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Deep Semantic Reconstruction Hashing for
Similarity Retrieval

Yunbo Wang , Xianfeng Ou , Jian Liang , and Zhenan Sun , Senior Member, IEEE

Abstract— Hashing has shown enormous potentials in preserv-
ing semantic similarity for large-scale data retrieval. Existing
methods widely retain the similarity within two binary codes
towards their discrete semantic affinity, i.e., 1 or −1. However,
such a discrete reconstruction approach has obvious drawbacks.
First, two unrelated dissimilar samples would have similar binary
codes when both of them are the most dissimilar with an anchor
sample. Second, the fine-grained semantic similarity cannot be
shown in the generated binary codes among data with multiple
semantic concepts. Furthermore, existing approaches generally
adopt a point-wise error-minimizing strategy to enforce the real-
valued codes close to its associated discrete codes, resulting
in the well-learned paired semantic similarity being uninten-
tionally damaged when performing quantization. To address
these issues, we propose a novel deep hashing method with
pairwise similarity-preserving quantization constraint, termed
Deep Semantic Reconstruction Hashing (DSRH), which defines
a high-level semantic affinity within each data pair to learn
compact binary codes. Specifically, DSRH is expected to learn
the specific binary codes whose similarity can reconstruct their
high-level semantic similarity. Besides, we adopt a pairwise
similarity-preserving quantization constraint instead of the tra-
ditional point-wise quantization technique, which is conducive
to maintain the well-learned paired semantic similarity when
performing quantization. Extensive experiments are conducted
on four representative image retrieval benchmarks, and the
proposed DSRH outperforms the state-of-the-art deep-learning
methods with respect to different evaluation metrics.
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I. INTRODUCTION

W ITH the explosive growth of multimedia data in search
engines and social networks, it is highly desirable

that the data should be organized and indexed efficiently and
accurately. As an approximate nearest neighbor (ANN) search
technique, hashing [7], [46], [48], [57] has shown superior
potential for dealing with the large-scale data. Generally,
hashing employs a set of hashing functions to encode each data
into binary codes, meanwhile preserving the similarity from
original space. Based on the binary representation, the storage
cost can be dramatically decreased and we can achieve con-
stant or sub-linear search speed [27], [44], [45]. Due to the
encouraging efficiency in both storage cost and search speed,
more and more hashing methods are proposed for real-world
similarity retrieval tasks recently [1], [5], [13], [24].

Existing hashing could be roughly classified into two
categories according to the type of hashing function: data-
independent hashing [7], [17], [40] and data-dependent hash-
ing (also known as learning-based hashing) [15], [53], [55].
Local Sensitive Hashing is a typical data-independent method,
which randomly generates a set of hashing functions to encode
each data into binary codes. However, the learning-based
hashing resorts to training data to learn more effective hashing
functions. In this paper, we focus on learning-based hashing
with the application to similarity retrieval.

A fruitful of learning-based hashing methods [15], [59] have
been designed for efficient ANN search, where the efficiency
comes from the compact binary codes that are orders of
magnitude smaller than high-dimensional feature descriptors.
The learning-based hashing generally includes unsupervised
and supervised approaches in real-world applications. For the
unsupervised hashing [8], [23], [27], [50], they need to learn
the hashing functions under no ground-truth label, and the
retrieval accuracy is not desirable. The supervised hashing
usually construct the pairwise label or directly employ the
point-wise label to learn hashing functions, showing a better
retrieval result [18]. Some representative works include Mini-
mal Loss Hashing [37], Supervised Discrete Hashing [42] and
Fast Supervised Discrete Hashing [34]. Among these methods,
the input data is usually represented by hand-crafted feature
descriptors such as SIFT [31] and GIST [38], followed by sep-
arate projection and quantization. Research [18] demonstrates
that the hand-crafted feature based hashing is suboptimal.
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Fig. 1. (a) gives a paradox example about two dissimilar data pairs with a
shared anchor. The two unrelated samples ‘ship’ and ‘airplane’ would have
similar codes when they are most similar with the anchor in existing hashing
methods. (b) shows another example about two similar data pairs ‘pair 1’ and
‘pair 2’ with a shared anchor. ‘pair 1’ and ’pair 2’ have a consistent Hamming
distance, but it is contradicted with sharing different number of semantic
concepts. In addition, two unrelated non-anchor samples also undesignedly
have similar codes.

Recently, deep learning-based hashing methods have been
proposed to simultaneously learn effective feature representa-
tion and hash functions, which have shown superior perfor-
mance over the hand-crafted feature based hashing methods.
Specifically, deep hashing methods with pairwise labels [3],
[60] generate similarity-preserving binary codes in terms of
their semantic similarity. The triplet-wise affinity based deep
hashing methods [18], [54], [58] obtain the relative similar
codes within a triplet tuple. What’s more, it proves crucial
to jointly learn the similarity-preserving representation and
minimize the quantization error of converting continuous rep-
resentation to binary codes.

Although many supervised hashing methods have been
proposed with promising results, they confront some com-
mon flaws in learning similarity-preserving representations
and controlling the quantization error. In learning similar-
ity, the supervision information (i.e., pairwise similarity) is
simply constructed based on label information. Specifically,
the similarity affinity is widely defined as 1 if two samples
have at least a common semantic label, otherwise −1 [34].
However, the brutal discrete definition is unreasonable for
effective hash learning, and it would bring in some issues:
(1) two unrelated dissimilar samples have similar codes when
they are the most dissimilar with the same anchor, as shown
in Figure 1(a). When utilizing the affinity −1 to maximize
the Hamming distance of ‘bird’ and ‘shi p’ as well as ‘bird’
and ‘air plane’ to obtain dissimilar codes, it leads to an unex-
pected truth that the unrelated samples ‘shi p’ and ‘air plane’
have similar codes; (2) the fine-grained semantic similarity
cannot be shown in data with multiple semantic concepts,
resulting in the Hamming distance of two similar pairs to
be same or similar, as shown in Figure 1(b). It is observed
that ‘pair 1’ shares two semantic concepts and ‘pair 2’ only
shares one semantic concept. When utilizing the affinity 1 to

minimize their Hamming distance to get similar codes, it may
lead to the consistent Hamming distance in ‘pair 1’ and
‘pair 2’. Furthermore, it undesignedly makes two unrelated
non-anchor samples have similar codes (i.e., the first and the
third image). Obviously, the discrete similarity 1/−1 based
supervised hashing is insufficient to describe the high-level
semantic affinity of data pair, failing to generate compact
binary codes.

