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Abstract—In this appendix, we mainly provide some additional experiments to verify the effectiveness in some severe cases and the
generalization ability across different categories. Specifically, we perform a comparative test to study the robustness to non-uniform
source label distribution. Then, we are interested in the case where the numbers of classes are not equal for source and target
domains, namely, some target classes are dropped for such asymmetric transfer in this experiment. Finally, we also investigate the
generalization capability of the learned projection, i.e., whether the optimal domain-invariant projection learned on classes ‘a,b,c’ works
well for calculating the similarities within classes ‘d,e,f’. Experimental results demonstrate the effectiveness of proposed methods, further,
the ensemble one is much more robust to kinds of severe settings. Moreover, we also include a large-scale cross-domain digit dataset
SVHN-MNIST to validate the efficiency and effectiveness of proposed ‘sapling-and-fusion’ strategy. Some extra discussions are also
included to verify the convergence and robustness to different kinds of classifiers.

F

1 UNIFORM VERSUS NON-UNIFORM SOURCE
LABEL DISTRIBUTION

The label distributions of two original digit datasets, i.e.,
MNIST and USPS, are shown in Fig. 1. Notably, the
label distribution of MNIST is rather close to the uniform
distribution, while USPS owns a contrarily non-uniform
label distribution. To investigate the robustness of our
ensemble strategy to different source label distributions,
we introduce two additional uniform sources MNIST un
and USPS un (abbreviated as Mu and Uu) for comparison.
Concretely, each class in MNIST un and USPS un contains
170 and 120 digit images, respectively. To be fair, we also
obtain two rescaled datasets, Mo and Uo from MNIST and
USPS via uniform sampling, which own the same number
of samples as Mu and Uu, and we run each method 10 times
(picking samples are random) with different random seeds.

Fig. 1. The number of images in 10 digit classes on the MNIST, USPS,
MNIST un and USPS un datasets.

We show the comparison results of our basic and
ensemble methods DICE and WMV-1-NN with JDA [1] and
JGSA [2] in Table 1, with the subspace dimensionalities of

TABLE 1
Averaged recognition accuracies (%) comparisons on the MNIST-USPS

dataset (u/o : uniform/ original non-uniform source label distribution).

Method 1-NN JDA JGSA DICE WMV-1-NN

Mo→U 63.77 70.52 76.20 76.82 79.17 ± 0.44
Mu→U 65.13 70.79 75.08 75.98 80.30 ± 0.98

Uo→M 43.73 59.61 66.84 62.87 66.49 ± 0.29
Uu→M 43.18 59.93 62.56 63.63 65.69 ± 0.40

TABLE 2
Averaged recognition accuracies (%) comparisons on the COIL20
dataset (Old: results without random sampling on source domain).

Method 1-NN JDA JGSA DICE WMV-1-NN

C1r→C2 82.92 94.63 94.35 96.22 97.47 ± 0.89
C2r→C1 81.11 92.96 93.13 98.85 98.28 ± 0.67

Avg. 82.02 93.79 93.74 97.53 97.88 ± 0.45

Old Avg. 83.20 94.20 94.66 99.72 99.28 ± 0.11

them being 10 and 30 in M→ U and U→M, respectively.
For our ensemble method, the sampling densities δs, δt, δf
are respectively fixed as 0.8, 0.6 and 0.9 with K being 10
which are suggested before. Then we run it 10 times and
report the average and deviation values. As can be seen
from Table 1, WMV-1-NN is the best performing method,
and DICE always outperforms JGSA and JDA except
for Uo→M. Notably, when the source label distribution
becomes uniform, the recognition accuracies even decrease
a little bit for JDA and JGSA while DICE and WMV-1-
NN grows in contrast. All these methods are deemed to be
robust to the change of source label distribution.

Besides the MNIST-USPS dataset, we also perform
random sampling (sampling density is fixed as 0.7) on the
source domain of COIL20 to disturb the original uniform
label distribution. Concretely, for all methods, the subspace
dimensionality is fixed as 10, and merely the sampling
density δf of our ensemble method is 0.5 with K being



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

(a) C1→ C2 (b) C2→ C1
Fig. 2. Recognition accuracies (%) w.r.t. the index of one missing target category on the COIL20 dataset.

