
SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Source Data-absent Unsupervised Domain
Adaptation through Hypothesis Transfer and
Labeling Transfer — Supplementary Material
Jian Liang, Dapeng Hu, Yunbo Wang, Ran He, Senior Member, IEEE, Jiashi Feng, Member, IEEE

A. UPPER BOUND OF SHOT (W/ SOURCE DATA)

To turn the proposed source data-absent method into a source data-dependent method, we keep the first stage (source model
generation) of SHOT unchanged, then directly incorporate the source classification loss in Eq. (2) into the overall loss in
Eq. (10). Note that, in the target adaptation stage, the source hypothesis (classifier layer) is no longer fixed, instead, data from
both domains are used to learn the domain-shared classifier at the same time.

In this manner, we exploit the source data when training SHOT-IM, SHOT, SHOT-IM++, and SHOT++, respectively, and
show the final results for closed-set UDA on Office-Home in Table I. It is easy to discover that with the involvement of source
data, all the methods obtain boosted performance in terms of the average accuracy. Besides, the improvement (about 1.1) over
SHOT-IM and SHOT-IM++ is larger than that (about 0.5) over SHOT and SHOT++, which indicates that using the proposed
self-supervised techniques like pseudo-labeling in the target domain itself plays a similar role as source data.

TABLE I
CLASSIFICATION ACCURACIES (%) ON OFFICE-HOME FOR vanilla closed-set UDA.

Methods Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

SHOT-IM 55.9 76.8 80.6 66.7 73.7 75.4 65.4 54.9 80.9 73.2 58.5 83.5 70.5

w/ source data 57.5 77.5 81.2 67.4 75.8 77.0 67.0 55.9 82.1 73.5 58.9 84.1 71.5
+1.6 +0.7 +0.6 +0.7 +2.1 +1.6 +1.6 +1.0 +1.2 +0.3 +0.4 +0.6 +1.0

SHOT-IM++ 56.9 77.7 81.5 67.6 74.9 76.9 66.1 55.9 81.7 73.8 59.3 84.4 71.4

w/ source data 58.6 78.7 82.1 68.6 77.4 78.7 67.9 57.0 83.2 74.0 59.8 84.9 72.6
+1.7 +1.0 +0.6 +1.0 +2.5 +1.8 +1.8 +1.1 +1.5 +0.2 +0.5 +0.5 +1.2

SHOT 57.7 79.1 81.5 67.6 77.9 77.8 68.1 55.8 82.0 72.8 59.7 84.4 72.0

w/ source data 57.7 79.2 82.2 68.0 79.4 78.3 67.8 56.7 82.6 73.2 60.1 84.9 72.5
– +0.1 +0.7 +0.4 +1.5 +0.5 -0.3 +0.9 +0.6 +0.4 +0.4 +0.5 +0.5

SHOT++ 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0

w/ source data 58.6 80.0 83.2 69.2 80.7 79.9 68.4 57.5 83.6 73.7 61.2 85.4 73.5
+0.7 +0.3 +0.7 +0.7 +1.1 +0.6 -0.1 +0.5 +0.6 – +0.5 +0.5 +0.5

B. SENSITIVITY OF THE IM LOSS

To investigate the sensitivity of the diversity term Ldiv within the IM loss in Eq.(3), we conduct an experimental study and
show the results in Fig. 1 and Table II. As shown in Fig. 1, we rank 12 classes based on the number of training samples
in the target domain (i.e. validation set of the VISDA-C dataset), denoted as ‘s0’. To vary the degree of class imbalance in
the training target domain, we first drop half of the samples in the largest 6 classes, denoted as ‘s1’. Then we drop half of
the samples in the smallest 6 classes, denoted as ‘s2’. Besides, we make the number of training samples of each class as the
smallest class ‘knife’, forming ‘s3’. Generally, ‘s2’ has the largest class imbalance, and ‘s3’ has the smallest class imbalance,
and the class imbalance degree of ‘s1’ is smaller than that of ‘s0’. For all four settings, we use the whole real-world dataset
(i.e., the original validation set of VISDA-C) as the target test set.

To verify the effectiveness and sensitivity of the diversity term within the IM loss, we conduct comparison between SHOT-
IM (β = 0) and SHOT-IM on four aforementioned settings and show the results in Table II. It is easy to find that SHOT-IM
outperforms SHOT-IM (β = 0) in terms of the per-class accuracy for all four settings. Besides, with the increasing degree of
class imbalance (s3→s1→s0→s2), the per-class accuracies of SHOT-IM and SHOT-IM (β = 0) decrease, and the accuracy of

J. Liang is with National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences (CASIA), Beijing, China,
100190. E-mail: liangjian92@gmail.com.

Manuscript received October 22, 2020; revised May 28, 2021.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

setting-0 (s0) setting-1 (s1) setting-2 (s2) setting-3 (s3)
0

2000

4000

6000

8000

10000

12000

# 
im

ag
es

 in
 e

ac
h 

tr
ai

ni
ng

 c
la

ss
car mcycl
truck horse
bus plant
train person
plane bcycl
sktbrd knife

Fig. 1. The number of training samples from each class in different settings on VISDA-C. ‘setting-0 (s0)’ also depicts the label distribution during the testing
stage for all the settings.