Besides, quantization is a very intractable issue for
learning-based hashing. Current work mainly focuses on
minimizing the point-wise quantization error [5], [26] that
enforces the real-valued codes close to their discrete codes.
The classical point-wise error-minimizing quantization
constraints include L1-norm regularizer [19], [33], L2-norm
regularizer [21], [42] and T anh() smooth function [3], [52].
However, whatever the point-wise quantization constraint,
it inevitably introduces the quantization error, and results
in information loss. What’s worse, it produces a larger
approximation error by adopting the similarity of real-valued
codes as the surrogate of that of binary codes in similarity
measure. After quantization, the well-learned paired similarity
is unintentionally seriously damaged.

To address these above issues, we propose a novel deep
hashing method with pairwise similarity-preserving quantiza-
tion constraint, termed Deep Semantic Reconstruction Hashing
(DSRH), which adopts an end-to-end trainable way to learn
compact binary codes. Figure 2 shows the framework of
the proposed DSRH. Generally, our main contributions are
summarized as follows:

• The similarity affinity of data pairs is elaborately designed
and redefined to characterize their relationship in DSRH.
The semantic similarity of a similar pair is continuous,
and the similarity of a dissimilar pair is also not limited
to a single value −1 but a local variable within a
batch. Based on the redefined similarity affinity, the high-
level semantics of data pairs can be fully exploited,
generating more compact binary codes.

• We develop a novel pairwise similarity-preserving quan-
tization constraint to maintain the semantic similarity
of data pairs when performing quantization. Compared
with conventional point-wise error-minimizing quantiza-
tion schema, the proposed method enables improving the
quality of binary codes and maintaining the well-learned
paired semantic similarity for similarity retrieval.

• Extensive experiments are conducted on four public
benchmark datasets. The retrieval results demonstrate the
superiority of the proposed DSRH over the state-of-the-
art supervised hashing methods.

The rest of this paper is organized as follows: Section II
gives a brief review of related work about deep hashing
and point-wise quantization constraint. Section III presents
the procedure of the proposed DSRH. Section IV shows the
details, results, and analyses of the experiment. Section V
concludes the paper.

II. RELATED WORK

Learning-based hashing has become an important research
topic in multimedia retrieval, which trades off efficacy from
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efficiency. In this section, we review the related works which
motivate our method. They can be roughly cast into two
categories below.

A. Deep Hashing

Considering the promising performance of deep learning
[10], [16], [30], [36] on many computer vision tasks, e.g.,
image classification, object detection, and semantic segmen-
tation, more and mare hashing works [6], [29], [39], [56] try
to exploit the Convolutional Neural Networks (CNN) [11] to
project images into compact binary codes. Specifically, these
methods jointly perform feature representation learning and
hash coding in an end-to-end manner, showing superior per-
formance over traditional hashing methods with hand-crafted
feature [46]. The first proposed deep hashing work is Convo-
lutional Neural Network Hashing (CNNH) [51], which adopts
the well-known architecture in [16] to learn discriminative and
compact binary codes with pairwise constraint. CNNH consists
of two stages to learn the feature representation and binary
codes. Nevertheless, the feature representation cannot make
feedback to hash coding and it cannot fully show the efficiency
of CNNs in hash learning. Based on CNNH, Network In Net-
work Hashing (DNNH) [18] integrates image representation
and hash coding in a unified framework. Besides, DNNH
employs a triplet-based ranking constraint to maximize the
margin between similar data pair and dissimilar data pair,
and it designs a divide-and-encode module to reduce the
redundancy among binary codes. Furthermore, Deep Hashing
Network (DHN) [60] is a representative pairwise deep hashing
work in a unified framework. It employs a cross-entropy loss to
enforce similar(dissimilar) pairs to have small(large) Hamming
distance and formally controls the point-wise quantization
error by a designed smooth surrogate of the L1-norm. To better
control quantization error, HashNet [3] proposes a continuous
scale strategy to approximately approach the discrete binary
codes, and takes into consideration class imbalance to obtain
similar codes in similar data pairs. DPH [4] also takes into
consideration class imbalance for supervised hashing, and
integrates the prior information into obtaining compact binary
codes in data pairs. Other typical deep hashing methods can
be found in [19], [23], [32], [47], [49].

Among these methods above, they simply construct data
pairs’ similarity as the ground-truth label for supervised hash
learning. Specifically, the similarity is defined as 1 if two
samples share at least one semantic concept, otherwise −1.
Then they expect to obtain minimal or maximal Hamming
distance within a pair of codes according to the hard-assigned
discrete similarity. However, the simply defined similarity
cannot show the fine-grained semantic similarity among data
pairs. Meanwhile, minimizing or maximizing Hamming dis-
tance within a pair of codes would unexpectedly result in
two unrelated data having similar codes. Therefore, redefining
the similarity affinity is necessary for effective supervised
learning-based learning in the pairwise scenario.

