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Abstract

Unsupervised domain adaptation (UDA) improves model accuracy in an unla-
beled target domain using a labeled source domain. However, UDA models often
lack calibrated predictive uncertainty on target data, posing risks in safety-critical
applications. In this paper, we address this under-explored challenge with Pseudo-
Calibration (PseudoCal), a novel post-hoc calibration framework. In contrast to
prior approaches, we consider UDA calibration as a target-domain specific unsu-
pervised problem rather than a covariate shift problem across domains. With a
synthesized labeled pseudo-target set that captures the structure of the real target,
we turn the unsupervised calibration problem into a supervised one, readily solv-
able with temperature scaling. Extensive empirical evaluation across 5 diverse
UDA scenarios involving 10 UDA methods, along with unsupervised fine-tuning
of foundation models such as CLIP, consistently demonstrates the superior per-
formance of PseudoCal over alternative calibration methods. Code is available at
https://github.com/LHXXHB/PseudoCal.

1 Introduction

In recent years, unsupervised domain adaptation (UDA) [1] has gained popularity for enhancing
the generalization of deep learning models [2, 3] across labeled source domains to an unlabeled
target domain that share similar tasks but have varying data distributions. Notable progress has been
achieved in developing effective UDA methods [4–6], practical applications [7, 8], and real-world
settings [9–11], with a predominant focus on improving target domain model accuracy.

However, the safety-critical issue of calibrating predictive uncertainty, extensively studied in IID
scenarios [12, 13], remains largely under-explored in UDA. Figure 1(a) illustrates that increasing
target domain accuracy is accompanied by significant overfitting of the negative log-likelihood (NLL)
loss during adaptation. The two primary challenges in addressing predictive uncertainty calibration
in UDA are the absence of labeled target data and severe distribution shifts between the two domains.
Therefore, traditional supervised calibration methods like temperature scaling [12] are inapplicable.
Recent studies [14–16] address the first challenge by employing importance-weighting [17] with
labeled source data. However, they still suffer from the second challenge and other critical drawbacks
such as additional complex density modeling and inapplicability in privacy-preserving UDA scenarios
like source-free UDA settings [18, 11, 19] and unsupervised adaptation of foundation models [20].
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Figure 1: ATDOC [21] on a closed-set UDA task Ar → Cl. (a) illustrates the target error and target
NLL loss (rescaled to match error) during UDA training. (b) divides confidence values into 50 bins,
displaying the count of correct and wrong predictions in each bin. For real target data, correctness is
determined by comparing predictions with ground truths, and for pseudo-target data, it’s assessed by
comparing predictions with synthesized labels. (c) shows reliability diagrams [12] for both pseudo
and real target data. Perfect: ideal predictions without miscalibrations.

In contrast to the covariate shift view in [14–16], we adopt a novel perspective, treating UDA
calibration as an unsupervised calibration problem specific to the target domain. We first study the
‘Oracle’ case of using labeled target data for temperature scaling and then factorize its NLL objective
into a joint optimization involving both correct and wrong predictions. This factorization uncovers
a key insight with temperature scaling: datasets with similar correct-wrong statistics should share
similar temperatures. Inspired by this insight, we introduce a novel post-hoc calibration framework
called Pseudo-Calibration (PseudoCal). PseudoCal is based on temperature scaling and estimates
the temperature for target data through calibration on a synthesized labeled pseudo-target dataset
that mimics similar correct-wrong statistics as the real target data. Concretely, PseudoCal utilizes
mixup [22] during the inference stage with unlabeled target data to generate a labeled pseudo-target
set. It then performs supervised calibration on this labeled set to determine the final temperature.
PseudoCal’s effectiveness depends on the presence of similar correct-wrong statistics between pseudo
and real target data. We elucidate the behind support with an intuitive analysis grounded in the
well-established cluster assumption [23]. Specifically, pseudo-target samples with correct predictions
correspond to correct real target samples, and vice versa, as shown in Figure 1(b). Benefitting from the
high resemblance of correct-wrong statistics between our synthesized pseudo-target and real target,
PseudoCal achieves significantly improved calibration performance, as demonstrated in Figure 1(c).

2 Approach

We introduce UDA with a C-way image classification task. UDA generally involves a labeled
source domain and an unlabeled target domain. The source domain Ds = {(xi

s, y
i
s)}

ns
i=1 consists

of ns images xs with labels ys, where xi
s ∈ Xs and yis ∈ Ys. The target domain Dt = {xi

t}
nt
i=1

contains unlabeled images xt, where xi
t ∈ Xt. UDA aims to learn a model ϕ that can predict the

unknown labels {yit}
nt
i=1 for the target domain, utilizing data from both domains simultaneously [4]

or sequentially [11]. Given a sample (x, y) and UDA model ϕ, we can obtain the predicted class ŷ
and its softmax-based confidence p̂. Ideally, p̂ should accurately reflect the probability of correctness,
expressed as P(ŷ = y|p̂ = p) = p, ∀ p ∈ [0, 1]. This perfect calibration, also known as Perfect, is
impossible to achieve [12]. A widely used metric for evaluating calibration error is the expected
calibration error (ECE) [12]. Kindly refer to Appendix C for details of ECE and other metrics.

2.1 Supervised ‘Oracle’: Factorized Temperature Scaling

Temperature scaling (TempScal) [12] is a post-hoc calibration method that optimizes a temperature
scalar, denoted as T , on a labeled validation set with the NLL loss. In UDA, we define the calibration
achieved by applying TempScal with target raw predictions and unattainable target ground truths as
the ‘Oracle’ calibration and the corresponding temperature as To. Let z represent the logit vector
for input x, and let σ(·) denote softmax. Kindly refer to Appendix C for details of TempScal. We
propose the following novel factorization of the NLL objective:

To = argmin
T

Nc

N
E(xi

t,y
i
t)∈Dc

LNLL

(
σ(zit/T ), y

i
t

)
+

Nw

N
E(xj

t ,y
j
t )∈Dw

LNLL

(
σ(zjt /T ), y

j
t

)
, (1)
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Figure 2: The pipeline of PseudoCal for calibrating predictive uncertainty in UDA.

where Dc represents the dataset of correctly predicted samples, comprising Nc instances. Similarly,
Dw denotes the dataset of wrongly predicted samples, consisting of Nw instances. Both types of
samples have contrasting effects on the temperature optimization process. NLL minimization favors
a small temperature to sharpen the correct predictions and a large temperature to flatten the wrong
predictions. This implies that datasets with similar correct-wrong statistics are likely to obtain similar
temperatures when using TempScal for supervised calibration.

2.2 Unsupervised Solution: Pseudo-Calibration

Inspired by this factorization, we introduce our Pseudo-Calibration (PseudoCal) framework. The
main idea is to use the unlabeled target data to synthesize a labeled pseudo-target set that mimics the
correct-wrong statistics of the real target set and then apply TempScal to this labeled set. In PseudoCal,
we employ mixup [22] with data across clusters (i.e., with different pseudo-labels), generating mixed
samples that inherently include both correct and wrong predictions when evaluated with mixed labels.
Moreover, we can expect sample-level correspondences between mixed and real samples according
to cluster assumption [23]. Kindly refer to Appendix D for further analysis. Specifically, PseudoCal
consists of the following two simple steps. The pipeline of PseudoCal is illustrated in Figure 2,
where the UDA model is utilized as a black box solely for inferring the predictions of input data. A
comprehensive Pytorch-style pseudocode for PseudoCal is provided in Appendix A.

Step 1: Pseudo-target synthesis. We generate a pseudo-target set by applying mixup to target
samples in the inference stage. Specifically, a pseudo-target sample xpt and its label ypt are obtained
by taking a convex combination of a pair of real target samples xi

t, x
j
t from different clusters and

their pseudo-labels ŷit, ŷ
j
t . Consequently, we obtain a labeled pseudo-target set {(xi

pt, y
i
pt)}

npt

i=1,
where npt represents the amount. The general process of pseudo-target synthesis is formulated as
xpt = λ ∗ xi

t + (1− λ) ∗ xj
t , ypt = λ ∗ ŷit + (1− λ) ∗ ŷjt , where λ ∈ (0.5, 1.0) is the mix ratio.

Step 2: Supervised calibration. Using the synthesized labeled pseudo-target set {(xi
pt, y

i
pt)}

npt

i=1,
we can easily determine the optimal pseudo-target temperature through TempScal. This estimated
temperature serves as an approximation of the ‘Oracle’ target temperature To.