TABLE II
CLASSIFICATION ACCURACIES (%) OF SHOT-IM (β = 0) AND SHOT-IM WITH VARYING DIFFERENT DEGREES OF TRAINING CLASS IMBALANCE ON

VISDA-C (RESNET-50).

Settings VISDA-C car mcycl truck horse bus plant train person plane bcycl sktbrd knife Per-class

Source-only 53.4 76.9 6.9 44.6 48.9 50.7 89.7 13.1 59.4 10.6 22.1 1.6 39.8

s3 SHOT-IM (β = 0) 71.7 92.5 0.0 91.7 91.7 90.0 82.3 82.2 93.6 0.0 91.7 2.3 65.8
SHOT-IM 69.0 89.3 48.9 91.5 79.1 90.2 83.7 81.0 93.3 75.7 77.6 53.7 77.7

s1 SHOT-IM (β = 0) 68.8 90.6 0.0 86.0 89.9 77.9 80.3 78.5 93.9 0.0 85.5 21.4 64.4
SHOT-IM 59.5 88.8 52.4 89.8 80.3 87.6 78.1 76.9 93.5 74.8 82.6 30.4 74.6

s0 SHOT-IM (β = 0) 68.0 87.2 0.0 86.2 89.2 79.7 77.4 69.5 90.2 0.0 0.0 99.4 62.2
SHOT-IM 53.2 81.4 53.6 89.7 78.2 85.9 86.4 75.8 93.8 80.7 84.8 22.5 73.8

s2 SHOT-IM (β = 0) 63.8 89.5 0.0 86.2 89.7 81.8 70.8 66.2 86.5 0.0 0.0 99.1 61.1
SHOT-IM 43.8 71.9 48.2 87.4 70.6 82.6 87.0 78.6 93.2 82.0 76.6 21.6 70.3

the ‘sktbrd’ class after SHOT-IM (β = 0) becomes 0. When carefully looking at the accuracies of classes ‘truck’ and ‘bcycl’,
we find that SHOT-IM (β = 0) classifies images of ‘bcycl’ to the ‘mcycl’ class and ‘truck’ to the ‘bus’ class, but SHOT-IM
achieves higher accuracies for all four classes under different settings. We can conclude that the diversity term within the
IM loss is always effective when varying different degrees of class imbalance. Besides, the closer to a uniform vector the
ground-truth label distribution of the training target domain is, the better performance the IM loss obtains.

C. INCORPORATION WITH OTHER UDA METHODS

To study the effectiveness of the proposed structure-aware techniques (i.e., self-supervised pseudo-labeling (SPL) and
information maximization loss (IM)), we consider two traditional UDA methods (i.e., DANN [1] and CDAN [2]) as baseline
methods, and incorporate SPL and IM into them, and report the results on 6 vanilla closed-set UDA tasks in Table III.

As shown in Table III, both SPL and IM greatly improve the adaptation performance of DANN for these UDA tasks. CDAN
exploits the semantic information within the adversarial learning strategy, which works much better than DANN. Even though,
SPL and IM still boost the performance of CDAN.

To measure the domain difference, we additionally show the t-SNE feature visualization results of different methods for Pr
→ Re (closed-set) on Office-Home. In Fig. 2(c-f), it is easy to find that, with the help of the proposed SPL & IM, the target
features are well separated and the target features are well aligned with source features, which is in line with the recognition
accuracy shown in these sub-captions. Besides, as can be seen from Fig. 2, SHOT can well align the target features with the
source features for each class, and features from different classes are clearly separated, which reduces the domain difference
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better than DANN and CDAN. Different from traditional UDA methods where features from two domains are aligned at the
same time, SHOT first learns discriminative source features first, then aligns the target features to the source features, making
the optimization objective more clear. Besides, SHOT exploits many target-structure-aware strategies during adaptation, which
are also beneficial for domain difference minimization.

TABLE III
CLASSIFICATION ACCURACIES (%) OF TWO CLASSIC DATA-DEPENDENT UDA METHODS INTEGRATED WITH OUR PROPOSED TECHNIQUES ON SIX vanilla

closed-set UDA TASKS. [SPL: SELF-SUPERVISED PSEUDO-LABELING IN EQ. (7), IM: INFORMATION MAXIMIZATION LOSS IN EQ. (3)]

Methods Office Office-Home Avg. ∆A→D D→A A→W W→A Ar→Cl Pr→Re

DANN [1] 78.4 60.8 74.9 62.0 46.6 73.1 66.0 -
w/ SPL 92.9 71.0 91.2 72.2 52.9 80.4 76.8 +10.8
w/ IM 90.4 74.6 92.9 75.6 56.5 81.5 78.6 +12.6
w/ SPL & IM 94.4 75.4 92.2 73.0 55.8 82.1 78.8 +12.8