B. Point-Wise Error-Minimizing Quantization

Quantization [5], [6], [9] is an important factor in hash
learning. To make the real-valued codes close to the discrete

codes, existing hashing works generally adopt the point-wise
error-minimizing strategy [21], [25], [33] to narrow their gap
(quantization error), and the specific manner includes L1-norm
regularizer, L2-norm regularizer and tanh(·) smooth func-
tion. Such as Deep Supervised Hashing [25] adopts the L1-
norm regularizer to reduce the gap. Deep Pairwise-Supervised
Hashing [21] utilizes the L2-norm regularizer to narrow their
Euclidean distance. HashNet [3] proposes a tanh(·) function
based smooth scale technique to make the real-valued codes
close to discrete codes. Deep Priority Hashing [4] also employs
bi-modal Laplacian prior probability based on L1-norm to
model this gap, forcing the learned real-valued code to be
assigned to {−1, 1} with the largest probability. Besides, Deep
Hashing via Discrepancy Minimization [6] attempts to trans-
form the discrete objective over binary codes to a continuous
objective over hashing functions through a Taylor expansion,
reducing the quantization error.

In hash coding, the uncontrollable point-wise quantization
error is inevitable. Besides, it will further produce a larger
approximate error by adopting the similarity of real-valued
codes as the surrogate of that of binary codes for similarity
retrieval. After quantization, the well-learned paired similarity
must be damaged.

III. THE PROPOSED DSRH

Given a training set of N points {xi }n
i=1, each data point is

represented by a d-dimensional feature vector xi ∈ Rd . The
goal of learning-based hashing is to learn a set of hashing
functions F = { f1, f2, . . . , fk}, which encode each data point
xi into a compact k-bit binary codes bi = F(xi ) ∈ {−1, 1}k.
The corresponding label matrix is denoted as T = {ti }n

i ∈
R n×c and c denotes the number of classes. The term tik is the
k-th element of ti and tik = 1 if xi is from class k, otherwise
tik = 0. Then, existing hashing generally denotes the similarity
affinity si j = 1 if two samples share at least one class label,
otherwise si j = −1 [43].

As in [18], [33], we use linear projections followed by an
element-wise transformation function as our hashing functions.
Firstly, we can obtain the output of the hashing layer by linear
projection, and the specific output is listed as follows:

hi = WT
H xi + νH , (1)

where W H ∈ R
d×k denotes the weight in the hashing layer,

and νH ∈ R
k×1 denotes the bias parameter. Obviously,

the output of the hashing layer hi ∈ R
k is continuous value.

In order to obtain discrete binary codes bi ∈ R
k , the element-

wise transformation is defined as:

bi = sign(hi ), (2)

where sign(·) denotes a sign function, i.e., sign(x) = 1 if
x > 0, otherwise sign(x) = −1. To learn discriminative and
compact binary codes, we introduce details of the proposed
DSRH in the next part.

For a pair of codes (bi , b j , si j ), their semantic similarity
should be effectively preserved in Hamming space. Besides,
there exists a close linear relationship between their Hamming
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Fig. 2. An overview of the proposed deep hashing method DSRH, which accepts paired images as its input. In this framework, a deep convolutional neural
network is exploited for extracting image representation, followed by a hashing layer f ch with k neural units, which transforms the representation into k-bit
binary codes. For each pair of images, we redefine their similarity affinity to reconstruct the high-level semantic similarity in Hamming space. Meanwhile,
we employ a pairwise similarity-preserving quantization constraint to maintain the well-learned paired similarity when performing quantization.

distance DH (bi , bi ) and their inner-product bT
i · b j :

DH (bi , b j ) = 1

2
(k − bT

i · b j ), (3)

if the inner-product of two binary codes is small, their Ham-
ming distance will be large, and vice versa. Hence in the
sequel, we will the inner-product as a good surrogate of the
Hamming distance to quantify the pairwise similarity, as in [4],
[20]. Based on the similarity affinity si j , the general objective
function of learning-based hashing can be formulated as:

min
∑
i, j

||hT
i · h j − k ∗ si j ||1 + η

∑
i

||hi − bi ||1, (4)

where hT
i is the transposition of hi . The first term is used

to learn similarity-preserving representations, and the second
term is employed to narrow the point-wise quantization error.
The η is a hyper-parameter for balancing the importance of
the quantization error term.

Figure 2 shows the framework of the proposed DSRH,
which accepts paired images as the input and processes them
through the deep representations learning and hash coding.
It includes a sub-network with multiple convolution/pooling
layers to perform image abstraction, two fully-connected lay-
ers to obtain optimal representations, a hashing layer f ch to
generate k-bits binary codes. In the DSRH, we redefine the
similarity of data pairs, and we perform a high-level semantic
reconstruction to obtain specific binary codes centered on
this similarity. Furthermore, we develop a pairwise similarity-
preserving quantization term to maintain the well-learned
paired similarity when performing quantization.

A. High-Level Semantic Reconstruction

As discussed in the introduction, the discrete similarity,
i.e., si j = 1 or −1, leads to several issues: (1) it fails to capture

the fine-grained semantic affinity among images with multiple
semantic concepts, resulting in the generated codes becoming
unified among similar data pairs and so as to have similar
codes between two non-anchor samples; (2) in dissimilar pairs,
two unrelated data may also have similar codes when they
are the most dissimilar to the same anchor. Subsequently,
it inevitably yields suboptimal results on hash coding. In order
to effectively perform hash learning, we redefine the similarity
affinity in the light of label information or the ratio of similar
data pairs as follows:

ŝi j = m − 1 + ci j

m
si j , (5)

where the term ci j is designed by the following formula:

ci j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

tT
i · t j

‖ti‖‖t j‖ , si j = 1

‖S1
i ‖ + ‖S1

j ‖
‖Si‖ + ‖Sj ‖ , si j = −1.

(6)

In Equation. (6), ti and t j denote the semantic label vectors
of data xi and x j , respectively. Si = {sik : ∀k} is the set of
data pairs which contain specific sample xi . S1

i = {sik : sik =
1} is the subset of similar data pairs with xi . The ci j will
be adaptively determined in the range of [0, 1]. The m is a
parameter, and need to meet this requirement: m − 1 > 0.