3 Experiments

Datasets. For classification, we adopt 5 popular UDA benchmarks, including Office-31 [24], Office-
Home [25], VisDA [26], DomainNet [27], and Image-Sketch [28]. For semantic segmentation, we use
synthetic-to-real benchmarks with Cityscapes[29], GTA5[30], and SYNTHIA [31].

Methods. For calibration methods, we consider 5 typical calibration baselines in UDA, including the
no calibration baseline (No Calib.), source-domain calibration (TempScal-src [12]), cross-domain
calibration (CPCS [14], TransCal [16]), and generic calibration (Ensemble [13]). We evaluate model
calibration on 10 UDA methods across 5 UDA scenarios. For image classification, we cover closed-set
UDA methods (ATDOC [21], BNM [32], MCC [33], CDAN [5], SAFN [34], MCD [6]), partial-
set UDA methods (ATDOC [21], MCC [33], PADA [10]), the whit-box source-free UDA method
(SHOT [11]), the black-box source-free UDA method (DINE [19]), and unsupervised adaptation
of CLIP [35] by POUF [20]. For semantic segmentation, we focus on calibrating source-only
models without any adaptation. Kindly refer to Appendix B for more information on these baselines.
PseudoCal uses a fixed mixing ratio of λ = 0.65 for all results, except for POUF, where it’s 0.8.
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Results of data-dependent UDA. Results are averaged over five random runs and across UDA tasks
sharing the same target domain. Table 1 shows results of closed-set UDA on DomainNet. PseudoCal
consistently achieves a low ECE close to ‘Oracle’, surpassing the second-best calibration method
CPCS by 5.95% on average on this large-scale UDA benchmark.

Results of source-free UDA. We assess source-free UDA with SHOT and DINE. In the scenario
using foundation models, we employ POUF. Specifically, POUF fine-tunes the CLIP model as a
source model with unlabeled target data. Table 2 presents source-free UDA results, and Table 3
shows POUF results. PseudoCal significantly outperforms Ensemble in source-free UDA, with a
margin of 7.44% on DomainNet and 15.05% on Image-Sketch. In CLIP experiments, PseudoCal also
demonstrates effective ECE error reduction across all unsupervised fine-tuning tasks.

In Appendix E, we have provided comprehensive results and analysis of PseudoCal.

Table 1: ECE (%) of closed-set UDA on DomainNet (DNet). bold: Best value.

Method ATDOC [21] BNM [32] MCC [33]
→C →P →R →S avg →C →P →R →S avg →C →P →R →S avg

No Calib. 9.54 7.38 3.75 12.29 8.24 28.57 22.10 15.37 31.27 24.33 8.63 7.77 4.79 13.61 8.70
TempScal [12] 8.69 7.71 1.94 11.82 7.54 19.04 13.62 9.40 20.30 15.59 8.38 8.32 2.36 13.88 8.23
CPCS [14] 10.78 4.72 4.46 13.38 8.34 8.23 7.92 7.98 9.29 8.36 9.03 4.33 3.44 17.21 8.50
TransCal [16] 23.02 24.76 26.65 19.68 23.52 6.52 1.84 5.82 9.39 5.89 22.27 24.06 23.45 18.03 21.95
Ensemble [13] 6.32 4.54 1.59 9.05 5.37 23.44 18.61 12.61 26.21 20.22 5.71 5.10 2.57 10.34 5.93
PseudoCal 1.82 1.41 2.51 1.70 1.86 10.27 6.01 6.18 5.86 7.08 1.35 1.89 2.38 3.10 2.18
Oracle 1.55 0.94 0.86 1.07 1.10 2.40 1.66 3.40 1.30 2.19 1.16 1.44 1.09 0.89 1.14
Accuracy (%) 56.05 60.64 74.95 52.08 60.93 56.62 63.13 74.30 52.25 61.57 50.89 57.74 71.62 46.39 56.66

Method CDAN [5] SAFN [34] MCD [6] DNet
→C →P →R →S avg →C →P →R →S avg →C →P →R →S avg AVG

No Calib. 10.17 9.64 5.56 14.44 9.95 17.94 14.44 10.15 21.26 15.95 9.56 7.40 3.80 12.93 8.42 12.60
TempScal [12] 7.92 8.31 2.75 12.30 7.82 9.61 8.15 4.12 14.18 9.02 6.48 6.96 4.06 11.20 7.18 9.23
CPCS [14] 10.75 4.28 5.57 6.91 6.88 10.92 5.91 8.22 22.59 11.91 7.02 3.51 1.96 21.79 8.57 8.76
TransCal [16] 20.92 21.41 22.93 16.93 20.55 10.75 12.88 14.28 6.88 11.20 21.48 24.99 27.45 18.95 23.22 17.72
Ensemble [13] 7.21 6.74 3.54 11.29 7.20 16.59 13.25 9.08 19.52 14.61 7.25 5.27 2.86 11.34 6.68 10.00
PseudoCal 1.58 1.89 1.86 2.67 2.00 3.33 1.30 1.50 2.76 2.22 2.27 1.16 1.01 1.70 1.53 2.81
Oracle 1.45 1.08 1.07 0.94 1.13 1.43 0.92 1.21 0.72 1.07 1.33 0.97 0.56 0.68 0.88 1.25
Accuracy (%) 53.11 59.13 71.82 49.09 58.29 49.59 58.03 66.40 47.66 55.42 48.85 57.99 65.32 47.95 55.03 57.98

Table 2: ECE (%) of source-free UDA on DomainNet (DNet) and ImageNet-Sketch (Sketch).

Method SHOT [11] DINE [19] DNet Sketch
→C →P →R →S avg I→S →C →P →R →S avg I→S AVG AVG

No Calib. 17.16 21.19 10.03 23.14 17.88 34.71 21.99 22.51 12.39 30.34 21.81 58.85 19.84 46.78
Ensemble [13] 14.24 17.94 7.81 19.49 14.87 33.03 17.88 18.86 10.83 25.33 18.22 53.24 16.54 43.14
PseudoCal 6.66 7.78 2.91 6.67 6.00 8.42 14.42 12.95 5.30 16.15 12.20 47.76 9.10 28.09
Oracle 3.27 2.52 1.37 2.18 2.33 4.39 1.75 1.80 1.29 1.37 1.55 5.90 1.94 5.14
Accuracy (%) 66.52 64.48 78.34 59.64 67.25 34.29 63.76 65.47 80.69 55.51 66.36 22.27 66.80 28.28

Table 3: ECE (%) of the fine-tuned CLIP model using POUF [20] with unlabeled target-domain data.

Method Office Office-Home VisDA DomainNet
A W D Ar Cl Pr Re T V C P R S

No Calib. 7.86 6.22 3.08 10.81 20.07 9.06 11.14 8.57 6.52 4.10 4.89 2.06 6.32
PseudoCal 2.37 4.52 2.29 7.95 4.73 6.60 7.85 2.71 1.97 3.74 3.80 1.88 1.38
Oracle 2.04 3.11 1.20 5.70 3.87 6.11 6.72 2.50 0.39 1.51 1.00 1.13 0.97
Accuracy (%) 84.03 84.54 86.42 77.63 61.81 83.98 80.54 86.37 86.72 81.75 82.01 89.96 79.08

4 Conclusion

In conclusion, we introduce PseudoCal, a novel and versatile post-hoc framework for calibrating
predictive uncertainty in unsupervised domain adaptation (UDA). By focusing on the unlabeled
target domain, PseudoCal distinguishes itself from mainstream calibration methods that are based on
covariate shift and eliminates their associated limitations. To elaborate, PseudoCal employs a novel
inference-stage mixup strategy to synthesize a labeled pseudo-target set that mimics the correct-wrong
statistics in real target samples. In this way, PseudoCal successfully transforms the challenging
unsupervised calibration problem involving unlabeled real samples into a supervised one using
labeled pseudo-target data, which can be readily addressed through temperature scaling. Throughout
our extensive evaluations spanning diverse UDA settings beyond covariate shift, including source-free
UDA settings and domain adaptive semantic segmentation, PseudoCal consistently showcases its
advantages of simplicity, versatility, and effectiveness in enhancing calibration in UDA.
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A Algorithm

The PyTorch-style pseudocode for our calibration method PseudoCal is provided in Algorithm 1.

Algorithm 1 PyTorch-style pseudocode for PseudoCal.

# x: A batch of real target images with shuffled order.
# lam: The mix ratio , a fixed scalar value between 0.5 and 1.0.
# net: A trained UDA model in the evaluation mode.

