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a b s t r a c t 

Batch normalization (BN) is widely used in modern deep neural networks, which has been shown to 

represent the domain-related knowledge, and thus is ineffective for cross-domain tasks like unsuper- 

vised domain adaptation (UDA). Existing BN variant methods aggregate source and target domain knowl- 

edge in the same channel in normalization module. However, the misalignment between the features 

of corresponding channels across domains often leads to a sub-optimal transferability. In this paper, 

we exploit the cross-domain relation and propose a novel normalization method, Reciprocal Normal- 

ization (RN). Specifically, RN first presents a Reciprocal Compensation (RC) module to acquire the com- 

pensatory for each channel in both domains based on the cross-domain channel-wise correlation. Then 

RN develops a Reciprocal Aggregation (RA) module to adaptively aggregate the feature with its cross- 

domain compensatory components. As an alternative to BN, RN is more suitable for UDA problems and 

can be easily integrated into popular domain adaptation methods. Experiments show that the proposed 

RN outperforms existing normalization counterparts by a large margin and helps state-of-the-art adapta- 

tion approaches achieve better results. The source code is available on https://github.com/Openning07/ 

reciprocal- normalization- for- DA . 

© 2023 Published by Elsevier Ltd. 
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. Introduction 

Unsupervised domain adaptation (UDA) [1–5] aims to trans- 

er the knowledge learned from the labeled source domain to the 

nlabeled target domain. It has been widely applied in classifi- 

ation [6] , detection [7] , and segmentation [8] . Technically, be- 

ides prevailing feature alignment [1,9,10] and pixel-level image 

ranslation [11,12] , to enhance the feature transferability and learn 

omain-specific knowledge better, many researchers ( e.g. , [13–16] ) 

ocus on improving the feature normalization module in deep neu- 

al networks (DNNs) to narrow the domain gap. 

Technically, batch normalization (BN) [17] is a powerful ap- 

roach to alleviate the internal covariate shift and has been widely 

sed in DNNs, e.g. , ResNet-50 [18] . Nevertheless, recent research 

orks [15,16] point out that BN suffers from losing domain-specific 

nformation in the UDA scenario, because sharing the mean and 

ariance for the two domains are inappropriate [15] . To compen- 

ate for the deficiency of BN, several methods are proposed to pre- 
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erve the domain-specific knowledge [13–16] . AdaBN [13] uses dif- 

erent domain statistics for the two domains. However, only em- 

loying the target statistics in the inference can lose the informa- 

ion of the source domain. To merge the information of different 

omains, AutoDIAL [14] fuses domain statistics channel by channel 

sing a shared weight parameter for each channel. TN [15] pro- 

oses a channel attention mechanism to highlight the channels 

ith high transferability to further focus on the important infor- 

ation. 

The aforementioned methods reinforce UDA by aggregating the 

omain knowledge extracted from the corresponding channels. For 

ifferent exam ples from the same domain, the learned patterns are 

ikely to be captured by the same channel (see the upper and mid- 

le rows in Fig. 1 ). When encountering cross-domain scenarios, we 

bserve that the same or similar patterns cannot always be cap- 

ured by the same channel, however, which is always ignored by 

xisting UDA methods. As illustrated in Fig. 1 (c) and (f), different 

atterns are captured by the same channels across domains. Thus, 

erging the domain knowledge of corresponding channels across 

omains in [14] can inevitably lose domain-specific information 

nd lead to sub-optimal UDA performance. Another important ob- 

ervation is that similar patterns from different domains are likely 

o exist in the non-corresponding channels ( e.g. , Fig. 1 (b) and (e)).

https://doi.org/10.1016/j.patcog.2023.109533
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Fig. 1. The visualization of feature maps from the first ReLU layer of ResNet-50 [18] on the UDA task Clipart (1st and 2nd rows) → Art (3rd row), which is trained with 

CDAN [9] . (a) Three images of Alarm Clock. (d) is the similar pattern at the same channel. (c) and (f) are different patterns at the same channels. (b) and (e) are the similar 

patterns at the different channels. 

Fig. 2. The differences between our RN and other typical UDA normalization technologies. The A S and A T denote the data statistics of source and target domains, respectively. 

Specifically, DSBN [16] adopts totally separated normalization modules for each domain. AutoDIAL [14] and TN [15] consider the correlations of corresponding cross-domain 

channels to enhance the transferability. Our RN captures the long-range correlations between cross-domain channels. The probability of TN is detached from calculation 

graph. Our RN utilizes a Reciprocal Aggregation (RA) module to adaptively aggregate both source and target information. 
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oreover, the shareable patterns at non-corresponding channels 

cross domains are not just the one-to-one relationship, as shown 

n Fig. 1 (the orange and blue arrows). Therefore, adaptively con- 

idering the correlations of all cross-domain channels is crucial to 

reak through the bottleneck in DA architectures. 

Building on the observations and deductions above, in this pa- 

er, we propose a novel Reciprocal Normalization (RN) scheme 

or unsupervised domain adaptation. Figure 2 illustrates the key 

ifferences between existing UDA normalization techniques and 

ur RN. In contrast to the local behavior of BN and its vari- 

nts towards domain adaptation, the proposed RN is able to cap- 

ure long-range correlations directly by computing interactions be- 

ween any two cross-domain channels and then conducts reci- 

rocity between domains during normalization. Specifically, we 

rstly present a reciprocal compensation (RC) module to acquire 
2 
he compensatory of each source/target channel for the counter- 

art in the target/source domain by modeling the correlation of 

ny two cross-domain channels. For efficient reciprocity and effec- 

ive domain alignment, we then develop a Reciprocal Aggregation 

RA) module to adaptively aggregate the feature with its cross- 

omain compensatory component. Put RC and RA together, we 

ropose RN to boost the performance of various domain adaptation 

asks. 

In summary, our main contributions are three-fold: 

• We propose a novel RN scheme for domain adaptation to ad- 

dress the issue of channel misalignment across domains and get 

better result on the target domain. 

• The proposed RN structurally aligns the source and target do- 

mains by conducting reciprocity across domains. Besides being 
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a plug-and-play module, RN can be also integrated with other 

domain adaptation methods to achieve better results. 

• Experiments on three benchmarks (ImageCLEF-DA, Office- 

Home, and VisDA-C) and various DA scenarios (closed-set DA, 

partial-set DA, and multi-source DA) indicate that our RN out- 

performs existing normalization methods and benefit domain 

adaptation approaches in various scenarios. 

