying FEDDECORR to FedBN, we also directly add the
FedDecorr loss in local training.

For all experiments, The regularization coefficient of
FedProx [2] µ is tuned across {10−4, 10−3, 10−2, 10−1} and
is selected to be µ = 10−3; the regularization coefficient
of MOON [6] µ is tuned across {0.1, 1.0, 5.0, 10.0} and is
selected to be µ = 1.0; the server momentum parameter of
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Fig. 6: FEDDECORR effectively closes the gap between the local and global models. For each heterogeneity parameter
α ∈ {0.01, 0.05}, we apply FEDDECORR and plot the singular values of the representation covariance matrix. The x-axis
(k) is the index of singular values. R, defined in Eqn. 1, is computed for each figure and is shown on top-right corner. With
FEDDECORR, the gaps between the curves of local and global models are reduced (i.e., smaller R).

TABLE 1: Experiments for label heterogeneity under Dirichlet partition. We run experiments under various degrees of
heterogeneity (α ∈ {0.05, 0.1, 0.5,∞}) and report the test accuracy (%). All results are (re)produced by us and are averaged
over 3 runs (mean± std). Bold font highlights the highest accuracy in each column.

Method
CIFAR10 CIFAR100 TinyImageNet

α = 0.05 0.1 0.5 ∞ 0.05 0.1 0.5 ∞ 0.05 0.1 0.5 ∞

Scaffold 51.99±2.54 74.36±3.10 87.05±0.39 89.77±0.24 54.51±0.26 61.42±0.54 68.37±0.44 70.97±0.04 35.16±0.77 37.87±0.78 44.24±0.14 44.88±0.29

FedNova 63.07±1.59 79.98±1.56 90.23±0.41 92.39±0.18 60.22±0.33 66.43±0.26 71.79±0.17 74.47±0.13 35.28±0.04 39.73±0.07 47.05±0.42 49.57±0.09

FedAvg 64.85±2.01 76.28±1.22 89.84±0.13 92.39±0.26 59.87±0.25 66.46±0.16 71.69±0.15 74.54±0.15 35.02±0.46 39.30±0.23 46.92±0.25 49.33±0.19

+ FEDDECORR 73.06±0.81 80.60±0.91 89.84±0.05 92.19±0.10 61.53±0.11 67.12±0.09 71.91±0.04 73.87±0.18 40.29±0.18 43.86±0.50 50.01±0.27 52.63±0.26

FedProx 64.11±0.84 76.10±0.40 89.57±0.04 92.38±0.09 60.02±0.46 66.41±0.27 71.78±0.19 74.34±0.03 35.20±0.30 39.66±0.43 47.16±0.07 49.76±0.36

+ FEDDECORR 71.38±0.81 81.74±0.34 89.96±0.26 92.14±0.20 61.33±0.19 67.00±0.46 71.64±0.10 74.15±0.06 40.63±0.05 44.19±0.14 50.26±0.27 52.37±0.36

FedAvgM 71.34±0.71 77.51±0.58 88.39±0.17 91.35±0.15 59.64±0.20 66.36±0.14 71.17±0.22 74.20±0.16 34.81±0.09 39.72±0.11 47.11±0.04 49.67±0.25

+ FEDDECORR 73.60±0.82 79.21±0.15 88.70±0.26 91.33±0.13 61.48±0.27 66.60±0.11 71.26±0.21 73.86±0.25 39.97±0.23 43.95±0.26 50.14±0.11 52.05±0.37

MOON 68.79±0.69 78.70±0.66 90.08±0.10 92.62±0.17 56.79±0.17 65.48±0.29 71.81±0.14 74.30±0.12 35.23±0.26 40.53±0.28 47.25±0.66 50.48±0.57

+ FEDDECORR 73.46±0.84 81.63±0.55 90.61±0.05 92.63±0.19 59.43±0.34 66.12±0.20 71.68±0.05 73.70±0.25 40.40±0.24 44.20±0.22 50.81±0.51 53.01±0.45
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Fig. 7: FEDDECORR effectively mitigates dimensional col-
lapse for global models. For each heterogeneity parameter
α ∈ {0.01, 0.05}, we apply FEDDECORR and plot the sin-
gular values of the representation covariance matrix. The
x-axis (k) is the index of singular values. With FEDDECORR,
the tail singular values are prevented from dropping to 0
too rapidly.