# Perform pseudo -target synthesis for a mini -batch.
def pseudo_target_synthesis(x, lam , net):

# Use the random index within the data batch
# to obtain a pair of real samples for mixup.
rand_idx = torch.randperm(x.shape [0])
inputs_a = x
inputs_b = x[rand_idx]

# Obtain model predictions and pseudo labels (pl).
pred_a = net(inputs_a)
pl_a = pred_a.max(dim =1)[1]
pl_b = pl_a[rand_idx]

# Select the samples with distinct labels for the mixup.
diff_idx = (pl_a != pl_b). nonzero(as_tuple=True )[0]

# Mixup with images and labels.
pseudo_target_x = lam * inputs_a + (1 - lam) * inputs_b

# If the user is not aware that lam is between 0.5 and 1.0,
# the following if -else code can avoid bugs.
if lam > 0.5:

pseudo_target_y = pl_a
else:

pseudo_target_y = pl_b

return pseudo_target_x[diff_idx], pseudo_target_y[diff_idx]

# Perform supervised calibration using pseudo -target data.
def pseudoCal(x, lam , net):

# Synthesize a mini -batch of pseudo -target samples and labels.
pseudo_x , pseudo_y = pseudo_target_synthesis(x, lam , net)

# Infer the logits for the pseudo -target samples.
pseudo_logit = net(pseudo_x)

# Apply temperature scaling to estimate the
# pseudo -target temperature as the real temperature.
calib_method = TempScaling ()
pseudo_temp = calib_method(pseudo_logit , pseudo_y)

return pseudo_temp

B Related Work

Unsupervised domain adaptation (UDA) has been extensively studied in image classification tasks.
Mainstream methods can be categorized into two lines: 1) Distribution alignment across domains
using specific discrepancy measures [9, 37] or adversarial learning [4, 38, 5, 6], and 2) Target domain-
based learning with self-training [39, 21] or regularizations [34, 32, 33]. Moreover, UDA has also
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Table 4: Comparisons of typical methods for predictive uncertainty calibration in UDA.

Calibration Method Covariate
Shift

Label
Shift

No harm to
accuracy

No extra
training

No source
data

TempScal-src [12] ✗ ✗ ✓ ✓ ✗
MC-Dropout [36] ✓ ✓ ✗ ✓ ✓
Ensemble [13] ✓ ✓ ✓ ✗ ✓
CPCS [14] ✓ ✗ ✓ ✗ ✗
TransCal [16] ✓ ✗ ✓ ✗ ✗
PseudoCal (Ours) ✓ ✓ ✓ ✓ ✓

been studied in object detection [7, 6] and image segmentation [8, 40]. Initially, UDA was based on
the covariate shift assumption [41] – two domains share similar label and conditional distributions
but have different input distributions. This is commonly referred to as closed-set UDA. In recent
years, new practical settings have arisen, notably addressing label shift [42]. These include partial-set
UDA [10, 43], where some source classes are absent in the target domain, and open-set UDA [44],
where the target domain includes samples from unknown classes. Recently, there has been a growing
interest in a setting called source-free UDA, which can preserve source privacy. Source-free UDA
has two key settings: the white-box setting [18, 11] uses the source model for target adaptation, while
the stricter black-box setting [45, 19] only employs the source model for inference.

Predictive uncertainty calibration was initially stuidied on binary classification tasks [46–48]. [12]
extends Platt scaling [48] to multi-class classification and introduces matrix scaling (MatrixScal),
vector scaling (VectorScal), and temperature scaling (TempScal). These post-hoc methods require a
labeled validation set for calibration. On the other hand, there are methods that address calibration
during model training, including Monte Carlo Dropout (MC-Dropout) [36], Ensemble [13], and
Stochastic Variational Bayesian Inference (SVI) [49–51]. However, an evaluation in [52] reveals
that these methods do not maintain calibration performance under dataset shift. In addition, there is
growing interest in calibration under distribution shifts [53, 16, 14] and in semantic segmentation
tasks [54–56]. In this paper, we specifically address the calibration problem in single-source UDA. A
vanilla baseline is to apply IID calibration methods such as TempScal with a labeled source validation
set, dubbed TempScal-src. Regarding calibration methods considering the domain distribution shifts,
the mainstream idea is to utilize importance weighting [17] to address calibration under covariate shift
in UDA, exemplified by CPCS [14] and TransCal [16]. Some works perturb the source validation set
to serve as a general target set [57, 58] or employ it for density estimation [59]. More recently, some
methods [60, 61] have utilized multiple source domains to calibrate the unlabeled target domain in
UDA. Additionally, there are training-stage calibration methods that employ smoothed labels [62, 63]
or optimize accuracy-uncertainty differentiably [64]. Among these methods, CPCS and TransCal
are noteworthy as they specifically address transductive target calibration in UDA. For more general
approaches like MC-Dropout and Ensemble, we compare our method directly with Ensemble because
it consistently outperforms MC-Dropout. Table 4 presents a comprehensive comparison of these
typical UDA calibration methods. In contrast to existing calibration methods, PseudoCal stands out
by not requiring any extra model training. It is a simple, post-hoc, and general calibration approach,
solely relying on a fixed or even black-box UDA model and unlabeled target data for calibration.

C Calibration Metrics

Optimization of temperature scaling [12]. The ‘Oracle’ target temperature, denoted as To, can be
obtained using the original temperature scaling optimization formulated as follows.

To = argmin
T

E(xi
t,y

i
t)∈Dt

LNLL

(
σ(zit/T ), y

i
t

)
Let yi represent the one-hot ground truth encoding for input sample xi, and p̂i denote the predicted
probability vector output by the model ϕ.

Expected Calibration Error (ECE) [12] involves partitioning probability predictions into M bins,
with Bm representing the indices of samples falling into the m-th bin. It calculates the weighted
average of the accuracy-confidence difference across all bins:
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LECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)|

Here, n represents the number of samples, and for the m-th bin, the accuracy is computed as
acc (Bm) = |Bm|−1

∑
i∈Bm

1(ŷi = yi), and the confidence is computed as conf (Bm) =

|Bm|−1
∑

i∈Bm
p̂i.

Negative Log-Likelihood (NLL) [65] is also known as the cross-entropy loss. The NLL loss for a
single sample xi is given by:

LNLL = −
C∑

c=1

yc
i log p̂

c
i

Brier Score (BS) [66] can be defined as the squared error between the predicted probability vector
and the one-hot label vector. The Brier Score for a single sample xi is given by:

LBS =
1

C

C∑
c=1

(p̂c
i − yc

i )
2

We choose to report the ECE results for most of the experiments as ECE [12] is a widely used
calibration metric.

D Analysis of Sample-Level Correspondence in PseudoCal

Analysis. Built upon the well-established cluster assumption [23, 67], we intuitively analyze how
mixed samples can exhibit similar correct-wrong statistics as real target data, as empirically depicted
in Figure 1(b). This assumption suggests that within a well-learned data structure, samples located
far from the classification boundary are more likely to be correctly classified, while those near the
boundary are prone to misclassification. While previous works often incorporate this assumption as
an objective in model training [39, 68], our focus here is to employ it for explaining the inference
behavior of a UDA model ϕ. We assume that the model has effectively learned the underlying target-
domain structure. For simplicity, let’s assume all involved labels in mixup are one-hot, and consider a
fixed mix ratio λ noticeably greater than 0.5 (e.g., 0.65). This ensures a clear distinction between
two involved real samples: one primary sample xi

t with a mix ratio greater than 0.5, determining
the mixed label ypt for the mixed sample xpt, and the other as the minor sample xj

t , serving only
as an input perturbation. If xpt yields a correct model prediction ŷpt evaluated by its mixed label
(i.e., ŷpt == ypt), it suggests that the real sample xi

t maintains its prediction after cross-cluster
perturbation. This implies that xi

t is likely distant from the classification boundary, and its prediction
or pseudo-label ŷit is genuinely correct when evaluated against its ground truth yit. Similarly, if xpt

yields a wrong model prediction ŷpt (i.e., ŷpt ̸= ypt), we can reasonably infer that xi
t has a truly

incorrect prediction. The presence of sample-level correspondence, when observed at the dataset
level, manifests as similar correct-wrong statistics. However, this correspondence may not hold under
extreme perturbation degrees (i.e., λ near 0.5 or 1.0).