For similar data pairs, the similarity affinity ŝi j is a con-
tinuous variable, which is proportional to the cosin similarity
of two label vectors. Meanwhile, it is expected that the value
of ŝi j would be greater than (m − 1)/m. It is observed if a
pair of data have the same class labels, the ŝi j just equals to
1. If a pair of data shares partial labels, the similarity value
is less than 1. Based on this similarity, the generated binary
codes can characterize the potential fine-grained semantic
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similarity in terms of sharing semantic concepts, avoiding that
all related similar pairs would have similar codes. Specifically,
the number of different hash bits between two similar data can
be up to � k

2m �,1 which can be inferred by jointing Eq. (3) and
(4). Besides, the minimum of ŝi j is designed to be greater
than (m − 1)/m, which is the lower bound of similarity level,
aiming to keep a certain similarity on similar data pairs at
least. Therefore, the proposed similarity affinity m−1+ci j

m not
only shows the fine-grained similarity affinity, but also keeps
a certain similarity on similar data pair.

In addition, two partial similar sample don’t have the same
code, and the number of different bits is k

2m (1 − ci j ) for
similar data pair (xi , x j ). For another similar data pair (xi , x p)
based on xi , the number of different bits is k

2m (1 − cip).
After reasoning, The different bits of x j and x p can be up
to k

2m (2 − ci j − cip) at most. This makes sure a certain
compatibility between x j and x p if they are dissimilar.

For dissimilar data pairs, the similarity affinity ŝi j dynam-
ically changes with the ratio of similar pairs related to data
point xi and x j in a batch of data. The purpose is to obtain
Hamming-compatible binary codes, avoiding two unrelated
data having similar codes when they are the most dissimilar
with an anchor. From Equations. (5) and (6), we can observe
that the higher the ratio of total similar pairs (xi , x p : sip = 1)
and (x j , xq : s jq = 1) is, the closer the ŝi j is to −1. When
the ratio of similar pairs is higher, it is acceptable that the
base dissimilar pair (xi , x j ) can tolerate a larger Hamming
distance in the light of similar data pair having similar codes.
When the ratio of similar pairs is fewer, it needs to consider
keeping a certain distance about other dissimilar pairs related
to xi or x j . Thus, in order to obtain the Hamming-compatible
codes, the basic data pair (xi , x j ) only holds an appropriate
Hamming distance instead of the maximized distance. Fur-
thermore, we empirically set the value of ŝi j being less than
−(m − 1)/m, and expect to differentiate dissimilar pairs with
a supporting of minimal Hamming distance k(1− 1

2m ). Hence,
the novel similarity of dissimilar pairs is helpful to generate
Hamming-compatible binary codes.

Substituting the redefined ŝi j into Equation. (4), we can
get a novel deep reconstructive hashing to retain their high-
level semantic similarity. As the term of ||hT

i · h j − k ∗ si j ||1
might be sensitive to outliers, we adopt the normalized inner-
product to increase the robustness of the hashing procedure in
this study. In addition, since the exponential manner exp(|x |)
can obtain a stronger gradient information for effective back
propagation and parameter update, we use the exponential
manner to compute a loss. The specific formulation can be
obtained as follows:

L =
∑
i, j

exp (||hT
i · h j

k
− ŝi j ||1). (7)

The above defined similarity affinityŝi j is a natural extension
of the original hard-assigned similarity, i.e., −1 or 1. Techni-
cally, we consider the fine-grained semantic affinity between
similar pairs. Meanwhile, we integrate the ratio of similar data

1�· � denotes the operation of rounding down.

pairs into computing a continuous similarity affinity among
dissimilar pairs for semantic reconstruction.

B. Pairwise Similarity-Preserving Quantization

Since discrete optimization of the Equation. (7) with binary
codes is very challenging, the binary constraint is usually
replaced with real-valued codes as in [3], [21], [42], [60].
Considering the subsequent error (quantization error) intro-
duced by real-valued codes, existing deep hashing [20], [33]
generally imposes a L1/L2-norm regularizer on this error,
making the real-valued codes close the discrete codes [25].

Although the point-wise quantization constraint can narrow
the quantization error to some extent, this uncontrollable error
is inevitable. What’s worse, it will produce a larger approx-
imate error by adopting the similarity of real-valued codes
as the surrogate of that of binary codes. After quantization,
the well-learned paired similarity must be damaged, whereas
there is no defense.

Given two real-valued vectors hi and h j , and take their nth-
dim value hin = 0.8 and h j n = 0.9 for example. According
to the element-wise transformation function used in our work,
we can obtain the corresponding binary codes bin = 1 and
b j n = 1. Based on the given value, the point-wise quantization
error in the nth-dim is ‖hin − bin‖ = ‖0.8 − 1‖ = 0.2
and ‖h j n − b j n‖ = ‖0.9 − 1‖ = 0.1, respectively. However,
the approximate error in similarity measure is ‖hin ·h j n −bin ·
b j n‖ = 0.28. Obviously, the inner-product operation generates
a greater error in similarity measure. This verifies that the
uncontrolled quantization error results in a greater approximate
error in paired similarity.

In this work, to effectively maintain the well-learned paired
similarity, namely, making hT

i · h j much more close to bT
i ·

b j , we develop a pairwise similarity-preserving quantization
constraint based on the exponential manner:

Q =
∑
i, j

exp (
1

k
||hT

i · h j − bT
i · b j ||1), (8)

where hT
i · h j is the inner-product of real-valued codes, and

bT
i · b j is the inner-product of discrete codes. As stated in the

previous analysis, it is reasonable that we employ the inner-
product of two data to describe their similarity. The above-
proposed quantization loss focuses on maintaining the paired
similarity, and enforces the inner-product of real-valued codes
close to that of discrete codes. The final generated binary codes
are more favorable for similarity retrieval.