FedAvgM [13] ρ is tuned across {0.1, 0.5, 0.9} and is selected
to be ρ = 0.5.

5.2 FEDDECORR Improves Baseline Methods Under La-
bel Heterogeneity
To validate the effectiveness of our method, we apply FED-
DECORR to four baselines, namely FedAvg [1], FedAvgM
[13], FedProx [2], and MOON [6]. Besides, we also compare
with two other baselines, namely Scaffold [3] and FedNova
[4]. We first apply the Dirichlet partition (described in the
second paragraph of Sec. 5.1) and split the three benchmark
datasets (CIFAR10, CIFAR100, and TinyImageNet) into 10
clients with α ∈ {0.05, 0.1, 0.5,∞}. Since α = ∞ cor-
responds to the homogeneous setting where the trained
models should be free from the adverse effects of excessive
dimensional collapse, we only expect FEDDECORR to per-
form on par with the baselines in this setting. Experimental
results of Dirichlet partition are shown in Tab. 1. Next, we
apply the pathological non-iid partition (also described in
second paragraph of Sec. 5.1) and split the three benchmark
datasets into 10 clients with M ∈ {3, 4, 5} for CIFAR10,
M ∈ {20, 30, 40} for CIFAR100, and M ∈ {80, 90, 100} for
TinyImageNet. Experimental results based on the patholog-
ical non-iid partition are displayed in Tab. 2.

We observe that for all of the heterogeneous settings
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TABLE 2: Experiments for label heterogeneity under pathological non-iid partition. We run experiments under various
degrees of heterogeneity (M ∈ {3, 4, 5} for CIFAR10, M ∈ {20, 30, 40} for CIFAR100, M ∈ {80, 90, 100} for TinyImageNet)
and report the test accuracies (%). All results are (re)produced by us and are averaged over 3 runs (mean± std). Bold font
highlights the highest accuracy in each column.

Method
CIFAR10 CIFAR100 TinyImageNet

M = 3 4 5 20 30 40 80 90 100

Scaffold 53.97±0.80 62.77±1.36 77.24±0.04 51.81±0.59 58.14±0.16 63.40±0.58 41.43±0.42 41.88±0.07 43.87±0.53

FedNova 59.20±0.91 72.54±1.54 85.43±0.61 57.95±0.22 63.64±0.27 68.79±0.29 41.91±0.06 43.96±0.17 45.36±0.20

FedAvg 66.64±0.63 74.93±1.36 84.69±0.70 58.12±0.47 63.43±0.14 67.53±1.60 42.14±0.43 43.93±0.35 45.61±0.06

+ FEDDECORR 74.17±0.46 78.45±0.37 87.49±0.06 60.56±0.25 65.52±0.14 69.57±0.28 45.86±0.19 47.42±0.53 48.52±0.25

FedProx 67.57±0.44 75.65±1.07 85.25±0.27 58.45±0.13 63.74±0.29 68.96±0.63 42.11±0.22 43.77±0.61 45.32±0.11

+ FEDDECORR 75.45±0.62 78.99±0.70 87.38±0.32 60.74±0.21 65.39±0.43 69.43±0.39 46.20±0.58 47.21±0.23 48.55±0.04

FedAvgM 64.10±1.21 76.37±0.21 84.71±0.31 57.93±0.45 63.48±0.08 68.66±0.58 41.78±0.02 43.53±0.34 44.72±0.32