In the above, we offer an intuitive analysis of the sample-level correspondence between pseudo-target
data and real target samples. Figure 1(b) qualitatively illustrates the striking similarity in the correct-
wrong statistics between the real target and pseudo target. To further enhance the understanding of
this correspondence, we aim for a quantitative sample-level analysis. Consider a pair of real samples
xi
t with pseudo-label ŷit inferred by the UDA model ϕ, and xj

t with pseudo-label ŷjt . We employ
the mixup operation to generate a mixed sample xi

pt with the mixed label yipt. For simplicity, we
assume that all labels are one-hot hard labels and λ is in the range of (0.5, 1.0). This implies that
xi
t functions as the primary real sample, directly determining the mixed label yipt, i.e., yipt == ŷit.

We apply the mixup operation nt times during the model inference stage using unlabeled target data.
This results in a labeled pseudo-target set {(xi

pt, y
i
pt)}

nt
i=1 and the original pseudo-labeled real target

set {(xi
t, ŷ

i
t)}

nt
i=1. Using the same UDA model ϕ, we infer predictions ŷipt for the mixed sample xi

pt
and traverse through all mixed samples. For the mixed pseudo-target samples, we obtain predictions
{ŷipt}

nt
i=1 and corresponding labels {yipt}

nt
i=1. Regarding real target samples, the predictions are the

available pseudo-labels {ŷit}
nt
i=1, while the labels are ground truth labels {yit}

nt
i=1 which are used to
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assess the UDA model accuracy.

CRcorrect =

∑nt

i (ŷipt == yipt) · (ŷit == yit)∑nt

i (ŷit == yit)
(2)

CRwrong =

∑nt

i (ŷipt ̸= yipt) · (ŷit ̸= yit)∑nt

i (ŷit ̸= yit)
(3)

CRarithmetic =

∑nt

i (ŷipt == yipt) · (ŷit == yit) +
∑nt

i (ŷipt ̸= yipt) · (ŷit ̸= yit)

nt
(4)

CRharmonic =
2 · CRcorrect · CRwrong

CRcorrect +CRwrong
(5)

Using these predictions and labels, we can systematically quantify the sample-level correspondence
between the pseudo and real target sets for a more in-depth understanding. We establish such
correspondence when both the predictions of a mixed pseudo sample and its primary real sample
are either both correct or both wrong, as assessed by their respective labels. In other words, we
consider a correspondence when ŷipt == yipt and ŷit == yit, or when ŷipt ̸= yipt and ŷit ̸= yit. To
quantitatively measure this sample-level correspondence, we introduce four correspondence metrics.
The first metric, denoted as CRcorrect, represents the correspondence rate of correct real samples (see
Equation 2). It indicates how many correct real samples maintain correspondence with their mixed
counterparts. Similarly, our second metric, denoted as CRwrong, measures the correspondence rate of
wrong real samples (see Equation 3). For a more comprehensive perspective, we introduce the third
metric, CRarithmetic, which calculates the arithmetic mean of CRcorrect and CRwrong, assessing the
correspondence rate of all real samples (see Equation 4). However, it’s important to note that these
three metrics may be misleading in extreme situations where most of the correspondences are biased
toward either being correct or wrong. To address this issue, we propose our fourth metric, CRharmonic,
which takes the harmonic mean of CRcorrect and CRwrong, providing equal consideration to both
correct and wrong correspondences (see Equation 5). This metric is inspired by the success of the
H-Score solution in balanced accuracy measurement for known-unknown accuracy in open-set UDA,
as demonstrated by previous studies [69, 70].

Table 5: By tuning the mix ratio λ, we can synthesize the most ambiguous pseudo samples (λ = 0.51)
and the simplest ones (λ = 1.0), i.e., the pseudo-labeled real samples themselves. PseudoCal employs
a moderate value of λ = 0.65 for all the results. Under these three cases, we measure the sample-level
correspondence between the real samples and pseudo samples using four correspondence metrics.

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. ECE (%) 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
PseudoCal (λ=1.0) 32.47 33.35 26.31 19.65 47.02 65.70 56.18 36.27 19.31
PseudoCal (λ=0.65) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29
PseudoCal (λ=0.51) 13.77 11.69 11.85 14.13 15.15 11.08 11.03 23.07 14.50

Oracle ECE (%) 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69
# of correct real data 1826 1792 3183 3408 9650 17218 703 656 55757
# of wrong real data 872 894 1135 836 8548 32998 918 385 13342

CRharmonic (λ=1.0) (%) 0 0 0 0 0 0 0 0 0
CRharmonic (λ=0.65) (%) 63.45 63.45 59.89 59.27 60.56 56.28 60.21 62.04 61.73
CRharmonic (λ=0.51) (%) 52.08 54.42 53.13 52.87 45.33 35.18 50.94 46.03 56.26

CRarithmetic (λ=1.0) (%) 67.68 66.72 73.71 80.30 53.03 34.29 43.37 63.02 80.69
CRarithmetic (λ=0.65) (%) 62.36 62.75 61.72 63.08 61.58 65.58 63.92 61.00 70.73
CRarithmetic (λ=0.51) (%) 52.07 54.10 50.03 47.51 56.35 66.48 63.02 50.52 50.74

CRcorrect (λ=1.0) (%) 100 100 100 100 100 100 100 100 100
CRcorrect (λ=0.65) (%) 59.93 61.16 63.52 65.22 52.09 44.48 50.74 56.02 75.11
CRcorrect (λ=0.51) (%) 38.53 41.35 41.69 40.54 30.90 21.88 36.67 31.94 44.76

CRwrong (λ=1.0) (%) 0 0 0 0 0 0 0 0 0
CRwrong (λ=0.65) (%) 67.40 65.92 56.66 54.32 72.31 76.60 74.04 69.52 52.40
CRwrong (λ=0.51) (%) 80.32 79.57 73.2 75.99 85.04 89.75 83.38 82.39 75.73

For empirical illustration, we conduct experiments using PseudoCal with varied λ values of
{0.51, 0.65, 1.0}, among which 0.65 is our default value for all experiments in the main text. We
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report all results, including the measurement results of the sample-level correspondence using the
four metrics described above, in Table 5. From the shown results, we can make three consistent
observations: (i) As expected, only the harmonic metric CRharmonic is reliable and aligns with the
actual calibration performance, while both the one-sided correct measure CRcorrect and the wrong
measure CRwrong can be extremely biased, which would further directly mislead the arithmetic mean
metric CRarithmetic. (ii) In line with our discussion on the impact of mix ratio (λ), our observations
reveal that λ values near 0.5 predominantly yield wrong predictions for pseudo-target samples (mixed
samples), while λ values of 1.0 result in entirely correct predictions. The role of λ in controlling
cross-cluster perturbation, determining the difficulty of mixed samples, is noteworthy. A λ close
to 0.5 generates ambiguous mixed samples with almost even contributions from two real samples
bearing different pseudo-labels. In such instances, the UDA model struggles to ascertain the class
label, resulting in predominantly wrong predictions when evaluated with mixed labels. Conversely, a
λ of 1.0 equates to not using mixup and directly leveraging pseudo-labeled real target samples. This
scenario constitutes the easiest mixed samples, as the UDA model outputs predictions identical to
raw target predictions, leading to entirely correct predictions when assessed with target pseudo-labels.
From the cluster assumption perspective, extreme λ values render the relevant analysis inconclusive.
A λ value very close to 0.5 makes it challenging to determine the primary real sample. Conversely,
a λ value very close to 1.0 signifies the negligible cross-cluster perturbation, generating a mixed
sample nearly identical to the primary real sample, wherein the cluster assumption does not apply.
In general, extreme λ values, whether close to 0.5 or 1.0, exhibit significant bias towards either
wrong or correct predictions, which indicates correct-wrong statistics of the pseudo-target set become
skewed, deviating from real target samples. Hence, for a typical UDA model with both correct and
wrong target predictions, we recommend employing a moderate λ value, such as the 0.65 utilized
in our main text. (iii) Taking a closer look at the reliable measure of sample-level correspondence
by CRharmonic, we find that for various UDA models, there maintains a high correspondence with
a CRharmonic value of about 60%, even for a low-accuracy model with only 30% accuracy. This
strongly supports the robust existence of the cluster assumption and the robustness of our prior
analysis. For a vivid illustration of the impact of λ values on sample-level correspondence, Figure 3
presents the correct-wrong statistics of all UDA methods outlined in Table 5. We find that extreme
λ values result in a notable skewness in the correct-wrong statistics of the pseudo-target set when
compared to the real target set. For a clear visualization of mixed images, please see Figure 4.