C. Overall Objective

Integrating the Equation. (7) with Equation. (8), the final
objective of the proposed DSRH is formulated as follows:

min J =
∑
i, j

(L + λQ)

=
∑
i, j

{exp(||hT
i · h j

k
− ŝi j ||1)

+λexp(
1

k
||hT

i · h j − bT
i · b j ||1)}, (9)
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where the hyper-parameter λ is used to balance the pairwise
quantization constraint. On the basis of the Equation. (9),
the binary codes can be obtained by jointly reconstruct-
ing high-level semantic similarity and maintaining the well-
learned semantic similarity.

In training stage, we adopt a mini-batch-based strategy for
updating the DSRH model. More specifically, in each iteration,
we sample a mini-batch of data points from the whole training
set to calculate their feed-forward loss and back-forward
gradient information. Since the absolute value | · | is a non-
differential whose derivative is difficult to compute, we adopt
a smooth surrogate of the absolute function |x | ≈ log cosh(x)
[12]. Then the Equation. (9) can be further formulated as:

min J =
∑
i, j

{exp(log cosh(
hT

i · h j

k
− ŝi j ))

+λ exp(log cosh(
1

k
(hT

i · h j − bT
i · b j )))}. (10)

The gradient of J with respect to hi can be calculated as:

∂ J

∂hi
=

∑
j :ŝi j ∈S

{exp(Uij )tanh(ui j )h j + λ exp(Vij )tanh(vi j )h j }

+
∑

j :ŝ j i∈S

{exp(U ji )tanh(u j i)h j + λ exp(Vji)tanh(v j i )h j },

(11)

where ui j = hT
i · h j

k − ŝi j , vi j = hT
i · h j − bT

i · b j , Uij =
log cosh(ui j ) and Vij = log cosh(vi j ). As the model parameter
and the feature variable before the loss function module do
not directly join in the loss J calculation, we don’t give
their back-propagation gradient information. But we can obtain
the gradient by the chain rule [16] based on the gradient
information in Equation. (11). We implement the proposed
approach via the open-source deep framework Caffe [14]. The
standard stochastic gradient descent method (SGD) [16] is
used to train the proposed method.

D. Out-of-Sample Extension

After we have completed the learning procedure, we can
only get the binary codes for points in the training data.
We still need to perform an out-of-sample extension to predict
the binary codes for the points which do not appear in the
training set. The deep hashing framework of DSRH can be
naturally applied for the out-of-sample extension. For any data
point xq , we can predict its binary codes just by forward
propagation:

bq = sign(hq). (12)

IV. EXPERIMENTS AND ANALYSIS

To evaluate the effectiveness of the proposed DSRH, exten-
sive experiments are conducted on four benchmarks against
the state-of-the-art hashing methods.

Fig. 4. Exemplar images from CIFAR-10, ImageNet, NUS-WIDE and MS-
COCO datasets.

A. Datasets

CIFAR-10 is a benchmark image dataset, including
60,000 color images in 10 classes. Each class has 6,000 images
in size 32 × 32. Following the evaluation protocol in [60],
we sample 100 images per class as the query set, and the
remaining images are used as the database. In addition,
we sample 5,000 images (500 images per class) from the
database as the training set.

ImageNet is a benchmark image dataset in 1,000 classes
for Large Scale Visual Recognition Challenge (ILSVRC
2015) [41]. It contains over 1.2M images in the training set and
50K images in the validation set. Follow a slightly different
evaluation protocol as HashNet [3], 100 categories with the
most images are selected for the experimental evaluation. The
images of these 100 categories in the training set are used as
the database, and the images in the validation set are used as
the query set. We further sample 100 images per class from
this database as the training set.

NUS-WIDE is an image dataset containing 269,648 images
from Flickr.com. Each image is associated with one or more
semantics among 81 semantic concepts. Following the set-
ting in DHN [60], the 21 most frequent concepts with
195,834 images are used for experimental evaluation. We
sample 2,100 images (100 images per class) as the query set,
and the remaining images are used as the database. In addition,
500 images per class are selected from the remaining images
as the training set.

MS-COCO is a large-scale image dataset for recognition,
segmentation and captioning task. It contains 82,783 train-
ing images and 40,504 validation images, which belong to
80 semantic concepts. In our experiment, we retain only those
images which belong to the 20 most frequent concepts and
remove the others, leaving 86,199 images available. We sample
100 images per class as the query set, and the remaining
images are used as the database. 500 images per class are
further selected from the remaining images as the training set.
Figure 4 shows exemplar images of the experimental dataset.

B. Experimental Setting and Protocols

The redefined paired similarity set S = {ŝi j } obtained
by the Equation. (5) is used as the ground truth. If ŝi j is
greater than 0, it indicates the target data pair is similar
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TABLE I

COMPARISON OF RETRIEVAL MAP@ALL SCORES AND PRECISION@1,000 OF DIFFERENT METHODS ON THE CIFAR-10 DATASET

Fig. 3. Comparative evaluation of different algorithms on the CIFAR-10 dataset. (a) Precision within Hamming radius 2 curves w.r.t. different number of
hash bits. (b) Precision-recall curves @ 16-bit. (c) Precision-recall curves @ 32-bit.

and otherwise dissimilar, where the label information from
the single-label dataset is coded in the form of one-hot. In
addition, to avoid the effect caused by a class-imbalance
problem between similar and dissimilar similarity information,
we empirically set the weight of the similar pair as the ratio
between the number of dissimilar pairs and the number of
similar pairs in each batch.