. Related work 

.1. Domain adaptation 

Existing approaches mainly focus on loss function design or 

etwork design. Technically, the loss function design usually starts 

rom two directions. i) To match all statistics of the two domains 

o minimize cross-domain distribution discrepancy: DDC [19] and 

AN [20] employ Maximum Mean Discrepancy (MMD) [21] to 

easure and reduce the discrepancy of source and target do- 

ains; JAN [6] utilizes Joint Maximum Mean Discrepancy to com- 

ine adversarial learning with MMD; SWD [22] introduces Sliced 

asserstein Distance and CAN [2] leverages Contrastive Domain 

iscrepancy to find a better measure of the domain discrep- 

ncy. ii) To introduce domain discriminators and exploit adver- 

arial learning to encourage domain confusion: DANN [1] intro- 

uces domain adversarial loss to learn domain-invariant represen- 

ations; ADDA [23] combines adversarial learning with discrimina- 

ive feature learning via adopting asymmetric feature extractors for 

ach domain; CDAN [9] employs a conditional domain-adversarial 

aradigm to train an adversarial adaptation model. More recently, 

dvanced loss functions ( e.g. , BSP [24] , IAA [25] , BNM [26] , and

RDC [27] ), learning schemes [28–32] and new network designs 

 e.g. , TN [15] , DCAN [33] , and BCDM [34] ) are proposed for better

erformance on target domain. 

However, all these existing methods overlook the misalignment 

etween the features of corresponding channels across domains, 

hich often leads to a sub-optimal DA performance. Additionally, 

s a general method, our work is able to benefit many unsu- 

ervised domain adaptation scenarios including vanilla closed-set 

DA, partial-set DA (PDA), and multi-source DA (MSDA). 

.2. Normalization techniques 

It is widely applied in CNNs to make them learn faster, more 

table, and increase their generalization ability [15,35,36] . Repre- 

entative methods include BN [17] , LN [37] , AdaBN [13] , GN [38] ,

N [39] , EvoNorm [40] , and Representative Normalization [41] . For 

etter domain adaptation, researchers have devised novel designs 

o mitigate the shortcomings in BN. AdaBN [13] uses the statis- 

ics of source domain during training and those of target do- 

ain during evaluation, respectively. AutoDIAL [14] integrates the 

tatistics of two domains channel by channel in order to align 

he source and target feature distributions. Domain Specific BN 

DSBN) [16] normalizes the source and target representations com- 

letely individually, including affine parameters. Transferable Nor- 

alization (TN) [15] utilizes the statistics of two domains to cal- 

ulate corresponding channel attention, which are all detached 

rom the computation graph. ConvNorm [42] proposes an adap- 

ation layer A to whiten and color source domain data, then 

 is fine-tuned on the target domain. DWT [43] uses two co- 

ariance matrices to whiten feature maps from source and target 

omains, respectively. Particularly, DSBN [16] and DWT [43] adopt 

otally separately normalize feature maps from source and target 

omains. AutoDIAL [14] and TN [15] consider the corresponding 

ross-domain channels to enhance the transferability. They achieve 

romising progresses but neglect the misalignment between non- 

orresponding channels across domains. 
3 
Different from these existing counterparts, we focus on mod- 

ling the non-corresponding channels in CNNs for domain adapta- 

ion. We propose a novel feature normalization method to facilitate 

omain alignment via conducting cross-domain reciprocity. 

. Methodology 

In this section, we present the details of our RN. We firstly re- 

isit the BN and reformulate it for clear presentation ( Section 3.1 ). 

hen, we introduce RN to alleviate the misalignment between fea- 

ures across domains ( Section 3.2 ). 

.1. Revisiting batch normalization 

BN [17] is excellent in CNNs for many visual recognition tasks. 

echnically, the BN layer firstly estimates the standardized features 

 i.e. with zero mean and unit standard deviation) at the channel di- 

ension on the basis of mini-batch data, and then scales and shifts 

he standardized features by using a pair of learnable parameters 

and β . Given the feature x ∈ R 

N×C×H×W , the transformed ̂

 x is ac- 

uired through BN layer as: 

 

 

(i ) = γ ˆ x + β, ˆ x = 

x − μ√ 

(σ 2 ) + ε
, (1) 

here ε is a small constant for numerical stability. μ and σ 2 are 

he mean and variance statistics for each channel over a mini-batch 

espectively, and are defined as: 

= 

1 

N 

N ∑ 

n =1 

x n , σ 2 = 

1 

N 

N ∑ 

n =1 

(x n − μ2 ) . (2) 

o obtain the accumulated statistics for the whole training data, 

he BN layer keeps running estimates towards the μ and σ 2 to 

btain μ̄ and σ̄ 2 during training phase: 

¯ t+1 = (1 − α) ̄μt + αμt , ( ̄σ t+1 ) 2 = (1 − α)( ̄σ t ) 2 + α(σ t ) 2 , 

(3) 

here α denotes the momentum and t is the index of mini-batch 

ata. The estimated mean and variance will be used to normalize 

he features during inference phase. In this way, the BN layer can 

uccessfully accelerate and stabilize training. However, it is some- 

hat unreasonable to directly share the same mean and variance 

tatistics between source and target domains since there exists a 

ignificant gap. 

.2. Reciprocity normalization (RN) 

Several methods have recently been proposed to address the 

imitation of BN, such as AdaBN [13] , AutoDIAL [14] , DWT [43] ,

SBN [16] , and TN [15] . We illustrate the main differences be- 

ween other typical UDA normalization techniques and our RN in 

ig. 2 . Generally, those methods all adopt separate normalization 

o avoid sharing exactly the same mean and variance. However, 

uch a mechanism suffers from another problem, i.e. , the misalign- 

ent of activations in the corresponding channel across domains, 

hich sometimes leads to negative transfer. Due to the differences 

n background, style, distribution, e.t.c. , between domains, it is in- 

uitive that similar patterns of source and target domains are likely 

o be activated by non-corresponding cross-domain channels ( e.g. , 

ig. 1 (c) and (f)). As a result, simply normalizing source and tar- 

et features separately may lose the domain information. Although 

utoDIAL and TN care for the information of corresponding chan- 

els, they only partially alleviate the problem since they neglect 

he correlation between non-corresponding channels. 