E Full Experiments

E.1 Settings

Datasets. For image classification, we adopt 5 popular UDA benchmarks of varied scales. Office-
31 [24] is a small-scale benchmark with 31 classes in 3 domains: Amazon (A), DSLR (D), and
Webcam (W). Office-Home [25] is a medium-scale benchmark with 65 classes in 4 domains: Art
(Ar), Clipart (Cl), Product (Pr), and Real-World (Re). VisDA [26] is a large-scale benchmark with
over 200k images across 12 classes in 2 domains: Training (T) and Validation (V). DomainNet [27]
is a large-scale benchmark with 600k images. We take a subset of 126 classes with 7 tasks[71] from
4 domains: Real (R), Clipart (C), Painting (P), and Sketch (S). Image-Sketch [28] is a large-scale
benchmark with 1000 classes in 2 domains: ImageNet (I) and Sketch (S). For semantic segmentation,
we use Cityscapes[29] as the target domain and either GTA5[30] or SYNTHIA [31] as the source.

UDA methods. We evaluate calibration on 10 UDA methods across 5 UDA scenarios. For image
classification, we cover closed-set UDA methods (ATDOC [21], BNM [32], MCC [33], CDAN [5],
SAFN [34], MCD [6]), partial-set UDA methods (ATDOC [21], MCC [33], PADA [10]), the whit-box
source-free UDA method (SHOT [11]), and the black-box source-free UDA method (DINE [19]).
For semantic segmentation, we focus on calibrating source-only models without any adaptation.

Calibration baselines. For a comprehensive comparison, we consider 5 typical calibration baselines
in UDA, including the no calibration baseline (No Calib.), source-domain calibration (TempScal-
src [12]), cross-domain calibration (CPCS [14], TransCal [16]), and a generic calibration method
(Ensemble [13]).

Implementation details. We train all UDA models using their official code until convergence on
a single RTX TITAN 16GB GPU. We adopt ResNet-101 [2] for VisDA and segmentation tasks,
ResNet-34 [2] for DomainNet, and ResNet-50 [2] for all other tasks. For PseudoCal, a fixed mix ratio
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Figure 3: The correct-wrong statistics are computed for both the pseudo-target and real target sets.
We partition confidence values into 50 bins and present the count of correct and wrong predictions
in each bin. Correctness for real target data is determined by comparing predictions of real target
samples with ground truths. For pseudo-target data, correctness is assessed by comparing predictions
of the mixed samples with mixed labels.
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Figure 4: Visualization of input-level mixup for various UDA benchmarks with varied λ values.

λ of 0.65 is employed as default in all experiments. The UDA model is fixed for only inference use.
We use it for one-epoch inference with mixup to generate the labeled pseudo-target set. The reported
results are averaged over five random runs.

Table 6: ECE (%) of closed-set UDA on Office-Home (Home). Lower is better. bold: Best case.

Method ATDOC BNM MCC
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

No Calib. 10.07 22.35 8.61 6.06 11.77 30.97 39.85 19.70 16.73 26.81 13.25 23.11 12.33 10.53 14.81
TempScal-src 6.19 17.54 3.98 3.03 7.68 23.11 30.32 13.70 10.25 19.35 6.74 16.25 5.08 4.10 8.04
CPCS 14.13 14.75 11.02 7.33 11.81 24.76 25.02 14.90 8.80 18.37 19.11 28.59 14.65 5.55 16.97
TransCal 18.09 6.52 16.03 18.29 14.73 17.44 27.22 9.14 5.47 14.82 11.73 3.86 6.70 8.16 7.61
Ensemble 7.38 18.01 5.51 4.22 8.78 22.50 30.68 14.38 12.53 20.02 9.76 19.20 9.48 7.90 11.58
PseudoCal (ours) 2.42 2.93 5.84 5.07 4.07 17.34 16.03 6.20 4.68 11.06 2.85 2.25 5.18 3.57 3.47
Oracle 1.71 1.91 2.29 1.69 1.90 2.20 2.53 2.36 1.60 2.17 2.25 1.64 2.22 1.91 2.00
Accuracy (%) 66.42 52.39 76.60 77.74 68.29 65.42 53.69 76.51 78.98 68.65 61.03 47.47 72.37 74.03 63.73

Method CDAN SAFN MCD Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

No Calib. 13.38 22.94 12.15 10.00 14.62 16.57 27.90 13.16 11.93 17.39 16.36 25.96 13.29 11.97 16.89 17.05
TempScal-src 6.89 15.44 5.01 4.19 7.88 6.99 16.13 4.56 4.07 7.94 6.01 12.15 3.56 3.54 6.31 9.53
CPCS 18.38 33.56 15.29 9.90 19.28 14.98 30.54 10.06 12.11 16.92 25.13 27.26 10.17 14.29 19.21 17.09
TransCal 14.76 4.72 12.07 13.73 11.32 3.50 6.87 3.77 4.15 4.57 10.78 2.66 10.31 11.27 8.76 10.30
Ensemble 10.07 18.58 9.15 7.23 11.26 14.82 24.90 11.17 9.86 15.19 12.36 20.87 8.93 7.64 12.45 13.21
PseudoCal (ours) 5.10 3.72 4.71 2.40 3.98 3.05 3.34 6.86 4.37 4.41 4.07 2.86 6.26 3.72 4.23 5.20
Oracle 3.61 2.84 2.26 1.94 2.66 1.96 2.48 2.52 1.74 2.17 2.65 2.27 2.30 2.22 2.36 2.21
Accuracy (%) 62.26 49.99 71.19 73.79 64.31 65.84 51.90 73.78 75.09 66.66 59.04 46.80 68.75 71.39 61.49 65.52

E.2 Results

We evaluate PseudoCal across 5 UDA scenarios. For classification, we report the averaged ECE
across UDA tasks sharing the same target domain in Tables 6-2. For segmentation, we take each
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Figure 5: (a) and (b) provide the reliability diagrams of various calibration methods for a qualitative
comparison. (c) and (d) present the sensitivity analysis of the fixed mix ratio λ.

pixel as a sample and report the results in Table 9. ‘Oracle’ refers to the ‘Oracle’ calibration with
target labels. ‘Accuracy’ (%) denotes the target accuracy of the fixed UDA model. For our calibration
experiments on semantic segmentation, we calibrate the models trained solely on the source domain
(GTA5 [30] or SYNTHIA [31]) without any target adaptation. We treat each pixel as an individual
sample in classification tasks for both mixup and temperature scaling. To address the computational
complexity, we adopt the evaluation strategy suggested in previous studies [56] and randomly sample
20,000 pixels from each image (with resolutions such as 1920*720) for calibration.

Closed-set UDA. We evaluate 6 UDA methods on 4 benchmarks for closed-set UDA. Specifically, we
report the ECE for Office-Home in Table 6, ECE for both Office-31 and VisDA in Table 7, and ECE
for DomainNet in Table 1. PseudoCal consistently achieves a low ECE close to ‘Oracle’, significantly
outperforming other calibration methods by a large margin. On the evaluated benchmarks, PseudoCal
shows average ECE improvements of 4.33% on Office-Home, 1.88% on Office-31, 2.77% on VisDA,
and 5.95% on DomainNet when compared to the second-best calibration method.

Table 7: ECE (%) of closed-set UDA on Office-31 (Office) and VisDA.

Method ATDOC BNM MCC
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V

No Calib. 12.17 4.59 6.66 7.81 10.38 23.41 11.12 8.27 14.27 17.10 19.29 6.18 7.80 11.09 17.42
TempScal-src 22.39 3.39 4.18 9.99 10.53 23.85 9.23 4.98 12.69 13.72 21.38 3.79 3.00 9.39 13.28
CPCS 24.64 7.98 8.94 13.85 16.65 22.45 11.65 2.02 12.04 15.36 30.16 4.69 3.03 12.63 7.14
TransCal 12.14 14.21 14.64 13.67 6.36 14.86 5.22 2.70 7.59 8.79 6.53 3.77 3.91 4.74 12.21
Ensemble 9.79 3.60 4.09 5.83 8.53 19.77 6.92 4.63 10.44 14.84 17.48 3.07 4.88 8.48 15.32
PseudoCal (ours) 3.85 6.64 4.98 5.16 5.27 9.48 6.30 3.97 6.58 3.03 4.61 2.68 2.82 3.37 1.20
Oracle 2.13 2.49 3.15 2.59 0.52 2.52 2.65 1.40 2.19 0.93 2.24 2.36 2.67 2.42 1.12
Accuracy (%) 73.23 91.57 88.93 84.58 75.96 72.56 88.35 90.94 83.95 76.23 69.69 91.37 89.06 83.37 78.00

Method CDAN SAFN MCD Office VisDA
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V AVG AVG