To demonstrate the superiority of DSRH, several state-of-
the-art hashing methods are used for comparisons, including
the traditional hashing (LSH [7], SH [50], ITQ [9], KSH
[28], FastH [22] and SDH [42]) and the deep learning
based hashing(CNNH [51], DNNH [18], DSH [25], DHN
[60], HashNet [3], DCH [2] and DPH [4]). Most of these
methods obtains similarity-preserving binary codes according
to the hard-assigned similarity (i.e., −1 or 1), such as DPH,
DCH, HashNet, DHN, DSH, CNNH, FastH and SH. However,
the proposed DSRH redefines the similarity affinity, then
it reconstructs the high-level semantic similarity within two
binary codes towards the redefined similarity.

In the proposed DSRH, we adopt the CNN-F network [41]
as our basic network, and the semantic classification layer is
replaced with the hashing layer f ch. We initialize the basic
network based on the pre-trained weight on the ImageNet

2012, and train the semantic hashing layer. The initial learning
rate is set to 10−5. Considering the hashing layer being trained
from scratch, we set its learning rate to be 10 times that
of the lower layers. The weight decay parameter is set to
be 0.0005, and the mini-batch size is fixed to be 200. In
our work, the value of parameter m is set to 2, and the
hyper-parameters λ for each dataset is selected from the range
[0.05, 1]. The two parameters yield the best performance by
cross-validation. For the above non-deep hashing methods,
each image is represented by a 4096-dim deep feature as the
input, which is extracted by the CNN-F network architecture.

In the evaluation, several metrics are adopted to measure
the quantitative performance under four different bits (8-bit,
16-bit, 24-bit and 32-bit), including Mean Average Precision
(MAP), Precision-Recall curves (PR), Precision curves within
Hamming distance 2 (P@H=2), and Precision with respect to
different numbers of top returned samples (P@N). The top
N images are selected from the ranked list in terms of the
Hamming distance.

C. Results and Analysis

1) Retrieval Results on CIFAR-10: Table I shows the MAP
scores and Precision@1,000 on the CIFAR-10. It is observed
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TABLE II

COMPARISON OF RETRIEVAL MAP@ALL SCORES AND PRECISION@1,000 OF DIFFERENT METHODS ON THE IMAGENET DATASET

Fig. 5. Comparative evaluation of different algorithms on the ImageNet dataset. (a) Precision within Hamming radius 2 curves w.r.t. different number of
hash bits. (b) Precision-recall curves @ 16-bit. (c) Precision-recall curves @ 32-bit.

that the proposed DSRH constantly outperforms the baselines,
including traditional non-deep hashing methods, (e.g., SDH
and FastH) and deep hashing methods (e.g., DPH, DCH and
HashNet). In addition, we can observe that the MAP and pre-
cision@1,000 of deep hashing methods distinctly outperform
that of the traditional hashing methods. The behind reason is
that deep networks enable joint performing feature learning
and hash coding in an end-to-end way, and the two processes
can promote each other for improving the quality of binary
codes.

Specifically, the average MAP absolute increase can be
up to 26.91% compared to the traditional hashing method
SDH [42] for different bits. Compared to the state-of-the-art
deep hashing methods, the proposed DSRH method improves
the average MAP from 64.15%(DHN), 70.29%(HashNet),
70.43%(DCH) and 70.71%(DPH) to 74.39%. The reason is
that those baselines simply define dissimilar data pairs’ sim-
ilarity affinity as the discrete value −1. Next, they employ
the defined affinity to maximize the Hamming distance of
dissimilar pairs, and it would result in two unrelated data
having similar codes, compromising the retrieval performance.

However, the proposed DSRH redefines data pairs’ similar-
ity affinity for dissimilar pairs, and the affinity is a local
variable within a batch. The new affinity encourages the
generated binary codes to be compatible when dealing with
two or more dissimilar data pairs related to an anchor
sample.

The performance in terms of Precision within Hamming
radius 2 (P@H=2) is very important for efficient retrieval,
since the search time is a constant for each query. Figure 3(a)
shows the P@H=2 result on the CIFAR-10, and it is clear that
DSRH consistently obtains the best precision. With the length
of codes becoming longer, some baselines show a decreasing
tendency, and the possible explanation is that the Hamming
space will become sparse and few data points fall within
the Hamming ball with radius 2. However, our P@H=2 can
still show a steady result under longer codes, and it further
validates the effectiveness of the proposed DSRH for P@H=2.
In addition, Figure 3(b-c) shows the precision-recall curves
within 16-bit and 32-bit. Compared to the state-of-the-art
methods, it is clear that the proposed DSRH consistently works
the best.
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Fig. 6. Comparative evaluation of different algorithms on the NUS-WIDE dataset. (a) Precision within Hamming radius 2 curves w.r.t. different number of
hash bits. (b) Precision-recall curves @ 16-bit. (c) Precision-recall curves @ 32-bit.

TABLE III

COMPARISON OF RETRIEVAL MAP@ALL SCORES ON

THE NUS-WIDE DATASET

2) Retrieval Results on ImageNet: ImageNet includes more
detailed information and is a more challenging dataset. Table II
shows the MAP scores and precision@1,000 results on
the ImageNet dataset. We can observe that the proposed
DSRH achieves the best results among all state-of-the-art
hashing methods. Besides, the DSRH shows a significant
MAP improvement compared to those baselines. For exam-
ple, the DSRH can imporve the MAP scores from 24.39%
(DNNH), 40.97% (DHN), 50.93% (HashNet), 52.69%(DCH)
and 54.46% (DPH) to 59.84% in 32-bit binary codes. This
reason is the DSRH redefines the similarity affinity among
dissimilar data pairs, and reconstruct the semantic similar-
ity towards the redefined similarity, rather than maximizing
the Hamming distance among dissimilar pairs. Meanwhile,
the DRSH adopts a pairwise similarity-preserving quantization
constraint to reduce the similarity loss when performing quan-
tization. Figure 5(a) shows the precision curves within Ham-
ming radius 2 for different lengths of codes. Figure 5(b−c)
shows the precision-recall curves. It is clear that the proposed

TABLE IV

COMPARISON OF RETRIEVAL MAP@ALL SCORES ON

THE MS-COCO DATASET

DSRH approach gets the best search accuracy in different
lengths of codes.