Motivated by the aforementioned observations and analyses, 

e propose a novel RN method for domain adaptation. The main 
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Fig. 3. A main schematic diagram of RN. The blue → and the green → denote the target and the source information flows, respectively. The “COR ” denotes calculating the 

correlations between cross-domain channels. � λ denotes the weight vector of reciprocal aggregation. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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ipeline of RN is shown in Fig. 3 . It consists of two main proce-

ures: RC and RA. For a convenient and concise expression, we 

nly present the reciprocity from the source domain to the tar- 

et domain, and the other half of the corresponding operation is 

asically the same. 

.2.1. Reciprocal compensation (RC) 

It models the relationship of any two channels across domains. 

he key insight is that similar patterns between domains are 

ikely to be captured by not only the corresponding but also non- 

orresponding channels across domains ( i.e. , one-to-more relation- 

hip) when the domain shift is significant. We aim to fully con- 

ider any two cross-domain channels and then conduct reciprocity 

etween domains. 

Specifically, we first calculate the source ( s ) and target ( t) statis-

ics μs , σ 2 
s and μt , σ 2 

t via Eq. (2) . To enable the channels with sim-

lar characteristics to have more correlation, we compute the cor- 

elation between any two channels via the negative l 2 distance: 

 

μ
i, j 

= −(μi,t − μ j,s ) 
2 , E σ

2 

i, j = −(σ 2 
i,t − σ 2 

j,s ) 
2 , (4) 

here E i, j denotes the correlation between the i th channel of 

arget domain and the jth channel of source domain. Below we 

se E 
μ
t→ s and E σ

2 

t→ s to denote the two correlation matrices. In 

ection 4.7 , we compare the results of some popular distance mea- 

ures and find that l 2 distance performs the best, thus we choose 

 2 distance as our default setting. 

Then, to obtain the probabilistic weights of correlation between 

ny two cross-domain channels, we normalize E 
μ
t→ s and E σ

2 

t→ s at the 

ow dimension with softmax layer. The correlation score matrices 
μ
t→ s and ρσ 2 

t→ s can be computed respectively via: 

μ
t→ s = sof tmax (E 

μ
t→ s , dim=1 ) , ρσ 2 

t→ s = sof tmax (E σ
2 

t→ s , dim=1 ) , 
(5) 

here dim = 1 denotes the normalization of the matrices at the 

ow dimension. In this way, we obtain the normalized correlation 

robability between each channel of target domain and all chan- 

els of source domain. This appears similar to TN [15] that quanti- 

es the transferability of corresponding channels across domains to 

alculate the channel attention weights. However, TN neglects the 

orrelation between non-corresponding channels across domains. 

sually, the limitation of misalignment of channels can be par- 

ially mitigated by TN, but TN just puts a large emphasis on the 

orresponding channels with similar patterns and neglects to fully 

xploit the similar patterns in non-corresponding channels. It also 
4 
eads to the loss of the domain information of corresponding chan- 

els with different patterns to a certain extent. 

Finally, the compensatory of each channel of target domains can 

e computed in the source domain space. The compensatory of μt 

nd σ 2 
t can be obtained by: 

t,cc = ρμ
t→ s · μs , σ 2 

t,cc = ρσ 2 

t→ s · σ 2 
s . (6) 

uch calculation allows each compensatory of channels to capture 

ong-range correlations directly by conducting reciprocity among 

ll cross-domain channels, including similar and complementary 

hannels. 

Furthermore, the global domain information is exploited by RC 

eyond the limit of the local receptive field of the convolutional 

ernel. 

.2.2. Reciprocal aggregation (RA) 

Although we have obtained the compensatory for each chan- 

el of the target domain in the source domain space, it is inap- 

ropriate to directly utilize μcand and σ 2 
cand 

to conduct the fea- 

ure normalization since it may cause the loss of original domain- 

pecific knowledge. The empirical results in Section 4.7 also ver- 

fy this judgment. Thus, we aim to enable our module to adap- 

ively learn the degree of reciprocity of domain information from 

arious deep layers. Particularly, AutoDIAL [14] directly integrates 

he statistics of two domains via one single 1-D parameter to en- 

ow the network with the ability to automatically align source and 

arget domains. We follow this strategy and develop RA to adap- 

ively aggregate the matched compensatory and the original do- 

ain statistics. Specifically, we introduce the learnable gate param- 

ters g ∈ [0 . 5 , 1] C : 

˜ t = g 
μ
t ∗ μt + (1 − g 

μ
t ) ∗ μt,cc , ˜ σ 2 

s = g σ
2 

t ∗ σ 2 
t + (1 − g σ

2 

t ) ∗ σ 2 
t,cc ,

(7) 

here “∗” denotes the Hadamard product. During training, g is ini- 

ialized as a unit vector so that RN performs the pure domain- 

pecific normalization at the beginning of training, and then re- 

uces the domain discrepancy via bridging the gaps between 

he source and target domains with g updated progressively. Due 

o such an aggregation between each channel and its compen- 

atory, the mutual domain information associated with individ- 

al channels can be emphasized accordingly. Different from Au- 

oDIAL [14] that directly mixes statistics of the two domains, RN 

ses RC to produce the information fed into aggregation It consid- 

rs the correlation between any two cross-domain channels so as 
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o contain more domain information. Besides, AutoDIAL uses a sin- 

le 1-D parameter to align all the domain statistics, which may be 

ess effective and adaptive. By contrast, the mean and variance are 

quipped with their own C-D parameters, endowing RN with the 

bility to adaptively learn where and how to conduct aggregation. 

Algorithm 1: The forward pass of RN during training. 

Require: Feature maps of source and target domains in a 

mini-batch: { x s , x t } ∈ R 

N×C×H×W ; learnable g in RA: { g μs , g σ 2 

s , 

g 
μ
t , g 

σ 2 

t } ∈ [0 . 5 , 1] C ; learnable affine parameters: γ . β . 