No Calib. 17.02 9.34 7.96 11.44 15.90 21.34 6.17 6.68 11.40 18.53 16.71 9.49 8.88 11.69 17.58 11.28 16.15
TempScal-src 18.54 5.70 3.41 9.21 14.19 23.95 3.21 2.83 9.99 14.40 25.37 3.44 2.36 10.39 10.22 10.28 12.72
CPCS 17.47 30.95 5.67 18.03 15.45 23.15 8.21 18.21 16.52 17.88 27.69 11.85 19.01 19.52 10.56 15.43 13.84
TransCal 4.84 7.44 6.84 6.38 4.07 8.14 3.04 2.81 4.67 8.23 5.13 5.65 4.76 5.18 3.74 7.04 7.23
Ensemble 10.92 4.98 3.29 6.40 13.30 18.89 3.81 5.75 9.48 17.31 14.56 6.25 5.49 8.77 14.82 8.23 14.02
PseudoCal (ours) 6.58 4.78 3.04 4.80 3.04 4.13 7.92 5.51 5.85 7.54 4.22 5.97 5.33 5.17 6.71 5.16 4.46
Oracle 3.21 3.26 2.17 2.88 1.00 2.21 2.90 1.75 2.29 1.82 2.11 3.55 1.76 2.47 0.99 2.47 1.06
Accuracy (%) 66.03 87.15 87.17 80.12 75.24 68.95 89.96 88.55 82.49 73.91 67.07 86.14 85.53 79.58 72.18 82.35 75.25

Table 8: ECE (%) of partial-set UDA on Office-Home (Home).

Method ATDOC MCC PADA Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

No Calib. 16.68 28.47 20.00 12.26 19.35 12.71 22.17 12.21 8.99 14.02 9.45 19.09 9.19 6.77 11.13 14.83
TempScal-src 13.40 24.79 14.91 8.72 15.45 7.12 15.97 6.04 4.35 8.37 8.92 18.20 6.21 4.08 9.35 11.06
CPCS 19.39 29.74 13.86 14.63 19.41 12.73 28.11 9.09 10.69 15.16 24.40 22.74 17.30 27.67 23.03 19.20
TransCal 10.64 5.17 5.88 11.30 8.25 9.44 4.27 5.41 6.98 6.53 22.70 11.00 23.00 26.77 20.87 11.88
Ensemble 11.98 21.28 13.44 8.62 13.83 9.22 18.54 10.11 6.78 11.16 5.30 11.86 4.43 3.92 6.38 10.46
PseudoCal (ours) 7.87 10.90 6.24 4.83 7.46 3.74 3.63 6.93 4.81 4.78 4.72 3.45 10.77 6.69 6.41 6.22
Oracle 4.13 4.45 4.37 4.08 4.26 2.81 3.01 3.06 2.37 2.81 3.94 2.65 4.80 3.03 3.61 3.56
Accuracy (%) 63.02 50.70 65.92 73.71 63.34 65.53 51.68 73.41 78.23 67.21 55.65 44.06 61.23 66.54 56.87 62.47

Partial-set UDA. We evaluate 3 partial-set UDA methods on Office-Home and report the ECE in
Table 8. PseudoCal consistently performs the best on average and outperforms the second-best
method (Ensemble) by a significant margin of 4.24%.

Source-free UDA. We evaluate source-free UDA settings using SHOT and DINE. We report the ECE
for DomainNet and Image-Sketch together in Table 2. PseudoCal outperforms Ensemble on both
benchmarks by significant margins, with 7.44% on DomainNet and 15.05% on Image-Sketch.
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Method GTA5 [30] SYNTHIA [31] AVG

No Calib. 7.87 23.08 15.48
TempScal-src 4.61 19.24 11.93
Ensemble 2.66 20.84 11.75
PseudoCal (ours) 5.73 15.99 10.86
Oracle 0.52 4.5 2.51

Table 9: ECE (%) of segmentation.

Method ECE [12] (%) BS [66] NLL [65]

No Calib. 11.52 0.5674 1.9592
TempScal-src 10.63 0.5647 1.9418
CPCS 5.48 0.5579 1.8781
TransCal 23.38 0.6279 2.1089
Ensemble 10.08 0.5618 1.9260
PseudoCal (ours) 3.63 0.5553 1.8697
Oracle 1.29 0.5519 1.8597

Table 10: ViT results of MCC on C→S.

Semantic segmentation. In addition to assessing the performance of PseudoCal in classification
tasks, we also evaluate PseudoCal on the domain adaptive semantic segmentation tasks and report the
ECE in Table 9. Remarkably, PseudoCal performs the best on average and demonstrates an average
ECE improvement of 4.62% over the no-calibration baseline.

E.3 Discussion

Qualitative comparisons. Reliability diagrams in Figure 5(a)-(b) show that PseudoCal consistently
aligns with ‘Oracle’, while the existing state-of-the-art method TransCal deviates significantly.

Impact of mix ratio λ. The fixed mix ratio λ is the sole hyperparameter in PseudoCal. We investigate
its impact on calibration performance by experimenting with values ranging from 0.51 to 0.9. The
results of two closed-set UDA methods (including SHOT) on DomainNet are presented in Figure 5(c),
and the results of two partial-set UDA methods on Office-Home are shown in Figure 5(d). We first
examine mixup with both ‘Hard’ (one-hot labels) and ‘Soft’ (soft predictions) labels, finding similar
trends with differences that are generally not visible when λ > 0.6. In addition, optimal performance
for PseudoCal occurs with a moderate λ value between 0.6 and 0.7. The reason for this is that a
λ value closer to 0.5 generates more ambiguous samples, resulting in increased wrong predictions,
whereas a λ value closer to 1.0 has the opposite effect. For more details, kindly refer to Appendix D,
where we examine the impact of different λ values on the sample-level correspondence. At last, for
simplicity, we use a fixed λ value of 0.65 as default with hard labels for all experiments.

Impact of backbones and metrics. In order to examine the robustness of PseudoCal across different
backbones and calibration metrics, we assess its performance using ViT-B [3] as the backbone
and present the results for the aforementioned three metrics in Table 10. The findings reveal that
PseudoCal consistently achieves the best performance regardless of the choice of backbone or
calibration metric.

Impact of UDA model quality. We’ve provided the target-domain accuracy for each UDA model
in the ‘Accuracy’ row. PseudoCal remains effective as long as the UDA model has learned the
target data structure instead of being completely randomly initialized, supported by the robust cluster
assumption. This is evident in Table 2, where PseudoCal maintains its competence even with low
accuracy pseudo-labels (about 30%).

Comparison with training-stage mixup. Most approaches incorporate mixup [22] during the model
training stage as an objective to enhance model generalization, and among them, [62] further utilizes
mixup as a training-stage calibration method. However, our use of mixup in PseudoCal differs
significantly from previous mixup-based works in three key aspects. (i) Different stages: All of these
works apply mixup in training, while our mixup operation occurs in the inference stage to synthesize a
labeled set. (ii) Different mix ratios: PseudoCal leverages mixup for cross-cluster sample interpolation
and performs effectively with a fixed mix ratio λ ∈ (0.6, 0.7) but is considerably less effective with
λ values close to 1.0. In contrast, previous methods typically work best with λ ∈ Beta(α, α) where
α ∈ [0.1, 0.4], essentially favoring λ values that are close to 1.0. However, they are ineffective with
λ values close to 0.5 (like our adopted values) due to the manifold intrusion problem [62, 72]. (iii)
Different performance: We observed that UDA models trained with training-time calibration methods
still suffer from significant miscalibration, while our PseudoCal can further substantially reduce ECE
errors for these models. For example, as shown in Table 2, SHOT employs label smoothing[73, 63]
during training, and DINE is trained with mixup[62, 68].

Ablation study on pseudo-target synthesis. Pseudo-target synthesis plays a critical role in our
PseudoCal framework. In this step, we employ input-level mixup with a fixed mix ratio (λ) to
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Table 11: ECE (%) of ablation experiments on pseudo-target synthesis.