10. The comparison results depicted in Table 2 illustrate
that WMV-1-NN achieves the best results and DICE is also
significantly superior to JDA and JGSA. Once compared
with previous results, WMV-1-NN is more robust than DICE
with a smaller decrease in terms of the mean accuracy.

2 ASYMMETRIC LABELS ACROSS DOMAINS
(MISSING TARGET CATEGORIES)
In this section, we are interested whether missing some
target categories would affect the adaptation performance.
Intuitively, the asymmetric labels across domains may
degenerate unsupervised DA methods, especially for
conditional distribution matching methods where an
identical label set is always assumed in advance.

In each trail, we first drop one category of the target
domain on the COIL20 dataset to evaluate the effectiveness
of asymmetric DA tasks, the comparison results are shown
in Fig. 2. On both two tasks, DICE and WMV-1-NN
significantly outperform JDA and JGSA, especially, JDA
wins DICE and WMV-1-NN only when the 2-nd or 11-th
category is dropped for C1 → C2. Concerning the mean
accuracy, DICE outperforms JGSA by 1.14 and 4.24 (%)
respectively. WMV-1-NN (99.31) is slightly inferior to DICE
(99.72) in the full target domains situations, however, WMV-
1-NN re-wins DICE under the asymmetric labels across
domains situation. It indicates that the ensemble strategy
is somewhat robust to the asymmetric label distribution.

Furthermore, we drop 5 out of 20 categories of the
target domain with different random seeds for 5 times,
and the results are shown in Table 3. Once again, DICE
is superior to JDA and JGSA for almost 5 cases, and
WMV-1-NN consistently outperforms DICE in both tasks.
The overall accuracies are smaller than those in Fig. 2 for
almost all methods except WMV-1-NN, which verifies our
assumption that the more missing target categories, the
more inefficiencies in learning domain-invariant projections.
Looking the change of mean accuracies more carefully, the
largest decreases occur at JGSA for both C1→ C2 (94.80→
90.74) and C2 → C1 (93.33 → 90.89), which indicates that
JGSA is sensitive to the missing target labels. However, our
basic method DICE and ensemble method WMV-1-NN are
really stable even the number of missing target categories
increases, which indicates that the proposed objective is
rather robust to such asymmetric labels.

TABLE 3
Recognition accuracies (%) w.r.t. the indexes of five missing target

categories on the COIL20 dataset.

Task C1→ C2 C2→ C1
Missing indexes JDA JGSA DICE WMV-1-NN JDA JGSA DICE WMV-1-NN

[2, 8, 9, 10, 11] 96.48 92.78 98.15 95.56 ± 0.40 90.74 88.89 90.56 98.36 ± 0.56
[1, 4, 15, 18, 19] 89.07 87.78 94.07 96.92 ± 0.78 92.04 92.96 94.81 98.25 ± 0.40
[2, 6, 7, 8, 11] 95.74 93.33 95.19 97.19 ± 0.90 94.44 94.07 97.59 98.14 ± 0.40
[2, 8, 9, 15, 17] 93.52 92.22 94.26 96.83 ± 0.74 92.04 93.52 95.37 98.64 ± 0.32
[4, 7, 10, 12, 16] 89.26 87.59 95.93 96.53 ± 0.72 91.85 85.00 96.30 98.44 ± 0.36

Average 92.81 90.74 95.44 96.61 ± 0.88 92.22 90.89 94.93 98.37 ± 0.42

Besides the COIL20 dataset, we also attempt similar
trials on the uniform PIE dataset, since there are 68 classes
for each domain, we decide to drop 10, 20 and 30 classes
within 5 times to again verify the robustness of domain
adaptation methods. Concerning the parameter setting, the
subspace dimensionalities of all methods are fixed as 100,
the sampling densities for our method WMV-1-NN are 0.8,
0.6, and 0.9, respectively.

The results in Table 4 tell us that WMV-1NN always
performs better than DICE, and both methods consistently
outperform JDA CDDA [3] and JGSA significantly. As more
categories are gradually dropped, all the methods undergo a
decrease at different degrees. Regarding the falling rate, we
find that JGSA and WMV-1-NN perform the best except 1-
NN, however, the results of both 1-NN and JGSA are much
lower than WMV-1-NN.