Ensure: ̂ x s , ̂ x t 
Calculate { μs , μt , σ 2 

s , σ
2 
t } ∈ R 

C×1 

For concise expression, let z ∈ { μ, σ 2 } 
Calculate the correlation strength: 

E z t→ s ← −(z i,t − z j,s ) 
2 , 

E z s → t ← (E z t→ s ) 
T 

Obtain the probabilistic weights of correlation: 

ρz 
t→ s ← sof tmax (E z t→ s , dim=1 ) 

ρz 
s → t ← sof tmax (E z s → t , dim=1 ) 

Obtain the candidates of each statistics: 

z t,cc ← ρz 
t→ s · z s 

z s,cc ← ρz 
s → t · z t 

Reciprocal aggregation: 

˜ z t ← g z t ∗ z t + (1 − g z t ) ∗ z t,cc 

˜ z s ← g z s ∗ z s + (1 − g z s ) ∗ z s,cc ̂ x s ← γ x s − ˜ μs √ 

˜ σ 2 
s + ε

+ β , ̂ x t ← γ x t − ˜ μt √ 

˜ σ 2 
t + ε

+ β

.2.3. Separate normalization 

Without loss of generality, we adopt the aggregated domain 

tatistics to normalize the feature representations from source and 

arget domains, separately. Akin to BN, we utilize affine parame- 

ers γ and β to re-scale and re-shift the normalized feature re- 

ponses, where γ and β are shared in the two domains. Here, we 

ust present the normalization of target domain as follows: 

 

 

(i ) 
t = γ (i ) ˆ x (i ) 

t + β(i ) , ˆ x (i ) = 

x (i ) 
t − ˜ μ(i ) √ 

˜ σ 2(i ) 
t + ε

, (8) 

here ε is a small constant to avoid divide-by-zero. In this way, 

he domain-specific information can be well captured at the early 

raining stage and the alignment between the two domains can be 

rogressively carried out via adaptive reciprocity. 

.2.4. Inference 

To reduce time cost at inference, we adopt a memory strat- 

gy similar to BN. During training, RN keeps running estimates of 

ts aggregated mean and variance of each domain, via exponential 

oving average with a hyper-parameter α, which is given by: 

¯ t+1 
d 

= (1 − α) ̄μt 
d + α˜ μt 

d , ( ̄σ t+1 
d 

) 2 = (1 − α) ̄σ t 
d + α( ̃  σ t 

d ) 
2 , (9)

here d ∈ { s, t} , α is initialized to 0.1, and the estimated aggre-

ated statistics μ̄t and σ̄ 2 
t are used for the examples from tar- 

et domain at inference. Such a strategy allows RN directly utilize 

he estimated domain statistics to normalize the examples during 

he evaluation without performing secondary calculations about RC 

nd RA. 

. Experiments 

In this section, we evaluate the proposed RN on three bench- 

arks of three adaptation scenarios: vanilla closed-set UDA, 
5 
artial-set DA (PDA), and multi-source DA (MSDA). We com- 

are the performance of RN and the other existing normaliza- 

ion approaches. Besides, we conduct ablation study of the two 

odules ( i.e. , RC and RA) in our RN. To better understand the 

ationale and the working mechanism of RN, we have some 

heoretical analyses based on quantitative results and feature 

isualization. 

.1. Setup 

Datasets We experiment on three cross-domain benchmarks. 

) ImageCLEF-DA is a small-scale dataset with 12 classes shared 

y 3 domains: Caltech-256 (C), ILSVRC 2012 (I), and Pascal VOC 

012 (P). We conduct experiments on all the 6 transfer tasks. ii) 

ffice-Home [44] is a medium-sized benchmark of 12 adaptation 

asks from 4 domains: Artistic (Ar), Clip Art (Cl), Product (Pr), and 

eal-World (Rw). Each domain contains 65 everyday object cate- 

ories. iii) VisDA-C [45] is a challenging large-scale benchmark of 

2-class synthesis-to-real adaptation task. The source domain con- 

ains 152 K synthetic 3D images, and the target domain has 55 K

eal object images. 

Baselines Besides the existing normalization modules for do- 

ain adaptation ( i.e. , BN [17] , AutoDIAL [14] , DSBN [16] , and

N [15] ), we also select popular state-of-the-art approaches as the 

aselines in three typical scenarios: i) On the vanilla closed-set 

DA , we compare with DAN [20] , DANN [1] , JAN [6] , MCD [46] ,

DAN [9] , iCAN [47] , DTA [48] , DWT [43] , BSP [24] , AFN [49] ,

RST [50] , CADA [51] , MDD [52] , CAN [2] , BNM [26] , DCAN [33] ,

AA [25] , STAFF [53] , GVB on CDAN (CDAN-GD) [54] , DMRL [55] ,

ANCE [56] , DWL [31] , and PAS [32] . ii) On the PDA , we com-

are with DANN [1] , IWAN [57] , SAN [58] , AFN [49] , ETN [59] ,

A 

3 US [60] , DANCE [56] , and JUMBOT [61] . iii) On the MSDA ,

e compare with DANN [1] , D-CORAL [62] , CDAN [9] , Meta- 

CD [63] and SImpAl [64] . For fair comparison, we run the pro- 

osed method three times with different random seeds and record 

he average results. For the clear comparison between the pro- 

osed RN and the existing normalization counterparts [14–17] , 

lease refer to Table 4 . 

Implementation Details Without loss of generality, we adopt four 

opular methods as the test-beds: DANN [1] , CDAN [9] , ETN [59] ,

nd BA 

3 US [60] . On one backbone network ( e.g. , ResNet-50 [18] )

retrained on ImageNet, we replace all the BN [17] within different 

ntermediate layers in the backbone with our RN without chang- 

ng the original settings. We initialize the parameters of RA to unit 

ectors and constrain their weights to be in the range [0.5,1]. It 

hould be pointed out that the substitution works without an ad- 

itional pre-training procedure on ImageNet dataset, and it is flex- 

ble for practical usage. The flexible replacement indicates the ver- 

atility of our RN. 

We implement the RN via PyTorch [65] . For fair comparison, 

he training configurations ( e.g. , batch-size, learning rate, optimiza- 

ion algorithm) are all the same as the original baselines except the 

ormalization module which are replaced by our RN. We conduct 

he experiments of RN with 3 random seeds and report the aver- 

ge accuracies. 

.2. Results on small-scale dataset 

First, we conduct the comparison experiments on ImageCLEF- 

A, one popular small-scale cross-domain benchmark. We adopt 

esNet-50 as the backbone network and choose DANN and CDAN 

s the test-bed methods. As listed in Table 1 , on the average per-

ormance of 6 adaptation scenarios, our RN helps DANN and CDAN 

romote their classification accuracies by 3 . 0% and 1 . 5% , respec-

ively. The results demonstrate the effectiveness of our RN. For the 
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Table 1 

Accuracy ( % ) on ImageCLEF-DA for ResNet-50 based UDA. The best results are in bold . 