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
MocoV2Aug [74] 16.85 17.21 20.51 14.98 15.49 28.63 25.81 15.17 11.12
RandAug [75] 12.87 11.53 19.24 11.37 13.33 29.28 18.47 10.32 12.62
CutMix [76] 8.20 6.39 14.82 10.60 7.60 23.18 15.96 6.04 6.93
ManifoldMix [77] 19.49 19.27 23.29 16.94 27.00 50.54 36.04 21.29 16.88
Mixup-Beta [22] 14.96 13.11 15.65 11.24 15.84 26.74 23.85 11.46 9.72
Pseudo-Label [78] 32.47 33.35 26.31 19.65 47.02 65.70 56.18 36.27 19.31
Filtered-PL [79] 31.74 32.73 26.14 19.46 45.35 64.29 54.83 35.10 19.05
PseudoCal-same 19.31 20.54 22.50 15.63 25.43 45.54 30.30 18.46 15.56
PseudoCal (ours) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29
Oracle 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69

generate a pseudo-target sample by combining two real samples with different pseudo-labels. We
conduct a comprehensive ablation study on this synthesis strategy by extensively comparing it with
alternative approaches, including: (i) Applying mixup between samples with the same pseudo-label
(referred to as PseudoCal-same). (ii) Using instance-based augmentations of target samples, such
as RandAugment [75], and strong augmentations commonly used in self-supervised learning [74].
(iii) Employing mixup at different levels, such as the patch-level [76] and the feature-level [77]. (iv)
Applying common training-stage mixup using λ ∈ Beta(0.3, 0.3) [22]. (v) Directly utilizing original
or filtered pseudo-labeled real target samples [78, 79] without mixup (by setting the mix ratio λ to
1.0). We present an extensive comparison of all these strategies in Table 11. The results consistently
demonstrate that our inference-stage input-level mixup outperforms the alternative options.

Table 12: ECE (%) of calibration results when combining PseudoCal with different supervised
calibration methods, including MatrixScal [12], VectorScal [12], and TempScal [12] (our default
choice).

Method MCD BNM CDAN SHOT PADA DINE
D→A W→A Cl→Pr Pr→Re R→C I→S Ar→Cl Re→Ar P→R

No Calib. 16.39 17.03 22.09 15.72 9.83 34.71 20.35 8.31 12.39
MatrixScal-src 17.86 20.28 25.73 15.98 22.11 - 36.55 20.45 -
VectorScal-src 17.75 20.52 16.40 12.36 12.88 - 20.53 9.07 -
TempScal-src 32.09 18.65 15.10 11.64 9.27 - 15.15 6.34 -
PseudoCal(Matrix.) 11.61 13.20 16.07 11.83 15.09 42.86 35.85 27.07 7.65
PseudoCal(Vector.) 11.00 9.32 9.31 6.05 6.37 23.90 5.90 4.19 6.23
PseudoCal(Temp.) 4.38 4.06 6.31 4.76 1.51 8.42 2.95 3.71 5.29
Oracle 2.31 1.90 3.14 1.10 1.28 4.39 2.16 2.87 1.29
Accuracy (%) 67.52 66.63 73.69 80.35 52.98 34.29 43.82 63.73 80.69

Compatibility with other supervised calibration methods. As matrix scaling (MatrixScal), vector
scaling (VectorScal), and temperature scaling (TempScal) are similar, all proposed by [12], and the
authors have demonstrated that temperature scaling (TempScal) is the superior solution. Therefore,
as for the source-domain calibration baseline (using a labeled source validation set for calibration),
we have only reported the results of TempScal-src in the tables in the main text. Here, we present
the results of MatrixScal-src and VectorScal-src for additional reference, without impacting any of
the conclusions drawn in the main text. While our PseudoCal is inspired by the factorized NLL
of TempScal and naturally employs TempScal as the default supervised calibration method for our
synthesized labeled pseudo-target set, we investigate the compatibility of PseudoCal with alternative
supervised calibration methods, such as MatrixScal and VectorScal. The corresponding results are
detailed in Table 12. Our findings reveal two key observations: (i) If a supervised calibration method
exhibits stability and effectiveness with the source labeled data, combining it with PseudoCal tends
to yield reduced ECE error compared to the no calibration baseline. (ii) Due to the similarity in
correct-wrong statistics between the pseudo-target set and real target data, PseudoCal demonstrates
compatibility with both MatrixScal and VectorScal. However, it consistently achieves the best
calibration performance when paired with TempScal, aligning with the conclusion in [12] that
TempScal generally outperforms MatrixScal and VectorScal.
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Limitations. PseudoCal has the following limitations and potential negative societal impacts: (i)
Like other calibration methods compared, PseudoCal may occasionally increase ECE when the initial
ECE is already small (see →D in Table 7), which raises risks for safety-critical decision-making
systems. (ii) PseudoCal may face challenges in extreme cases with very few available unlabeled
target samples, such as only a small batch of samples or even a single target sample. (iii) PseudoCal
is partly dependent on the cluster assumption, and it may fail if the target pseudo label is extremely
poor, i.e., performing similarly to random trials.

E.4 Task-Level Results

We have presented the average results for tasks with the same target domain. For example, in the case
of Office-Home, UDA tasks including ‘Cl→Ar’, ‘Pr→Ar’, and ‘Re→Ar’ share the common target
domain ‘Ar’. Consequently, we have averaged the results of these three UDA tasks and reported the
averaged value in the tables within our main text under the row labeled ‘→ Ar’. Additionally, note
that the ‘avg’ row represents the averaged results within each UDA method’s rows to the left of the
‘avg’ row. Differently, the ‘AVG’ row signifies the averaged results across all ‘avg’ rows associated
with different UDA methods. Consequently, the ‘AVG’ row can be considered more reliable and
representative for drawing conclusions. For detailed calibration results for each task, please refer to
Table 13 through Table 31.

Table 13: ECE (%) of a closed-set UDA method ATDOC [21] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 22.83 10.57 6.31 10.77 8.88 6.38 10.39 22.61 5.49 9.06 21.61 6.38 11.77
MatrixScal-src 35.03 20.72 18.28 27.54 24.73 23.40 22.51 32.85 13.66 20.25 32.89 12.90 23.73
VectorScal-src 22.05 10.09 5.85 11.51 7.74 6.01 15.12 26.85 7.81 7.94 21.10 5.03 12.26
TempScal-src 14.69 5.55 2.60 4.27 3.17 1.45 9.67 22.55 5.04 4.63 15.37 3.21 7.68
CPCS 8.37 9.32 6.44 12.94 14.94 11.41 12.28 6.00 4.13 17.18 29.88 8.80 11.81
TransCal 4.95 13.85 16.58 17.29 17.34 18.76 18.77 7.48 19.54 18.20 7.13 16.90 14.73
Ensemble 18.40 7.47 4.51 7.82 4.76 4.24 8.36 17.96 3.92 5.96 17.68 4.29 8.78
PseudoCal 3.07 4.23 5.28 1.96 6.27 5.70 2.52 4.05 4.22 2.79 1.68 7.03 4.07
Oracle 2.38 3.14 2.34 1.44 1.92 1.36 1.98 1.92 1.37 1.71 1.43 1.80 1.90
Accuracy (%) 52.07 74.48 79.27 64.24 73.85 75.42 64.65 50.65 78.54 70.37 54.46 81.48 68.29

Table 14: ECE (%) of a closed-set UDA method BNM [32] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 38.64 22.49 16.21 30.89 22.09 18.25 34.90 42.46 15.72 27.11 38.44 14.52 26.81
MatrixScal-src 39.37 23.31 19.01 30.30 25.73 22.24 31.37 41.37 15.98 24.06 37.39 14.77 27.07
VectorScal-src 30.83 17.66 9.97 21.91 16.40 11.46 27.76 37.27 12.36 18.91 29.06 10.03 20.30
TempScal-src 27.22 16.34 8.91 20.39 15.10 10.21 28.82 35.60 11.64 20.12 28.15 9.67 19.35
CPCS 33.80 18.08 8.12 17.24 19.77 7.90 28.68 17.28 10.39 28.36 23.97 6.86 18.37
TransCal 25.75 12.11 5.87 15.73 10.51 5.51 21.41 29.66 5.02 15.17 26.25 4.80 14.82
Ensemble 29.52 16.03 12.00 22.77 15.55 14.06 25.17 32.06 11.53 19.55 30.46 11.56 20.02
PseudoCal 14.27 8.74 4.60 15.46 6.31 4.69 20.90 18.35 4.76 15.66 15.47 3.55 11.06
Oracle 3.16 2.18 1.76 2.00 3.14 1.95 2.92 1.78 1.10 1.68 2.64 1.77 2.17
Accuracy (%) 54.39 73.49 79.78 64.52 73.69 76.82 61.68 51.13 80.35 70.05 55.56 82.36 68.65