Compared to the CIFAR-10 dataset, the proposed DSRH
shows a larger performance improvement over the baselines
on the ImagNet. For example, the MAP absolute increase w.r.t.
16-bit can be up to 13.31% compared to the state-of-the-art
method DPH on the ImageNet, and the corresponding MAP
absolute increase is 5.42 % on the CIFAR-10. The reason
is that the ImageNet has in total of 100 class concepts for
performance evaluation and the structure information is more
complicated among data pairs. For an anchor sample, it has
more dissimilar data pairs from the other 99 class sample to
preserve a certain distance. Maximizing the Hamming distance
of dissimilar pairs would lead to the binary codes being
badly incompatible when it adopts the hard-assigned similarity
−1 as its ground truth. The data pairs’ similarity suffers
from more severe disruption. However, the proposed DSRH
redefines a high-level similarity affinity to guide data pairs
preserving their high-level semantics, facilitating generating
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Fig. 7. Comparative evaluation of different algorithms on the MS-COCO dataset. (a) Precision within Hamming radius 2 curves w.r.t. different number of
hash bits. (b) Precision-recall curves @ 16-bit. (c) Precision-recall curves @ 32-bit.

TABLE V

MEAN AVERAGE PRECISION (MAP) OF DSRH AND ITS VARIANTS, DSRH-C, DSRH-S, DSRH-T AND DSRH-P ON THREE DATASETS

Hamming-compatible binary codes. The corresponding per-
formance improvement is more obvious.

3) Retrieval Results on NUS-WIDE: NUS-WIDE is a multi-
label dataset. To verify the effectiveness of the proposed
DSRH, we compare it with several state-of-the-art hashing
algorithms on the NUS-WIDE. Table III shows the MAP
scores of those methods, and we can observe that our approach
works the best compared to the baselines. For example, on the
8-bit codes, the DRSH can improve the MAP scores from
68.15%(DCH) and 68.52%(DPH) to 69.79%.

Figure 6(a) shows the precisions within Hamming distance
of 2. Figure 6(b−c) shows the precision-recall curves w.r.t.
16-bit and 32-bit. Under those evaluation metrics, our method
outperforms other state-of-the-art hashing methods, which
further demonstrates the benefits of redefining data pairs’
similarity to achieve their high-level semantic reconstruction.

4) Retrieval Results on MS-COCO: To further demonstrate
the superiority of the DSRH, we compare it with existing
methods on the MS-COCO dataset. The MAP scores of
different methods are shown in Table IV. We can observe that
the DSRH shows a clear MAP gain over these baselines. To
be specific, the absolute average MAP under different codes
can be up to 9.24% and 2.75% compared to the state-of-the-art
hashing SDH and DPH, respectively.

Figure 7(a−c) shows the precisions within the Hamming
distance of 2 and the precision-recall curves. It is clear that the
precision obviously outperforms other compared methods. In
low or high recall ratio, our method obtains a higher precision,
which is desirable for precision-first practical retrieval systems.
These obtained best results demonstrate the effectiveness of

the proposed method, where we redefine the semantic simi-
larity of data pairs for high-level semantic reconstruction, and
adopt a pairwise similarity-preserving quantization constraint.

D. Empirical Analysis

1) Ablation Study: To further validate the efficacy of the
proposed DSRH, we investigate four variants of DSRH:
DSRH-C, DSRH-S, DSRH-T and DSRH-P for comparison.
DSRH-C is the DSRH variant without binarization, where
sign(hi ) is not performed. DSRH-S adopts directly the hard-
assigned similarity (i.e., si j = 1 or −1) as the ground truth
for hashing learning. DSRH-T means that we don’t utilize the
proposed pairwise quantization constraint (i.e., λ = 0), and
uses the tanh() as the activation of hashing layer for outputting
approximate −1 or 1 codes. DSRH-P is the DSRH variant with
the L1-norm based point-wise quantization constraint, namely,
it adopts the conventional point-wise constraint for narrowing
quantization error. The Map scores about these variants are
shown in Table V.

As expected, the DSRH shows superior results compared to
its variants DSRH-S, DSRH-T and DSRH-P. To be specific,
compared to the DSRH-S, the best absolute MAP increase of
DSRH can be up to 4.37%, 2.70% and 5.85% on ImageNet,
NUS-WIDE and MS-COCO dataset, respectively. The expla-
nation is that DSRH-S employs the hard-assigned similarity
for hash learning, and enforces the similarity within two
binary codes towards this semantic similarity. The unexpected
result is that two unrelated dissimilar samples would have
similar codes when both of them are most dissimilar with an
anchor sample. Besides, On the multi-label dataset MS-COCO
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Fig. 8. The t-SNE visualization of binary codes learned by HashNet, DPH and DSRH.

Fig. 9. Sensitivity analysis of λ for DSRH w.r.t. 16-bit codes on three
datasets.

and NUS-WIDE, the binary codes of similar pairs would be
unified, even for two dissimilar samples when both of them
are most similar with an anchor sample. However, the DSRH
redefines data pairs’ similarity affinity to learn high-level
semantic similarity between a pair of codes.

Compared to the DSRH-T, the best absolute MAP increase
of the DSRH can be up to 2.66%(24-bit), 2.14%(24-bit)
and 4.58%(32-bit) on ImageNet, NUS-WIDE and MS-COCO
dataset, respectively. The corresponding MAP increase of the
DSRH-P is 1.12%(24-bit), 0.67%(24-bit) and 1.77%(32-bit),
and the MAP increase is inferior to that of the DSRH.
What’s more, the whole MAP increase of the DSRH is better
than DSRH-P in different lengths of bits. This indicates that
the proposed pairwise quantization constraint can maintain
the well-learned paired similarity, enabling more effective
similarity retrieval.