Method I → P P → I I → C C → I C → P P → C AVG 

Source only 74.8 83.9 91.5 78.0 65.5 91.2 80.7 

DAN [20] 74.5 82.2 92.8 86.3 69.2 89.8 82.5 

DANN [1] 75.0 86.0 96.2 87.0 74.3 91.5 85.0 

JAN [6] 76.8 88.0 94.7 89.5 74.2 91.7 85.8 

iCAN [47] 79.5 89.7 94.7 89.9 78.5 92.0 87.4 

PAS [32] 78.3 92.0 95.1 90.5 75.5 95.5 87.8 

CAN [2] 77.2 90.3 96.0 90.9 78.0 95.6 88.0 

DMRL [55] 77.3 90.7 97.4 91.8 76.0 94.8 88.0 

CADA [51] 78.0 90.5 96.7 92.0 77.2 95.5 88.3 

DCAN [33] 80.5 91.2 95.7 91.8 77.2 93.3 88.3 

DANN [1] 75.0 86.0 96.2 87.0 74.3 91.5 85.0 

DANN + RN 78.1 90.1 96.3 91.7 78.0 94.0 88.0 

CDAN [9] 77.7 90.7 97.7 91.3 74.2 94.3 87.7 

CDAN + RN 78.6 92.7 97.2 92.8 79.1 94.8 89.2 

Table 2 

Accuracy ( % ) on Office-Home benchmark for ResNet-50-based UDA and PDA methods. The best results are in bold . 

Closed-set UDA Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr AVG 

Source only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1 

JAN [6] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3 

PAS [32] 52.2 72.9 76.9 58.4 68.1 69.7 58.3 47.4 76.6 67.1 53.5 77.6 64.9 

DWT [43] 50.3 72.1 77.0 59.2 69.3 70.2 58.3 48.1 77.3 69.3 53.6 82.0 65.6 

BSP [24] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3 

AFN [49] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3 

MDD [52] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1 

STAFF [53] 53.3 71.9 80.2 63.1 69.8 74.1 65.3 50.9 77.8 73.1 56.6 82.4 68.2 

CDAN-GD [54] 55.3 74.1 78.2 62.4 72.6 71.8 63.8 54.1 80.1 73.1 58.7 83.6 69.0 

DANCE [56] 54.3 75.9 78.4 64.8 72.1 73.4 63.2 53.0 79.4 73.0 58.2 82.9 69.1 

DANN [1] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6 

DANN + RN 47.3 63.1 74.4 57.1 64.7 68.4 55.2 47.8 75.9 68.9 53.5 79.3 63.0 

CDAN [9] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8 

CDAN + RN 55.6 72.6 78.1 65.7 74.7 74.6 66.2 57.1 82.0 75.2 60.5 84.6 70.6 

PDA Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr AVG 

Source only 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.3 

DANN [1] 35.5 48.2 51.6 35.2 35.4 41.4 34.8 31.7 46.2 47.5 34.7 49.0 40.9 

IWAN [57] 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6 

SAN [58] 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.2 50.2 78.7 65.3 

DANCE [56] 53.6 73.2 84.9 70.8 67.3 82.6 70.0 50.9 84.8 77.0 55.9 81.8 71.1 

AFN [49] 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8 

JUMBOT [61] 62.7 77.5 84.4 76.0 73.3 80.5 74.7 60.8 85.1 80.2 66.5 83.9 75.5 

ETN [59] 52.9 78.2 83.2 70.2 69.4 77.6 69.5 50.8 81.0 76.3 54.5 82.0 70.5 

ETN + RN 56.1 79.5 87.2 74.8 68.2 79.4 77.0 52.2 83.9 82.2 58.7 83.5 73.6 

BA 3 US [60] 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0 

BA 3 US+RN 63.5 83.2 88.3 72.8 73.4 83.4 77.2 62.6 87.7 80.8 63.6 87.0 77.0 
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omparisons of RN and existing normalization modules [14–16] on 

mageCLEF-DA, please refer to Table 4 . 

.3. Results on medium-scale dataset 

Next, we summarize the results of UDA and PDA experiments 

n Office-Home in Table 2 . For fair comparison in PDA scenario, 

e follow the protocol of ETN [59] and BA 

3 US [60] . 1 Experimental 

esults show that the proposed RN promotes the performance of 

DAN by 4 . 8% in UDA. In PDA, our RN also benefits ETN by 3 . 1%

nd BA 

3 US by 1 . 0% . It is also noteworthy that in PDA experiments

n Office-Home, there is a large semantic difference between the 

wo domains: source domain contains 65 classes while target do- 

ain contains only 25 classes. Despite the differences, our RN still 

elps ETN achieve better performance in average accuracy (from 

0 . 5% to 73 . 6% ). 

Consequently, these numerical results ensure the versatility of 

he proposed RN in DA. It is convincing that RN can consistently 

elps boost performance of UDA methods. For the visualization of 

earned visual feature ( e.g. , tSNE [66] ), please refer to Section 4.10 . 
1 https://github.com/tim-learn/BA3US . 

f

c

a

6 
.4. Results on large-scale dataset 

To further demonstrate the effectiveness of the proposed RN, 

e conduct evaluation experiments on VisDA-C benchmark. We 

ompare several popular UDA methods and evaluate their classi- 

cation accuracies in Table 3 . We observe that our RN helps CDAN 

chieve better performance on ResNet-50 (by 9 . 6% ) and ResNet- 

01 (by 6 . 2% ). Additionally, the gap between CDAN+RN on ResNet- 

0 and that on ResNet-101 is only 0.5%, indicating our RN is par- 

icularly effective to conduct domain adaptation in the large-scale 

ataset. The possible reason is the domain statistics would be more 

ccurate when the dataset is large, which is more beneficial to our 

N. 