+ FEDDECORR 72.69±0.32 77.24±0.52 85.85±0.04 60.40±0.12 65.25±0.21 69.37±0.30 45.45±0.20 46.96±0.20 48.41±0.14

MOON 61.04±1.47 76.83±0.78 87.63±0.32 54.85±0.12 62.70±0.21 68.47±0.13 42.73±0.11 44.21±0.36 45.82±0.17

+ FEDDECORR 75.35±0.64 81.31±0.31 88.39±0.28 58.25±0.27 64.52±0.15 69.36±0.26 46.76±0.29 47.22±0.09 48.80±0.27

on all datasets, the highest accuracies are achieved by
adding FEDDECORR on top of a certain baseline method.
In particular, in the strongly heterogeneous settings where
α ∈ {0.05, 0.1} or the smallest M for each dataset, adding
FEDDECORR yields significant improvements of around
2% ∼ 9% over baseline methods. On the other hand, for
the less heterogeneous setting (i.e., larger α or M ), the im-
provements from FEDDECORR are smaller. This is because
the problem of dimensional collapse is less pronounced
in less heterogeneous settings; this phenomenon has been
discussed in Sec. 3. In addition, surprisingly, in the ho-
mogeneous setting of α = ∞, FEDDECORR still produces
around 2% of improvements on the TinyImageNet dataset.
We conjecture that this is because TinyImageNet is much
more complicated than the CIFAR datasets, and some other
factors besides heterogeneity of label may cause undesirable
dimensional collapse in the federated learning setup. There-
fore, federated learning on TinyImageNet can benefit from
FEDDECORR even in the homogeneous setting.

To further demonstrate the advantages of FEDDECORR,
we apply it on FedAvg and plot how the test accuracy of
the global model evolves with increasing communication
rounds in Fig. 8. In this figure, if we set a certain value
of the testing accuracy as a threshold, we see that adding
FEDDECORR significantly reduces the number of communi-
cation rounds needed to achieve the given threshold. This
further shows that FEDDECORR not only improves the final
performance, but also greatly boosts the communication
efficiency in federated learning.

5.3 FEDDECORR Improves Baseline Methods Under Do-
main Heterogeneity
Next, we evaluate the effectiveness of FEDDECORR on do-
main heterogeneity setting with two benchmark datasets,
namely Office-Caltech10 and DomainNet. Under this set-
ting, we assign data of one domain to be the local training
data of one client. We apply FEDDECORR to five baselines,

namely FedAvg [1], FedProx [2], FedAvgM [13], MOON [6],
and FedBN [28]. Experiment results of domain heterogene-
ity are shown in Tab. 3. These results show that adding FED-
DECORR yields consistent improvements over all baselines
and all datasets in terms of the average accuracy by around
1% ∼ 3%. Notably, FEDDECORR also demonstrates its effec-
tiveness when being applied on a personalized method such
as FedBN.

Although our analyses for FEDDECORR only focus
mainly on the label heterogeneity settings, we empirically
demonstrate its effectiveness can be generalized to domain
heterogeneity. We conjecture this is because domain hetero-
geneity will also cause the trained model to suffer undesired
dimensional collapse, which can be effectively alleviate by
FEDDECORR. Developing a firm theoretical understanding
of why FEDDECORR can counter domain heterogeneity in
federated learning is left to future research.

5.4 Ablation Study on the Number of Clients
Next, we study whether the improvements brought by FED-
DECORR are preserved as number of clients increases. We
partition the TinyImageNet dataset into 10, 20, 30, 50, and
100 clients according to different α’s, and then run FedAvg
with and without FEDDECORR. For the experiments with
10, 20 and 30 clients, we run 50 communication rounds. For
the experiments with 50 and 100 clients, we randomly select
20% of the total clients to participate the federated learning
in each round and run 100 communication rounds. Results
are shown in Tab. 4. From this table, we see that the perfor-
mance improvements resulting from FEDDECORR increase
from around 3% ∼ 5% to around 7% ∼ 10% with the
growth in the number of clients. Therefore, interestingly, we
show through experiments that the improvements brought
by FEDDECORR can be even more pronounced under the
more challenging settings with more clients. Moreover,
our experimental results under random client participation
show that the improvements from FEDDECORR are robust
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Fig. 8: Test accuracy (%) at each communication round. Results are based on TinyImageNet and are averaged over 3
runs. Shaded areas denote one standard deviation above and below the mean. (a-c) reports accuracy curve under Dirichlet
partition with different α’s and (d-f) reports accuracy curve under pathological non-iid partition with different M ’s. These
results show that applying FEDDECORR can consistently improve over baseline throughout the federated learning process.

to such uncertainties. These experiments demonstrate the
potential of FEDDECORR to be applied to real world feder-
ated learning settings with massive numbers of clients and
random client participation.