CDAN+E [2] 92.6 71.8 92.1 70.3 54.4 78.6 76.6 -
w/ SPL 94.5 74.4 91.5 74.9 55.5 80.8 78.6 +2.0
w/ IM 92.2 74.7 92.6 74.7 57.5 81.6 78.9 +2.3
w/ SPL & IM 95.1 75.0 92.6 75.4 57.1 82.1 79.6 +3.0

Source-model-only 80.2 60.3 76.9 63.6 44.5 73.3 66.5 -
SHOT-IM 90.2 72.4 91.1 71.8 55.9 80.9 77.0 +10.5
SHOT 93.9 75.3 90.1 75.0 57.7 82.0 79.0 +12.5

(a) Source-model-only (Acc = 73.31%) (b) DANN (Acc = 73.38%) (c) CDAN (Acc = 78.22%)

(d) SHOT (Acc = 82.42%) (e) DANN + IM + SPL (Acc = 81.71%) (f) CDAN + IM + SPL (Acc = 81.89%)

Fig. 2. The t-SNE feature visualizations of different methods for Pr → Re (closed-set) on Office-Home. Circles in red denote source data and circles in
olive denote target data.

D. HOW DOES THE SELF-SUPERVISED LOSSES WORK

To further explain the contribution of these techniques, we show in Fig. 3 the features learned by different methods. In
particular, we select data from the first 5 classes (in alphabetical order) from the source domain and data from the second
class in the target domain of the closed-set UDA task Ar→Cl on Office-Home and adjust the bottleneck size to 2 for direct
feature visualization.

In Fig. 3(a), stars in blue are correctly classified and stars not in blue are mis-classified. Many samples are wrongly classified
due to the low-quality representations. Among them, we mainly focus on 6 samples (3 with the green border and 3 with the
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red border). With the help of IM loss, the target features could be aligned with source features in Fig. 3(b), however, 4 out
of 6 samples are still wrongly classified. Incorporated with the self-supervised pseudo-labeling technique, only 3 out of 6
samples are wrongly classified in Fig. 3(c), indicating that the target-specific prototype could provide better pseudo labels
to help learn better representations. Taking into consideration the self-supervised rotation prediction objective, all 6 samples
could be correctly classified in Fig. 3(d). This may be because self-supervised objective helps focus on semantically meaningful
features, which is in line with previous studies [3], [4].

(a) Source-model-only (b) SHOT-IM

(c) SHOT w/o rotation prediction (d) SHOT

Fig. 3. Feature visualizations of different methods for a 5-way classification task. Solid circles denote source features and solid stars denote the target features
from the second class. Different colors denote different classes. stars in blue are correctly classified and stars in other colors are wrongly classified.

E. DIFFERENT CONFIDENCE MEASURES WITHIN SHOT++

On top of the entropy function (used in SHOT++(ENT)), we have ever tried other choices like the maximum probability
(used in SHOT++(MAXP)) and the margin between the largest and the second-largest probability (used in SHOT++(MARP))
to rank the samples. We show the performance for several closed-set UDA tasks with different ranking metrics in Table IV.
Besides, SHOT++(RAND) denotes a simple baseline in which we randomly rank the samples.

In terms of the average accuracy in Table IV, SHOT++(MAXP) obtains the best result and SHOT++(ENT) obtains the
second-best result. The improvements of SHOT++(RAND) and SHOT++(MARP) over SHOT are quite marginal. Besides,
SHOT++(ENT) outperforms SHOT on 6 out of 6 tasks and SHOT++(MAXP) outperforms SHOT on 5 out of 6 tasks. Generally,
SHOT++(ENT) and SHOT++(MAXP) achieve similar results, clearly outperforming other counterparts (i.e., SHOT++(MARP)
and SHOT++(RAND)).
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TABLE IV
CLASSIFICATION ACCURACIES (%) OF SHOT++ WITH DIFFERENT CONFIDENCE METRICS ON SIX vanilla closed-set UDA TASKS.

Ranking Metrics Methods Office Office-Home Avg. ∆A→D D→A A→W W→A Ar→Cl Pr→Re

- SHOT 93.9 75.3 90.1 75.0 57.7 82.0 79.0 -

ξ ∼ rand(0,1) SHOT++ (RAND) 94.1 ↑ 75.4 ↑ 90.1 75.2 ↑ 57.4 82.4 ↑ 79.1 +0.1
pk −maxj 6=k pj (k = arg maxi pi) SHOT++ (MARP) 94.4 ↑ 75.5 ↑ 90.1 75.2 ↑ 57.4 82.4 ↑ 79.2 +0.2
pk (k = arg maxi pi) SHOT++ (MAXP) 94.5 ↑ 76.2 ↑ 90.6 ↑ 75.5 ↑ 57.7 83.0 ↑ 79.6 +0.6∑

i pi log pi SHOT++ (ENT) 94.2 ↑ 76.2 ↑ 90.3 ↑ 75.7 ↑ 57.8 ↑ 83.0 ↑ 79.5 +0.5
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