.5. Different normalization and general regularizer 

To verify that our RN can work as a general regularizer in do- 

ain adaptation, we choose DANN [1] and CDAN [9] as the test- 

eds and conduct evaluation experiments on three benchmarks: 

ffice-Home, ImageCLEF-DA, and VisDA-C. For fair comparisons, 

our state-of-the-art feature normalization modules [14–17] are 

onsidered. Noting that all following experiments of Method+DSBN 

re conducted without extra constraints, e.g. , pseudo labels algo- 

https://github.com/tim-learn/BA3US
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Table 3 

The average accuracies over 12 classes ( % ) on VisDA-C for closed-set UDA. The best 

results are in bold . 

Method ResNet-50 ResNet-101 

Source only - 52.4 

JAN [6] 61.6 - 

DAN [20] 61.6 62.8 

MCD [46] 69.7 71.9 

DMRL [55] - 75.5 

IAA [25] 75.8 - 

BSP [24] - 75.9 

AFN [49] - 76.1 

DWL [43] - 77.1 

DANCE [56] 70.2 - 

JUMBOT [61] 72.5 

CDAN-GD [54] 74.9 - 

DTA [48] 76.2 - 

DANN [1] 54.9 57.4 

DANN + RN 71.4 74.9 

CDAN [9] 70.0 73.9 

CDAN + RN 79.6 80.1 
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Table 5 

Accuracy (%) on Office-Home for ResNet-50 based multi-source UDA. The best re- 

sults are in blod . 

Single Best → Ar → Cl → Pr → Rw AVG 

ResNet-50 [18] 53.9 41.2 59.9 60.4 53.9 

D-CORAL [62] 67.0 53.6 80.3 76.3 69.3 

RevGrad [1] 67.9 55.9 80.4 75.8 70.0 

CDAN( + BN) [9] 70.9 56.7 81.6 77.3 71.6 

CDAN + AutoDIAL [14] 71.2 57.5 81.4 76.2 71.6 

CDAN + DSBN [16] 70.2 51.4 78.4 78.4 69.6 

CDAN + TN [15] 71.9 59.0 82.9 79.5 73.3 

CDAN + RN 75.2 60.5 84.6 82.0 75.6 

Combination → A → Cl → Pr → Rw AVG 

ResNet-50 [18] 65.3 49.6 79.7 75.4 67.5 

D-CORAL [62] 68.1 58.6 79.5 82.7 72.2 

RevGrad [1] 68.4 59.1 79.5 82.7 72.4 

Meta-MCD [63] 70.2 60.5 81.2 83.1 73.8 

SImpAl [64] 73.4 62.4 81.0 82.7 74.8 

CDAN( + BN) [9] 71.4 64.2 81.1 82.3 74.8 

CDAN + AutoDIAL [14] 75.7 64.2 83.7 83.9 76.9 

CDAN + DSBN [16] 71.7 57.2 77.5 79.1 71.4 

CDAN + TN [15] 74.7 64.6 83.1 83.3 76.4 

CDAN + RN 75.6 66.8 85.3 85.3 78.3 
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ithm or other loss functions. The results are listed in Table 4 , 

here “Y → X” means that the domain “Y” respectively adapts to 

ther three domains of Office-Home and we report the average ac- 

uracy of the three transfer tasks. 

As we observe in Table 4 that, our RN consistently offers larger 

mprovements than other counterparts to a variety of domain 

daptation methods on various datasets. It affirms the effectiveness 

f the proposed RN beyond existing normalization counterparts in 

A. It is worth noting that DSBN [16] even produces worse perfor- 

ance on small- and medium-scale datasets, indicating that sepa- 

ating γ and β may suffers from negative transfer without the extra 

seudo labels algorithms to conduct the target parameters update 

roperly. In addition, when it comes to computation cost, our RN 

chieves better trade-off between the time costs of train and test 

hases simultaneously. 

.6. Results on MSDA 

To demonstrate the versatility of our RN, we also conduct 

ulti-source domain adaptation (MSDA) on Office-Home bench- 

ark. We choose CDAN [9] as the baseline and also compare with 

xisting normalization counterparts. 

The results are listed in Table 5 . For simplicity: “→ X” denotes 

he adaptation task from other three domains to “X” domain. Sin- 

le Best denotes the best performance of all tasks on single-source 

omain adaptation, and Combination refers to merging data from 

ultiple source domains and constructing a new and larger source 

omain dataset. Obviously, our RN models consistently outper- 

orm the other BN-variant modules for all the settings. On the 

VG, the proposed RN module promotes CDAN by 4 . 0% in Sin- 
able 4 

lassification accuracies ( % ) of different normalization methods on three domain adaptati

Method 

ImageCLEF-DA 

I → P P → I I → C C → I C → P P → C AVG 

DANN( + BN) [1] 75.0 86.0 96.2 87.0 74.3 91.5 85.0 

DANN + AutoDIAL [14] 77.3 88.8 95.3 89.5 79.0 91.3 86.9 

DANN + DSBN [16] 77.2 88.2 93.8 90.3 77.8 89.3 86.1 

DANN + TN [15] 78.2 89.5 95.5 91.0 76.0 91.5 87.0 

DANN + RN 78.1 90.1 96.3 91.7 78.0 94.0 88.0 

CDAN( + BN) [9] 77.7 90.7 97.7 91.3 74.2 94.3 87.7 

CDAN + AutoDIAL [14] 77.8 90.3 96.8 91.2 77.2 94.5 88.0 

CDAN + DSBN [16] 76.2 92.2 94.9 90.1 74.0 94.3 86.9 

CDAN + TN [15] 78.3 90.8 96.7 92.3 78.0 94.8 88.5 

CDAN + RN 78.6 92.7 97.2 92.8 79.1 94.8 89.2 

7 
le Best scenario and 3 . 5% in Combination scenario. The improve- 

ents are higher than that from the existing normalization coun- 

erparts. CDAN+RN even outperforms several latest proposed meth- 

ds for multi-source domain adaptation, such as D-CORAL [62] , 

eta-MCD [63] , and SImpAl [64] . Consequently, the results indi- 

ate that RN is also versatile to benefit multi-source domain adap- 

ation scenarios. 

.6.1. Train and test time comparison 

Besides, we also compare our RN with the other normaliza- 

ion modules in the perspective of computation cost, i.e. , the time 

n both training and inference stages. In specific, we report the 

uantitative values of computation cost of different normaliza- 

ion methods on the UDA task of Pr → Rw (Office-Home) with 4 

hreads and one Tesla V100 GPU. The backbones are the ResNet- 

0 by default. To eliminate the noise in the estimations, the train- 

ng time is calculated based on the average of the time cost of 

0,0 0 0 iterations, including forward and backward operations. And 

he test times are the total time cost of evaluating the whole target 

omain dataset. 