3 GENERALIZATION CAPABILITY OF LEARNED
INVARIANT PROJECTION

In this section, we discuss one interesting and similar
problem to zero-shot learning, i.e., cross-class learning,
where data belonging to one-half classes is utilized for
training and the remaining half classes of data are prepared
for the testing phase, hence the training and testing data
have none overlapping classes. In this sense, we wonder the
optimal learned projection in the seen training classes can
distinguish those unseen classes, specifically, the PIE dataset
is again exploited where the images of the first 34 persons
constitute the training set with the images of the remaining
34 persons being the testing set. It is worthwhile to note that
during the testing phase, only labeled unseen source classes
are utilized to infer the labels of unseen target classes.
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TABLE 4
Averaged recognition accuracies (%) on the PIE dataset with {10,20,30} random target classes missing (l2-normalization).

setting 10 target classes missing 20 target classes missing 30 target classes missing

data 1-NN JDA CDDA JGSA DICE WMV-1NN 1-NN JDA CDDA JGSA DICE WMV-1NN 1-NN JDA CDDA JGSA DICE WMV-1NN

P1→P2 26.25 69.68 70.87 60.74 75.23 80.20 25.46 66.97 66.22 57.79 73.95 78.59 24.85 62.31 60.33 55.54 69.00 71.93
P1→P3 26.92 67.99 70.26 59.10 76.38 81.25 25.26 62.79 62.90 56.31 71.75 72.48 24.62 59.66 58.15 53.17 67.28 67.54
P1→P4 31.11 89.93 89.13 80.71 93.24 94.89 29.54 84.87 84.63 77.54 89.27 89.95 29.29 81.48 79.75 73.53 85.55 87.70
P1→P5 16.93 54.44 59.70 45.58 64.62 68.18 16.22 50.56 54.23 42.27 60.06 64.06 16.06 51.51 51.12 40.20 59.50 65.13
P2→P1 24.19 71.45 71.00 68.17 76.68 78.92 23.79 68.95 69.66 67.21 74.09 73.94 23.50 64.65 65.57 64.93 70.63 71.05
P2→P3 45.92 71.69 72.40 63.51 70.88 74.78 45.73 69.57 69.30 60.78 69.80 71.27 44.31 66.90 64.96 57.59 66.13 67.00
P2→P4 53.92 81.73 82.21 77.37 86.34 86.52 53.83 81.34 80.27 77.06 83.89 85.87 53.44 78.28 76.19 74.55 81.09 86.84
P2→P5 26.62 59.35 59.58 51.62 64.51 66.38 25.49 58.04 57.55 50.76 61.86 67.36 25.49 54.27 52.36 47.87 58.20 56.14
P3→P1 21.96 67.25 73.92 62.48 76.60 78.64 19.24 60.27 65.78 57.74 67.89 76.57 18.87 57.27 59.28 55.44 64.72 68.53
P3→P2 41.02 72.63 69.68 59.90 74.13 79.12 38.82 68.50 64.87 55.12 69.87 82.81 37.93 64.91 61.81 53.28 65.72 75.25
P3→P4 46.99 81.11 80.34 71.01 85.71 89.96 43.86 76.04 75.13 66.91 83.20 89.31 43.56 74.90 71.76 65.15 80.57 78.00
P3→P5 26.82 61.40 63.85 51.88 69.72 68.18 24.96 57.14 62.40 48.88 67.48 68.06 24.64 54.32 58.09 47.27 64.69 66.56
P4→P1 33.45 88.35 89.69 86.25 92.68 93.81 30.71 84.80 85.59 84.05 89.84 91.24 30.23 80.66 81.54 80.64 86.66 85.82
P4→P2 63.12 88.82 90.12 82.95 92.87 91.58 60.80 86.05 86.78 80.15 90.75 91.64 59.90 84.05 84.01 77.63 89.15 88.71
P4→P3 73.38 88.69 90.21 82.14 91.17 91.24 71.28 86.98 88.31 80.95 89.15 89.50 71.34 85.15 86.24 79.11 88.02 89.58
P4→P5 37.74 67.39 73.05 64.73 78.03 79.17 36.42 66.35 67.90 62.38 76.09 83.25 36.25 61.98 62.80 58.66 73.37 79.50
P5→P1 18.04 59.48 67.00 52.23 71.88 77.66 16.89 55.35 62.30 50.18 70.28 70.71 16.87 53.15 58.96 48.50 66.04 78.84
P5→P2 23.98 64.02 62.76 56.22 66.97 68.90 21.91 58.80 56.87 51.87 62.94 64.50 21.57 56.92 56.15 49.38 59.12 71.62
P5→P3 28.17 69.07 70.58 56.08 74.30 75.72 26.88 65.41 65.01 53.31 70.75 71.27 26.47 60.84 62.41 49.61 68.53 64.80
P5→P4 31.49 72.17 75.63 62.89 78.81 78.96 29.28 66.43 69.90 57.06 74.65 71.39 29.41 62.79 64.54 55.42 70.77 77.51