5.5 Ablation Study on the Regularization Coefficient β
Next, we study FEDDECORR’s robustness to the β in
Eqn. (10) by varying it in the set {0.01, 0.05, 0.1, 0.2, 0.3}.
We partition the CIFAR10 and TinyImageNet datasets into
10 clients with α equals to 0.05 and 0.1 to simulate the
heterogeneous setting. Results are shown in Fig. 9. We
observe that, in general, when β increases, the performance
of FEDDECORR first increases, then plateaus, and finally
decreases slightly. These results show that FEDDECORR is
relatively insensitive to the choice of β, which implies FED-
DECORR is an easy-to-tune federated learning method. In
addition, among all experimental setups, setting β to be 0.1
consistently produces (almost) the best results. Therefore,
we recommend β = 0.1 when having no prior information
about the dataset.

5.6 Ablation Study on the Number of Local Epochs
Lastly, we ablate on the number of local epochs per commu-
nication round. We set the number of local epochs E to be in
the set {1, 5, 10, 20}. We run experiments with and without
FEDDECORR, and we use the CIFAR100 and TinyImageNet
datasets with α being 0.05 and 0.1 for this ablation study.
Results are shown in Tab. 5, in which one observes that with

increasing E, FEDAVG performance first increases and then
decreases. This is because when E is too small, the local
training cannot converge properly in each communication
round. On the other hand, when E is too large, the model
parameters of local clients might be driven to be too far from
the global optimum. Nevertheless, FEDDECORR consistently
improves over the baselines across different choices of local
epochs E.

5.7 Computational Efficiency

We demonstrate FEDDECORR’s advantage vis-à-vis some
of its competitors in terms of their computational efficien-
cies. We compare FEDDECORR with some other methods
that also apply additional regularization terms during local
training such as FedProx and MOON. We partition CI-
FAR10, CIFAR100, and TinyImageNet into 10 clients with
α = 0.5 and report the total computation times required for
one round of training for FedAvg, FedProx, MOON, and
FEDDECORR. Specifically, for FedAvg, only naı̈ve SGD is
applied during local training. Results are shown in Tab. 6.
All results are produced with a NVIDIA Tesla V100 GPU.
We see that FEDDECORR incurs a negligible computation
overhead on top of the vanilla FedAvg, while FedProx and
MOON require about 0.5 ∼ 1 times additional computation
cost. The advantage of FEDDECORR in terms of efficiency
is mainly because it involves calculating only the Frobenius
norm of a matrix, which is extremely cheap. Indeed, this
regularization operates on the output representation vectors
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TABLE 3: Experiments for Domain Heterogeneity. We assign data from one domain as local data of one client. All results
are (re)produced by us and are averaged over 3 runs (mean±std). For Office-Caltech10, we report the average accuracy
over all domains and accuracy on each domain (i.e., Amazon, Caltech, Dslr, Webcam). For DomainNet, we report the
average accuracy over all domains and accuracy on each domain (i.e., Clipart, Infograph, Painting, Quickdraw, Real,
Sketch). Bold font highlights the highest accuracy in each column separately for non-personalized methods personalized
methods (FedBN).