For the DSRH-C, it shows a relatively better retrieval result
compared to the DSRH. The truth is that the DSRH-C doesn’t
perform binary quantization, and there is no information loss
in the retrieval task.

2) Parameter Sensitivity: We further investigate the sen-
sitivity of the tradeoff hyper-parameter λ in Equation. (9).
Figure 9 shows the MAP scores about different λ on the
CIFAR-10, NUS-WDIE and ImageNet datasets. We can
observe that the MAP results are steady when λ is in a range
of [0.05, 1]. This demonstrates that the DSRH is not sensitive
to the scale of the tradeoff hyper-parameter. When λ being
greater than 1, the MAP scores show a decreasing trend with
λ increasing. The reason is that the hash model takes more

Fig. 10. The MAP scores comparison w.r.t. different value of m on the
ImageNet(24-bit) and MS-COCO(32-bit) dataset.

effort on preserving the paired similarity, but such similarity
(under a larger λ) cannot fully show the semantic similarity
of a pair of codes. The corresponding retrieval result is not
satisfactory.

In our experiment, the parameter m is used to constrain the
redefined similarity affinity. Figure 10 shows the MAP scores
w.r.t. different values of m on the ImageNet and MS-COCO
dataset. When m = 2, the MAP scores achieve the best result.
Wherein, m = 1 means that the ŝi j is decided by the cosine
similarity of two labels or the ratio of similar data pairs. If
we set m to be a relatively larger value, it means that the
redefined similarity turns back to the hard-assigned similarity,
i.e., 1 or −1. According to the MAP scores, we can observe
that the MAP shows a decreasing trend with the value of m
increasing. Therefore, we set the m to be 2 in our experiment
for an optimal retrieval result.

3) Similarity Change by Quantization: To verify the degree
of similarity-preserving by the proposed pairwise quantization
constraint, we make comparisons with the point-wise quanti-
zation constraint to state the change of similarity. The specific
results are shown in Figure 12, where we sample 50 data pairs

and use
|hT

i · h j −bT
i · b j |

k to quantitatively describe this change.
It is clear that the error from pairwise quantization schema is
less than that of point-wise constraint, and it demonstrates that
the proposed similarity-preserving schema can better maintain
the well-learned paired similarity.

4) Visualization: In order to observe intuitively the deep
binary representation, we visualize the t-SNE [35] of binary
codes generated by HashNet, DPH and DSRH in Figure 8. It
is observed that the binary codes generated by DSRH show a
clear discriminative boundary because the samples of different
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Fig. 11. Top 10 retrieved results from the ImageNet dataset with 32 bits. The first column shows the queries, and other columns show the top 10 retrieved
images.

Fig. 12. The change degree of data pairs’ similarity before and after
quantification by (a) pointwise error-minimization constraint (b) pairwise

simialrity-preserving constraint. We use the normalized error
|hT

i · h j −bT
i · b j |

k
to measure the change degree of paired similarity.

categories are well separated, while the codes generated by
DPH and HashNet do not show such clear and separable
boundary.

In addition, to acquire qualitatively visual result, Figure 11
shows the top 10 retrieved images of the DSRH given a query
image on the ImageNet dataset.

TABLE VI

THE AVERAGE RETRIEVAL TIME OF EACH TESTING SAMPLE ON THE
IMANGENET DATASET

5) Efficiency Analysis: In addition, Table VI gives the
average retrieval time of each testing sample on the ImageNet
dataset. The experimental hardware condition is based on
Windows 7 OS. The used CPU is the Core i7-4790@3.60 GHz
with 8 processors, and the memory size is 12GB. The
experimental software platform is based on Matlab 2014a. We
compare the state-of-the-art hashing DPH with the proposed
DRSH under three time indicators: Ttop−100, Ttop−100 and
TH=2. Wherein Ttop−100 and Ttop−100 denote the time of
returning the top 100 and 1000 data point, respectively. TH=2
denotes the time of returning data within Hamming distance 2.

We can observe that the time cost of DSRH is superior to
DPH is consistent under Ttop−100 or Ttop−100. This reason is
that they perform the same XOR operation as well as return
the top 100 or 1,000 data, but the model parameter of DSRH
is less than that of DPH. Thus the DSRH is more efficient in
time cost. In both of DSRH and DPH, Ttop−1000 is greater than
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Ttop−100, because they need to return more samples under the
indicator Ttop−1000. For the indicator TH=2, it is observed that
the time TH=2@8-bit is greater than TH=2@32-bit in both
of DSRH and DPH. The behind truth is that the Hamming
space will become sparse and few data points fall within
the Hamming ball with radius 2 when using longer codes.
Therefore, when using 8-bit codes for retrieval, there being
more targets are retrieved and returned in the database, and it
naturally increases the retrieval time cost. In addition, the time
TH=2 of DSRH is greater than that of DPH. This is because
DSRH can enforce more data points fall into the Hamming
ball with radius 2, and there being more data points to be
retrieved increases the time cost.

V. CONCLUSION

This paper studies deep learning to hash approaches by
redefining the similarity of data pairs to support efficient
image retrieval. The proposed deep reconstructive hashing
method with pairwise quantization, i.e., DSRH, can generate
more compact binary codes based on two contributions: (1) it
reconstructs the high-level semantic within a pair of codes by
the redefined similarity; (2) it can maintain the well-learned
semantic similarity by the proposed pairwise quantization con-
straint when performing binarization. Extensive experimental
results have shown the effectiveness of the proposed DSRH
on four widely-used image retrieval datasets compared with
state-of-the-art methods. In the future, we further exploit the
high-level semantic similarity to learn compact binary codes,
especially in partial labels setting. We also plan to exploit the
high-level semantic similarity learning for similarity retrieval
on the cross-modal dataset.
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