Avg. 34.90 72.33 74.10 64.78 78.04 80.20 33.32 68.76 69.78 61.92 74.88 77.69 32.93 65.80 65.80 59.37 71.74 74.90

TABLE 5
Recognition accuracies (%) on the latter 34 classes of PIE dataset with

learned projection with the former 34 classes (l2-normalization).

data 1-NN JDA CDDA JGSA DICE Conv-1NN MV-1NN WMV-1NN

P1→P2 38.25 65.07 68.27 62.62 74.17 73.60 ± 1.32 74.64 ± 0.59 72.87 ± 0.47
P1→P3 35.42 60.66 58.70 55.15 66.67 72.08 ± 0.71 72.82 ± 1.40 72.08 ± 1.44
P1→P4 41.79 82.92 87.13 74.79 88.94 90.99 ± 0.62 91.43 ± 0.68 90.78 ± 0.57
P1→P5 27.21 54.90 63.48 49.14 64.95 72.92 ± 0.69 74.02 ± 0.87 73.48 ± 0.67
P2→P1 29.17 65.37 66.09 68.79 73.53 77.44 ± 1.58 77.21 ± 1.18 77.50 ± 1.36
P2→P3 50.49 69.36 64.83 69.61 65.93 70.51 ± 1.56 69.88 ± 0.71 70.86 ± 0.77
P2→P4 66.69 79.56 80.76 76.11 82.44 85.69 ± 0.61 85.62 ± 0.61 84.59 ± 0.47
P2→P5 39.09 53.06 58.95 49.75 58.82 67.89 ± 1.03 68.26 ± 1.11 67.62 ± 0.84
P3→P1 30.61 55.10 57.26 59.12 64.53 71.20 ± 0.71 71.37 ± 0.51 71.70 ± 0.51
P3→P2 49.82 62.61 54.86 63.48 60.02 68.95 ± 0.44 68.59 ± 1.62 69.25 ± 0.96
P3→P4 56.16 71.32 74.80 69.45 77.81 80.04 ± 0.44 79.76 ± 0.60 80.48 ± 0.62
P3→P5 36.03 45.71 56.00 47.55 57.60 65.71 ± 0.69 65.83 ± 0.64 65.74 ± 0.54
P4→P1 44.06 80.61 87.27 78.33 88.90 89.80 ± 0.28 90.10 ± 0.50 90.08 ± 0.38
P4→P2 70.73 84.87 88.19 87.38 90.04 90.80 ± 1.15 91.29 ± 0.43 91.44 ± 0.22
P4→P3 80.51 87.99 90.81 84.56 91.42 91.81 ± 0.82 92.11 ± 0.43 92.55 ± 0.45
P4→P5 46.94 65.93 73.65 65.07 76.47 80.88 ± 0.91 80.51 ± 0.77 81.15 ± 0.46
P5→P1 26.59 53.36 58.04 45.02 64.35 67.82 ± 1.11 68.60 ± 0.95 68.07 ± 0.87
P5→P2 35.18 55.60 60.76 41.91 60.27 65.12 ± 0.96 65.07 ± 1.17 65.51 ± 1.44
P5→P3 37.87 46.57 60.29 54.41 63.60 69.63 ± 1.35 69.29 ± 0.96 70.44 ± 1.38
P5→P4 43.30 60.67 70.17 59.72 71.92 75.57 ± 0.65 75.90 ± 0.50 76.21 ± 0.29

Avg. 44.29 65.06 69.02 63.10 72.12 76.42 ± 0.11 76.61 ± 0.09 76.62 ± 0.08

All the comparison results in terms of “unseen versus
unseen” are depicted in Table 5. Observing the accuracies
from Table 5, we discover several facts as below, firstly,
DICE significantly beats JDA, CDDA and JGSA in 16 out
of 20 tasks; secondly, all the fusion methods achieve similar
and better performances and DICE is obviously inferior
to WMV-1-NN by about 6.23%; finally, the recognition
accuracy is rather acceptable even it is a bit lower than fully
transductive setting.