Method
Office-Caltech10 DomainNet

Avg A C D W Avg C I P Q R S

FedAvg 64.51±0.93 50.52±0.74 45.93±0.76 72.91±3.90 88.70±0.80 42.50±0.71 50.19±2.44 26.18±1.20 39.74±2.60 53.57±2.04 48.20±0.80 37.12±0.55

+ FEDDECORR 66.19±0.91 55.56±0.65 47.56±1.67 72.92±1.47 88.70±1.60 43.69±0.71 51.33±0.41 27.50±1.57 38.18±1.27 56.00±2.48 48.56±1.95 40.56±1.37

FedProx 64.61±1.05 51.73±0.25 47.11±0.63 69.79±3.83 89.83±1.38 42.59±0.42 50.00±0.62 26.69±0.38 38.72±1.64 55.13±3.95 48.07±1.98 36.95±1.53

+ FEDDECORR 65.71±2.57 54.17±1.70 45.33±2.38 72.92±5.31 90.40±1.60 43.97±0.74 52.03±1.65 27.14±0.64 39.42±0.23 57.20±2.78 48.70±0.61 39.35±1.35

FedAvgM 64.54±0.91 50.69±0.88 45.48±0.42 75.00±2.55 87.01±2.11 41.82±0.65 50.19±0.16 25.06±0.80 38.50±0.93 55.17±2.28 45.71±0.45 36.28±1.56

+ FEDDECORR 66.08±1.14 54.51±1.77 46.67±1.58 75.01±5.10 88.13±1.38 44.07±1.08 51.90±0.27 25.77±0.69 40.33±0.77 58.17±2.32 49.22±1.94 39.05±1.19

MOON 66.43±0.84 54.34±1.36 46.67±0.96 76.04±1.48 88.70±1.60 40.51±0.47 47.78±1.48 25.06±0.90 36.14±2.97 51.87±2.13 46.81±0.81 35.38±0.78

+ FEDDECORR 67.69±0.68 55.90±0.98 45.78±1.26 78.13±0.48 90.96±0.80 41.16±0.50 49.11±0.91 25.72±0.98 37.10±0.28 51.77±2.78 46.53±0.85 36.71±1.87

FedBN 72.73±0.50 63.54±0.73 45.03±0.21 88.54±1.48 93.79±2.88 48.16±0.63 52.22±0.85 28.21±0.38 42.54±0.20 70.30±0.45 56.67±1.31 38.99±2.17

+ FEDDECORR 74.00±0.51 62.67±0.88 48.45±0.96 91.67±1.45 93.22±1.38 48.36±0.21 52.85±0.94 27.75±0.73 40.82±0.88 71.33±0.66 54.83±0.94 42.54±1.12

Ac
cu
ra
cy

Fig. 9: Ablation study on β. We apply FEDDECORR with different choices of β on FedAvg. These results show that
improvements brought by FEDDECORR is robust to the choice of β and a good rule-of-thumb is to choose β = 0.1.

TABLE 4: Ablation study on the number of clients. Based
on CIFAR100 and TinyImageNet, we run experiments with
different number of clients and different amount of data
heterogeneity.

# clients Method
CIFAR100 TinyImageNet

α = 0.05 0.1 0.05 0.1

10
FedAvg 59.87 66.46 35.02 39.30

+ FEDDECORR 61.53 67.12 40.29 43.86

20
FedAvg 59.56 62.78 31.21 35.30

+ FEDDECORR 61.31 63.30 39.41 41.27

30
FedAvg 56.00 61.77 26.20 30.88

+ FEDDECORR 57.47 62.54 36.50 39.02

50
FedAvg 44.66 53.28 25.70 28.88

+ FEDDECORR 48.06 54.48 34.50 36.67

100
FedAvg 41.40 50.45 21.53 24.69

+ FEDDECORR 46.78 51.90 30.55 33.85

TABLE 5: Ablation study on local epochs. Experiments
with different number of local epochs.

# Local Epochs Method
CIFAR100 TinyImageNet

α = 0.05 0.1 0.05 0.1

1
FedAvg 50.67 55.98 32.31 34.88

+ FEDDECORR 53.18 57.02 36.49 38.99

5
FedAvg 59.57 65.02 36.02 40.75

+ FEDDECORR 61.42 65.98 41.68 44.77

10
FedAvg 59.87 66.46 35.02 39.30

+ FEDDECORR 61.53 67.12 40.29 43.86

20
FedAvg 58.50 66.37 31.23 37.23

+ FEDDECORR 60.65 66.86 35.44 42.04

of the model, neither requiring the computing of parameter-
wise regularization like FedProx nor extra forward passes
like MOON.
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TABLE 6: Comparison of computation times. We report
the total computation times (in minutes) for one round of
training on the three datasets for FedAvg, FedProx, MOON,
and FEDDECORR. Here, FEDDECORR stands for applying
FEDDECORR to FedAvg.