These results are listed in the Table 6 . We can observe that the 

raining time cost of RN is more than vanilla BN, AutoDIAL, and 

SBN, but less than TN. On the other hand, the test time cost of 

N is very close to the vanilla BN, and also less than other nor- 

alization methods, implying that our RN has more advantages 

n practical applications. These results demonstrate that our RN 

chieves better trade-off between the time costs of both train and 

est phases and simultaneously achieves better performance. 
on benchmarks for UDA. 

VisDA-C Office-Home 

ResNet-50 ResNet-101 Ar → X Cl → X Pr → X Rw → X AVG 

54.9 57.4 58.3 55.5 52.8 63.9 57.6 

62.5 64.7 61.4 55.4 54.6 63.9 58.8 

65.0 69.6 57.0 55.2 50.2 56.8 54.8 

66.3 - 58.8 58.3 55.6 64.6 59.3 

71.4 74.9 61.6 63.4 59.6 67.2 63.0 

70.0 73.9 65.8 65.9 61.9 69.7 65.8 

71.8 74.5 65.3 66.4 61.8 73.9 67.4 

72.9 78.6 65.5 65.0 58.1 66.7 64.1 

71.4 - 66.3 68.4 64.5 71.3 67.6 

79.6 80.1 68.8 71.7 68.4 73.4 70.6 
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Fig. 4. (a) The influence of g in RA. “L” means g is learnable. (b) Analysis of the measures of correlations strength in RC. The backbone is ResNet-50 and the UDA method is 

CDAN [9] . 

Table 6 

Comparisons of training and testing time (s) of different f eature normalization 

methods on the same domain adaptation baseline (CDAN + ResNet-50). 

Setting 

CDAN 

( + BN) + AutoDIAL + TN + DSBN + Ours 

Train 0.13 0.38 0.71 0.14 0.50 

Test 1.91 3.76 64.40 5.17 1.90 

Table 7 

Ablation study results of RC and RA-Gate with CDAN [9] (ResNet-50) on Office- 

Home benchmark. 

RC RA Ar → X Cl → X Pr → X Rw → X AVG 

- - 65.8 65.9 61.9 69.7 65.8 

- � 67.3 69.4 65.5 72.5 68.9 

� � 68.8 71.7 68.4 73.4 70.6 
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.7. Ablation study 

.7.1. Ablation study (RC & RA) 

To investigate the effects of RC and RA, we conduct additional 

blation study experiments on Office-Home as an instance. The re- 

ults are shown in Table 7 , where “→ X” means to other 3 domains

nd we report the average accuracy of the 3 transfer tasks. Based 

n CDAN+BN refer to the first row, we progressively add the RA 

nd RC, respectively. Noting that RC cannot be trained indepen- 

ently. 

It is clear that aggregating statistics of cross-domain corre- 

ponding channels ( i.e. , the second row) outperforms the baseline, 

nd the full method ( i.e. , the third row) achieves the best perfor-

ance. It verifies the effectiveness of the exploitation of the cor- 

elation of cross-domain non-corresponding channels. Similar ob- 

ervations can be found in other adaptation scenarios. Therefore, 

ndicating the effectiveness and necessity of the RC and RA in our 

N. 

.7.2. Influence of g in RA 

To investigate the influence of g in RA, we conduct quantita- 

ive analysis on the UDA task “Art → Clipart” from Office-Home 

ataset. 

The results are visualized in Fig. 4 (a). Noting that “L ” means g

s learnable. Obviously, the learnable g achieves the best perfor- 

ance. The training curves demonstrate that the best value inter- 

al of RA should be 0.5 ∼1, verifying that the effectiveness of our 
8 
onstraint on the learnable g. It is easy to understand that g = 0

nd g = 1 mean that training models only with outputs of RC and

ithout outputs of RC, respectively, and g < 0 . 5 means that using 

ess the original statistics leads to lose domain-specific informa- 

ion. The results also ensure the effectiveness of RC. To sum up, 

oth the RA and RC are effective and benefit to domain adaptation. 

.8. Further investigation 

.8.1. Analysis of measures of correlations 

To explain the importance of l 2 distance in calculating correla- 

ions, we compare the popular different distance metrics on corre- 

ations measures. The experiments are conducted on the UDA task 

Art → Clipart” in Office-Home dataset. 

As illustrated in Fig. 4 (b), the l 2 distance achieves the best per- 

ormance because it enables the channels with similar patterns to 

ave larger weights. Additionally, the l 2 obtains the results with 

mall margin ( < 1% ) than other measures, indicating the RC is ro- 

ust to different distance measures. Moreover, with different dis- 

ance measures, our RN consistently obtains significant improve- 

ent over the baseline method, indicating the effectiveness of our 

N. Similar observations can also be found in other DA scenarios. 

.8.2. Training convergence 

To illustrate the convergence performance and training stability 

f our RN, we present the classification accuracy during training 

n the UDA task Art → Clipart of Office-Home. The similar training 

urves are observed in other adaptation scenarios. 

As illustrated in Fig. 5 , the proposed RN fast and stably con- 

erges to the best accuracy, and achieves the optimal accuracy of 

ver 95% with only 1,0 0 0 training iterations (black dotted line), 

ompared with other existing normalization counterparts. We also 

otice that the accuracy curve of DSBN drops after 60 training it- 

rations, and it indicates that CDAN with DSBN suffers from neg- 

tive transfer. This observation also verifies the importance of fea- 

ure normalization module in domain adaptation tasks. 

.9. Theoretical understanding 

.9.1. Theoretical insight 

Formally, as Ben-David et al. [67] pioneered, the learning bound 

f domain adaptation is formulated as follows: 

 T (h ) ≤ ε S (h ) + 

1 

d H
H 

(S, T ) + λ. (10) 

2 
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Fig. 5. Training convergence analysis of various normalization techniques when the backbone is ResNet-50 [18] and the UDA baseline method is CDAN [9] . 

Fig. 6. Theoretical analysis of A-distance (a) and λ in Eq. 10 (b) when using differ- 

ent kinds of feature normalization methods on the same domain adaptation method 

( e.g. , CDAN). 
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Table 8 

The distance of the nearest channels across domains in the last normalization mod- 

ule in stage4 of ResNet-50. “%” denotes the ratio of the corresponding channels 

in the nearest channels across domains. 