TABLE 6
Recognition accuracies (%) on the cross-class COIL20 dataset.

Task Protocol JDA JGSA DICE DICEf

C1→ C2
seen - seen 91.67 94.02 93.61 99.44

unseen - unseen 98.61 97.22 98.33 100.0
unseen - all 97.78 95.56 97.78 100.0

C2→ C1
seen - seen 88.61 86.94 87.50 99.44

unseen - unseen 99.44 96.39 98.89 100.0
unseen - all 96.39 94.17 97.78 100.0

Besides the “unseen versus unseen” protocol on the
PIE dataset, we also exploit the COIL20 dataset for more

analysis, concretely, we include the accuracies when both
seen and unseen source classes are utilized in the testing
phase (“unseen versus all”) in addition to the training
accuracies (“seen versus seen”). The seen classes are the
first 10 classes while the unseen classes are the latter 10
classes, and DICEf utilizes both seen and unseen classes for
inferring the projection. As can be seen from the results in
Table 6, JGSA and JDA obtain the highest training accuracies
(“seen-seen”) for two tasks respectively. While focusing on
the testing accuracies, DICE achieves the best performance
except under the “unseen-unseen” protocol, however, it
maintains a higher accuracy when the classes of labeled data
increase. It indicates that JDA is a little bit overfitting due
to its higher training accuracy and lower testing accuracy.
Compared with JGSA, DICE is superior for both training
and testing accuracies. Nevertheless, the performance of
DICEf is rather promising since more labeled source classes
are available for training. Generally speaking, DICE is the
best performing method even for the challenging cross-class
face and object recognition problems.

4 DOMAIN ADAPTATION ON SVHN→MNIST
The effectiveness of ‘sampling-and-fusion’ has been
empirically witnessed among many comparison results
in the main text. Hence, we further resort one favorable
benchmark large-scale dataset SVHN-MNIST to study the
computation efficiency.

Street View House Numbers (SVHN) dataset [4] is a
collection of house numbers collected directly from Google
street view images, while MNIST [5] contains massive clear
handwritten digits. We follow the standard protocol that
utilizes all the training images for unsupervised domain
adaptation, namely, the dataset sizes of SVHN and MNIST
are 73,257 (32×32×3, RGB) and 60,000 (28×28, gray-scale),
respectively. SVHN images were gray scaled and rescaled to
28× 28 in our paper, the simple LeNet architecture is shown
below. Then we train the network with all labeled source
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data, SVHN images in this task, and use the activations of
the last feature layer pool2 as image representations for both
SVHN and MNIST.

We reorganize and duplicate the results from several
recent works, including DANN [6], kNN-Ad [7] and
ADDA [8]. For different works, the baseline network
‘Source Only’ (fine-tuning the pre-trained network with
labeled source examples) behave differently. Hence, we also
provide the accuracy of baseline network and calculate the
improvement (gain) in Table 7 for fair comparison. For our
fusion method, the sampling densities of δs, δt are fixed to
0.1 or 0.05 with K being 10 and δf being 1, we run them 10
times and report the averaged accuracies.

The baseline network of our method merely performs
better than that of kNN-Ad [6] while losing to others. Since
we focus on the improvement of our method over the
baseline network, we do not spend much time in fine-tuning
the network. Even though, our shallow model MV-SVM
still outperforms several deep domain adaptation methods
including DANN, kNN-Ad, JAN and ADDA. The accuracy
of MV-1-NN is slightly lower than that of MV-SVM, while
the accuracy of Conv-1-NN is definitely higher than that of
Conv-SVM, which indicates that 1-NN is somewhat robust
for different fusion strategies.