CIFAR10 CIFAR100 TinyImageNet

FedAvg 6.7 6.9 25.4
FedProx 12.1 12.3 33.2
MOON 12.2 12.7 38.1
FEDDECORR 6.9 7.1 25.7

5.8 Comparison with Other Decorrelation Methods

Some decorrelation regularizations such as DeCov [49] and
Structured-DeCov [51] were proposed to improve the gen-
eralization capabilities in standard classification tasks. Both
these methods operate directly on the covariance matrix
of the representations instead of the correlation matrix like
our proposed method—FEDDECORR. To compare our FED-
DECORR with the existing decorrelation methods, we follow
the same procedure as in FEDDECORR and apply DeCov and
Structured-DeCov during local training. Our experiments
are based on TinyImageNet and FedAvg. TinyImageNet is
partitioned into 10 clients according to various α’s. Results
are shown in Tab. 7. Surprisingly, we see that unlike our
FEDDECORR which steadily improves the baseline, adding
DeCov or Structured-DeCov both degrade the performance
in federated learning. We conjecture that this is because
directly regularizing the covariance matrix may be highly
unstable, leading to undesired modification on the repre-
sentations. This experiment shows that our design of reg-
ularization of the correlation matrix instead of the covariance
matrix is of paramount importance to ensure stability.

TABLE 7: Comparison with other decorrelation methods.
Based on FedAvg and the TinyImageNet dataset, we use
different decorrelation regularizers in local training. Bold
font highlights the highest accuracy for each α.

FedAvg DeCov St.-Decov FEDDECORR

α = 0.05 35.02 32.88 32.04 40.29

α = 0.1 39.30 37.29 37.74 43.86

α = 0.5 46.92 46.29 45.85 50.01

5.9 Experiments on Other Model Architectures

In this section, we demonstrate the effectiveness of FED-
DECORR across different model architectures. Here, in ad-
ditino to the MobileNetV2 used in previous sections, we
also experiment on ResNet18 and ResNet32 [61]. Note that
ResNet18 is the wider version of ResNet whose repre-
sentation dimension is 512 and ResNet32 is the narrower
version whose representation dimension is only 64. The
heterogeneity parameter α is set to be {0.05, 0.1} and we
use the CIFAR10 dataset. Our results are shown in Tab. 8.
As can be seen, FEDDECORR yields consistent improve-
ments across different neural network architectures. One
interesting phenomenon is that the improvements brought
about by FEDDECORR are much larger on wider networks

(e.g., MobileNetV2, ResNet18) than on narrower ones (e.g.
ResNet32). We conjecture that this is because the dimension
of the ambient spaces of wider networks are clearly higher
than that of shallower networks. Therefore, relatively speak-
ing, the dimensional collapse caused by data heterogeneity
will be more severe for wider networks.

TABLE 8: Effectiveness of FEDDECORR on other model
architectures.

MobileNetV2 ResNet18 ResNet32

FedAvg (α = 0.05) 64.85 71.51 65.76

+ FEDDECORR (α = 0.05) 73.06 76.54 67.21

FedAvg (α = 0.1) 76.28 82.32 73.22

+ FEDDECORR (α = 0.1) 80.60 83.59 74.75

6 CONCLUSIONS

In this work, we study representations of trained models
under federated learning in which the data held by clients
are heterogeneous. Through extensive empirical observa-
tions and theoretical analyses, we show that stronger data
heterogeneity results in more severe dimensional collapse
for both global and local representations. Motivated by
this, we propose FEDDECORR, a novel method to mitigate
dimensional collapse, thus improving federated learning
under the heterogeneous data setting. Extensive experi-
ments on benchmark datasets show that FEDDECORR yields
consistent improvements over existing baseline methods.
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