Method 

Stage ∑ 

1 2 3 4 

CDAN + AutoDIAL 3.77 3.48 1.84 0.97 10.1 

5.1% 3.5% 2.0% 1.4% - 

CDAN + DSBN 5.23 2.25 1.57 0.88 9.9 

3.9% 3.7% 0.8% 0.3% - 

CDAN + TN 4.01 3.43 1.87 0.72 10.0 

5.1% 3.1% 2.8% 0.8% - 

CDAN + Ours 3.06 3.31 1.52 0.62 8.5 

3.1% 5.6% 3.0% 1.4% - 
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quation (10) bounds the expected risk ε T (h ) of a hypothesis h 

n the target domain by: 1) the expected risk of h on the source

omain, ε S (h ) ; 2) the A-distance [67] , d H
H 

(S, T ) = 2(1 − 2 ε) , a

omain-divergence measure, where the ε is the error rate of a do- 

ain classifier which is trained to discriminate source and target 

omains; 3) the risk λ of an ideal joint hypothesis h ∗ for both 

ource and target domains. The A-distance and the λ helps us bet- 

er understand the rationale of one certain method in the topic of 

omain adaptation. 

To further investigate the theoretical advantage of the proposed 

N beyond the existing normalization modules, we estimate the A- 

istance and the λ on the adaptation task of A → C (Office-Home 

ataset) with CDAN + various normalization methods. The results 

re shown in Fig. 6 (a) and (b) that, Compared with the other nor-

alization counterparts, our RN helps CDAN obtain lower values 

n both A-distance and λ. It indicates that the proposed RN fa- 

ilitates more transferable representation from the perspectives of 

 H
H 

(S, T ) and λ. Consequently, when learning visual represen- 

ation with better transferability, our RN is able to obtain better 

eneralization performance. 

.9.2. Distance of the nearest channels across domains 

In Table 8 , we calculate the distance of any two channels across 

omains in the last normalization module in each stage. The four 
9 
tages denote the four “layer” in ResNet-50 with channel numbers 

s 256, 512, 1024, and 2048, respectively. The distance is calculated 

s follows: 

 

( j) = | μ( j) 
s √ 

σ 2( j) 
s 

− μ( j) 
t √ 

σ 2( j) 
t 

| , (11) 

here j denotes the jth channel, which is introduced by Wang 

t al. [15] . Noting that the source and target domains share the 

ame mean and variance in BN, and we do not calculate the dis- 

ance across domains. The goal of RN is to find each channel’s 

ompensatory information and then aggregate them. The compen- 

atory consists of the information of both the corresponding and 

on-corresponding channels, where the nearest channels across 

omains has the largest correlation weight. Hence, we report the 

um of the distances between all pairs of the nearest channels. 

he smaller distance means the greater ability to align both cor- 

esponding and non-corresponding channels to a certain extent. 

e can observe that RN obtains the smallest value, implying the 

etter performance of alignment of RN than other methods. Be- 

ides, among the nearest channels, the proportion of correspond- 

ng channel is very small, verifying the misalignment between cor- 

esponding channels across domains. 

.10. Additional visualization 

.10.1. Visualization of g in RA 

For better understanding of RA, we also show the visualization 

f g in RA on UDA tasks Art → Clipart of Office-Home. We show 
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Fig. 7. Heat-map visualization of RA-gates on three randomly selected adaptation tasks from Office-Home benchmarks. We use ResNet-50 as the backbone. These pictures 

are best viewed in the electronic version. 

Fig. 8. Visualization of features from the models with different normalization layers on the UDA task Art (Source) → Clipart (Target) from Office-Home benchmark. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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t
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4

w

n

he last RN of each layer ( i.e., bn3 in each layer of ResNet50) due

o the page limitation. We refer to each stage as stage 1, 2, 3 and 4

ith the channel numbers as 256, 512, 1024, and 2048. The “1, 2, 

, 4” on the abscissa axis denote the source mean, source variance, 

arget mean, and target variance, respectively. The ordinates denote 

he values of g. 

As illustrated in Fig. 7 , RA conducts the domain alignment at 

he intermediate layers in different ways automatically. Note that, 

s the number of channels increases, the weights of gates become 
10 
maller, which is consistent with the conclusion that the different 

ransferability in the various layers in [68] , and ensures the sig- 

ificance of RA. Similar observations can also be found in other DA 

cenarios. 

.10.2. Feature visualization 

To further understand the effectiveness of the proposed RN, 

e visualize the learned representation spaces of different feature 

ormalization modules: vanilla BN [17] , AutoDIAL [14] , DSBN [16] , 
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N [15] , and the proposed RN. Typically, we leverage t-SNE [66] to 

isualize the feature representations in the bottleneck layer of 

esNet-50. 

As shown in Fig. 8 , we notice that CDAN+DSBN suffers from 

egative transfer, which is the main reason for the sub-optimal re- 

ults (see Tables 1, 2, 3 , and 5 ). We also observe that the source

nd target representations are aligned better by the models inte- 

rated RN, compared with existing normalization counterparts. It 

emonstrates that our RN is effective to learn the domain-invariant 

nformation. Meanwhile, the cluster centers of two domains in the 

ame class are closer, indicating that the greater ability of RN to 

earn the discriminative features. 

. Conclusion 

In this paper, we propose a novel normalization layer for do- 

ain adaptation, termed Reciprocal Normalization (RN). We de- 

ise RN to address the problem that losing the domain information 

ue to the misalignment of channels across domains. The proposed 

N structurally aligns the source and target domains by conduct- 

ng reciprocity across domains. As a generic alternative to BN, our 

N can be easily applied to mainstream domain adaptation ap- 

roaches. Extensive experiments on three benchmarks and three 

ypical adaptation tasks validate that: i) the proposed RN outper- 

orms existing normalization techniques in the context of domain 

daptation; ii) popular domain adaptation approaches consistently 

enefit from our RN and obtain better classification performance 

n the target domain. 

For future work, we will attempt to reveal the theoretical in- 

ights within our RN and verify its versatility in other domain 

daptation tasks ( e.g. , object detection, text detection, semantic 

egmentation, and person re-identification). 
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