Observing Table 7, WV-SVM obtains the best accuracy
and WMV-1-NN obtains competitive performance with
kNN-Ad. Even compared with semi-supervised domain
adaptation method FADA, our methods still outperform it
with relatively large margins. In terms of the improvement
over baseline ‘Source-Only’, kNN-Ad obtains the second
largest accuracy gain (43.5%), and our fusion method
MV-SVM achieves the best performance (44.9%). Besides,
WMV-1-NN achieves a promising accuracy gain (40.8%)
which ranks the 3-rd highest among all methods. Generally,
our methods outperform state-of-the-art deep domain
adaptation methods, given a better baseline network, our
methods are expected to achieve much higher cross-domain
recognition accuracy. Concerning the computation time that
is measured on a PC workstation with an Intel CPU (2.8
GHZ) and 88 GB of RAM, we find that each sampled
domain adaptation task takes about 7.5 minutes (δs,t =
[0.1, 0.1]), which is quite promising for large-scale datasets.
When sampling densities δs and δf decrease, the accuracy
always tends to decrease within shorter computation time.

5 DETAILS OF LABEL PROPAGATION EXTENSION

As aforementioned before, we replace 1-NN with such
a label propagation (LP) [12] extension in the pseudo
label inference step to fairly compare with DGA-DA [13].
Particularly, once the domain-invariant projection A is
learned, we can easily obtain the pseudo target labels via
1-NN, then we can construct an affinity matrix W for all
instances from source and target domains, whose element
is defined by, wi,j = exp(−σ‖ATxi − ATxj‖) if i 6= j
and wii = 0. Afterwards, we further construct a matrix
S = D−1/2WD−1/2 in which D is a diagonal matrix with
its (i, i)-element equal to the sum of the i-th row of W . In
the following, we easily obtain a more reliable soft pseudo
target label matrix F ∈ R(ns+nt)×C via local and global
consistency,

F = (I − αS)−1[Y s; Ŷt]. (1)

TABLE 7
Recognition accuracies on the SVHN-MNIST dataset.

Method Accuracy (%) Gain (↑)
Source Only [7] 54.9 –
SA∗ [9] 59.3 8.0%
DANN [6] 73.9 34.5%
kNN-Ad [7] 78.8 43.5%
Source Only [8] 60.1 –
Domain confusion [10] 68.1 13.3%
ADDA [8] 76.0 26.5%
Source + Target † [11] 65.5 –
FADA † [11] 72.8 11.1%
Source Only 56.8 –
1-NN 55.4 –
Conv-1-NN 74.8 35.0%
MV-1-NN 76.1 37.4%
WMV-1-NN 78.0 40.8%
SVM 55.8 –
Conv-SVM 69.0 23.6%
MV-SVM 80.9 44.9%

K = 10, δf = 1, δs,t = [0.1, 0.1] ⇑ and δs,t = [0.05, 0.05] ⇓.

Conv-1NN 73.4 32.5%
MV-1-NN 75.4 36.0%
WMV-1-NN 76.9 38.7%
Conv-SVM 66.4 19.9%
MV-SVM 79.4 43.2%

† Semi-supervised DA method utilizes one labeled target sample per category.

Then we discover the optimal class corresponding to
the largest soft probability for pseudo target labeling. Here
Y s and Ŷt respectively denote the one-hot encodings of
semantic source labels and pseudo target labels. In this
paper, α = 0.8 and σ = 10 are fixed for all datasets in
the experiments.

6 ALGORITHM ANALYSIS

6.1 Sensitivity to Subspace Dimensionality

To investigate the sensitivity to subspace dimensionality, we
illustrate how the average accuracy changes with different
values for m in Fig. 3 (m varies in the range of [8, 9, · · · , 20]
for Office-Caltech and COIL20, and [80, 90, · · · , 200] for
PIE). It is worthwhile to mention this parameter sensitivity
experiment is carried out on the Office-Caltech (DeCAF6

‘full-training’), PIE (l2 normalization), and COIL20 datasets.
Apparently, the average recognition accuracies for all three
datasets first increase and then gradually decrease. The
optimal m values are different, however, around them the
accuracies are quite stable, which indicates that our method
is robust to the subspace dimensionality parameter m.

Fig. 3. Averaged recognition accuracy w.r.t. subspace dimensionality m
(m← m× 10 for PIE).
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Fig. 4. Convergence study of our algorithm: accuracy with iterations. [Office-Caltech: DeCAF6 & PIE: l2-normalization & Office-Home: ResNet50-P5]

TABLE 8
Recognition accuracies (%) on Office-Caltech (DeCAF6) of Algorithm 1. Values in red and bold face indicate the best results (default parameters:

λ = 1, γ = 0.1, m = 15, maximum iteration T = 10).
pse-class fin-class A→C A→D A→W C→A C→D C→W D→A D→C D→W W→A W→C W→D Avg.

1-NN
1-NN

85.9 89.8 86.4 92.3 93.6 93.6 92.5 87.4 99.0 90.7 85.3 100.0 91.4
SVM 87.6 95.5 86.1 92.9 92.4 86.8 92.1 88.8 99.0 92.1 87.5 99.4 91.7
LP 86.6 89.8 87.8 92.6 89.8 91.9 92.5 87.8 99.0 90.7 85.9 100.0 91.2

1-NN
SVM

87.6 91.1 88.1 93.4 95.5 95.3 92.5 88.5 99.0 91.1 88.0 100.0 92.5
SVM 88.0 95.5 84.7 93.5 91.7 84.7 91.9 89.0 99.0 91.5 86.7 96.8 91.1
LP 88.1 91.1 89.2 93.5 91.1 93.9 92.5 88.5 99.0 91.0 88.1 100.0 92.2

1-NN
LP

86.4 89.8 87.1 92.6 94.9 94.2 92.6 87.4 99.0 90.9 85.8 100.0 91.7
SVM 88.0 95.5 84.7 93.6 92.4 84.7 91.9 89.0 99.0 91.5 86.7 96.8 91.2
LP 86.9 89.8 88.8 92.9 91.1 93.2 92.7 87.6 99.0 90.9 86.0 100.0 91.6

6.2 Convergence Analysis
Besides the parameter sensitivity study, we discuss the
convergence of our method in Algorithm 1 on all 6 datasets.
As shown in Fig. 4, 1-NN is the initial state which can be
considered as iter-0, for a majority of tasks, the accuracy
achieves the highest and stop growing when the number
of iterations arrives at 10. Obviously, we can draw the
following conclusion: the accuracy of our method grows
larger gradually and tends to be stable with the increase
of the number of iterations.

Besides the quantitative analysis, we also perform
qualitative analysis to find the visual changes in the
distributions of different subspaces for each iteration.
Specifically, we exploit the most popular visualization tool
t-SNE 1 to show the visualizations of embedding spaces of
one representative task C → W with DeCAF6 features in
Fig. 5. Obviously, classes 1, 3, 5 and 10 are not well separated
in iteration # 1, while classes 3, 5 and 10 are not clearly
separated in iteration # 2. After iteration # 5, only classes 3
and 5 are relatively mixed up. However, other 9 classes are
very well separated in iteration # 8, 9 and 10.

7 DISCUSSIONS ON STANDARD CLASSIFIERS OF
ALGORITHM 1
For simplicity, we indeed utilize a simple and non-
parametric 1-NN classifier for pseudo-labeling for
Algorithm 1. Actually, we also tried other classifiers
like support vector classification (SVM, following the
default setting in the package Liblinear 2) and label

1. https://lvdmaaten.github.io/tsne/
2. https://www.csie.ntu.edu.tw/∼cjlin/liblinear/

propagation (LP, inspired by recent works [13], [14], details
can be referred in last Section 5), the experimental results
are shown here in Table 8, where the classifier (called
pse-class, step 6 in Algorithm 1) for pseudo-labeling varies
in [1-NN, SVM,LP] and the final classifier (fin-class, step 10
in Algorithm 1) for final target label prediction in a basic
method also varies between [1-NN, SVM,LP].

As can be seen in Table 8, if we choose 1-NN as the
final classifier, SVM is the optimal classifier for pseudo
labeling during the training process, however, both three
classifiers perform roughly comparable. On the other hand,
if we choose SVM as the final classifier, 1-NN provides
the best recognition results, utilizing SVM for pseudo
labeling performs worse than others due to the bad
performance in C→W. Furthermore, taking LP as the final
classifier, 1-NN and LP perform almost equable, while
SVM performs slightly badly in terms of the average
accuracy. Carefully observing the table, we can find that
once SVM is incorporated with LP, the performance stays
unchangeable or increases for almost all tasks. In addition,
1-NN also benefits from the incorporation of LP and SVM
as the final classifier, the averaged accuracy from 91.4%
to 91.7% and 92.5%. Besides the non-parametric property
and simplicity, 1-NN always obtains promising and stable
results regardless of the final classifier, making it a default
classifier for pseudo labeling in our algorithms.
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