Table 15: ECE (%) of a closed-set UDA method MCC [33] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 23.74 14.31 10.89 12.70 13.15 11.72 14.36 23.18 8.98 12.69 22.40 9.54 14.81
MatrixScal-src 37.39 23.28 19.95 31.00 27.75 25.27 26.13 35.70 16.27 21.56 35.20 14.95 26.20
VectorScal-src 21.05 12.79 7.87 10.96 11.18 8.20 16.87 28.29 9.64 7.58 21.40 6.15 13.50
TempScal-src 12.23 6.43 3.61 4.06 4.69 2.85 11.38 22.91 5.83 4.79 13.60 4.11 8.04
CPCS 25.11 15.31 3.60 19.41 14.36 4.49 13.83 35.66 8.56 24.08 24.99 14.27 16.97
TransCal 3.04 6.31 5.98 12.75 7.42 8.60 11.95 4.59 9.90 10.48 3.95 6.37 7.61
Ensemble 19.20 11.30 8.05 10.01 9.69 8.51 10.11 18.98 7.13 9.15 19.42 7.44 11.58
PseudoCal 2.71 5.04 3.81 3.17 4.64 3.06 2.66 1.54 3.85 2.73 2.51 5.86 3.47
Oracle 2.41 2.57 2.31 2.67 1.73 1.62 1.58 0.84 1.80 2.51 1.66 2.35 2.00
Accuracy (%) 47.26 69.29 75.90 59.91 68.33 70.16 56.32 44.49 76.04 66.87 50.65 79.48 63.73
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Table 16: ECE (%) of a closed-set UDA method CDAN [5] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 24.88 14.66 10.39 14.71 13.05 11.25 13.24 22.54 8.37 12.19 21.41 8.74 14.62
MatrixScal-src 35.03 22.64 19.14 28.14 26.14 22.96 24.20 33.34 15.03 20.32 30.69 13.78 24.28
VectorScal-src 18.81 10.46 7.24 8.92 9.81 6.73 15.31 26.51 9.18 7.51 16.70 5.76 11.91
TempScal-src 12.48 5.82 3.40 5.57 5.14 3.06 9.78 21.29 6.12 5.31 12.55 4.06 7.88
CPCS 31.45 13.21 2.36 25.84 24.68 17.24 13.44 27.86 10.09 15.85 41.38 7.98 19.28
TransCal 2.65 11.04 11.67 14.44 13.41 14.01 16.34 6.04 15.50 13.51 5.46 11.77 11.32
Ensemble 18.64 11.85 7.23 10.87 9.04 7.94 9.45 19.12 6.52 9.90 17.97 6.56 11.26
PseudoCal 3.52 4.33 2.32 5.67 4.81 2.82 6.36 3.78 2.05 3.28 3.85 5.00 3.98
Oracle 1.83 2.96 1.94 3.88 1.74 2.20 4.46 3.22 1.68 2.50 3.48 2.08 2.66
Accuracy (%) 48.00 67.00 75.07 59.83 66.88 69.98 58.59 48.64 76.31 68.36 53.33 79.68 64.31

Table 17: ECE (%) of a closed-set UDA method SAFN [34] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 28.25 15.29 12.40 16.62 14.10 12.45 18.17 29.68 10.94 14.92 25.77 10.08 17.39
MatrixScal-src 37.63 23.66 20.05 28.07 26.01 23.00 25.60 37.84 16.22 20.98 33.18 14.69 25.58
VectorScal-src 21.01 12.78 9.20 10.96 10.28 7.67 16.03 26.93 8.91 10.72 20.21 6.35 13.42
TempScal-src 12.33 5.56 3.17 4.62 4.22 3.40 9.99 21.72 5.64 6.36 14.33 3.89 7.94
CPCS 31.45 16.18 10.90 23.93 11.19 6.71 15.78 25.66 18.73 5.24 34.50 2.80 16.92
TransCal 7.50 4.23 2.80 4.11 3.63 4.89 3.14 7.47 4.76 3.26 5.65 3.46 4.57
Ensemble 25.00 13.33 9.91 15.20 11.62 10.14 16.12 26.14 9.54 13.15 23.56 8.55 15.19
PseudoCal 3.30 6.41 4.14 3.46 7.06 5.18 2.99 3.40 3.79 2.70 3.33 7.12 4.41
Oracle 3.10 3.78 1.94 2.06 1.85 2.18 2.65 1.66 1.11 1.16 2.68 1.92 2.17
Accuracy (%) 50.65 70.96 75.81 64.44 70.42 72.30 62.55 49.55 77.16 70.54 55.51 79.97 66.66

Table 18: ECE (%) of a closed-set UDA method MCD [6] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 26.24 16.26 12.30 16.42 14.19 13.27 19.02 27.38 10.35 13.63 24.25 9.43 16.89
MatrixScal-src 41.44 28.57 22.89 34.21 27.91 26.19 28.46 39.91 18.20 22.91 36.82 16.58 28.67
VectorScal-src 21.79 12.62 8.36 11.89 7.19 7.75 17.75 27.43 8.99 10.10 20.83 5.72 13.37
TempScal-src 8.59 4.59 2.87 3.65 2.79 2.90 10.42 17.99 4.85 3.96 9.86 3.29 6.31
CPCS 20.66 11.43 21.72 27.95 11.22 11.03 24.03 12.63 10.13 23.42 48.48 7.86 19.21
TransCal 2.43 8.94 9.45 10.78 10.81 10.80 9.86 2.07 13.56 11.69 3.49 11.19 8.76
Ensemble 20.49 10.59 7.24 11.59 9.53 9.16 15.53 22.66 6.52 9.95 19.45 6.66 12.45
PseudoCal 2.52 4.93 3.93 3.39 6.57 3.70 5.05 2.68 3.52 3.76 3.39 7.28 4.23
Oracle 2.22 2.48 2.08 2.68 2.31 2.13 3.02 1.97 2.44 2.26 2.61 2.11 2.36
Accuracy (%) 46.55 63.75 73.01 57.44 64.86 67.45 53.81 42.77 73.72 65.88 51.07 77.63 61.49

Table 19: ECE (%) of a closed-set UDA method ATDOC [21] on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 12.22 9.27 3.75 9.81 6.85 12.36 7.92 8.88
MatrixScal-src 34.30 27.58 15.58 23.23 18.37 28.05 27.44 24.94
VectorScal-src 16.19 11.45 3.97 15.11 10.19 19.26 9.52 12.24
TempScal-src 10.32 6.52 1.94 10.86 8.51 13.31 6.92 8.34
CPCS 12.87 13.31 4.46 8.25 5.11 13.90 4.34 8.89
TransCal 19.89 23.51 26.65 22.52 24.93 19.46 24.59 23.08
Ensemble 8.71 5.73 1.59 6.91 4.41 9.38 4.66 5.91
PseudoCal 1.68 1.98 2.51 1.66 1.21 1.71 1.61 1.77
Oracle 0.98 1.92 0.86 1.18 0.70 1.16 1.17 1.14
Accuracy (%) 53.74 56.51 74.95 55.59 61.65 50.41 59.64 58.93

Table 20: ECE (%) of a closed-set UDA method BNM [32] on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 30.88 29.27 15.37 27.87 21.79 31.65 22.41 25.61
MatrixScal-src 37.91 31.17 18.31 26.82 22.33 32.31 28.64 28.21
VectorScal-src 23.10 20.02 9.88 21.80 14.83 26.68 14.18 18.64
TempScal-src 19.11 18.79 9.40 19.28 14.42 21.49 12.81 16.47
CPCS 14.45 13.75 7.98 2.72 4.35 4.14 11.50 8.41
TransCal 9.21 6.31 5.82 6.73 1.69 9.56 1.98 5.90
Ensemble 25.08 23.46 12.61 23.42 18.52 27.34 18.70 21.30
PseudoCal 5.08 12.43 6.18 8.10 5.20 6.64 6.82 7.21

Oracle 1.60 3.17 3.40 1.63 1.50 1.00 1.81 2.02
Accuracy (%) 52.90 55.52 74.30 57.71 63.95 51.61 62.30 59.76
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Table 21: ECE (%) of a closed-set UDA method MCC [33] on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 15.19 8.29 4.79 8.98 6.91 12.04 8.63 9.26
MatrixScal-src 36.95 28.60 15.99 23.92 18.95 29.54 28.72 26.10
VectorScal-src 18.52 11.63 4.49 15.98 10.72 20.86 10.71 13.27
TempScal-src 13.49 5.92 2.36 10.83 8.96 14.27 7.67 9.07
CPCS 29.26 15.02 3.44 3.03 6.00 5.15 2.66 9.22
TransCal 16.89 22.54 23.45 22.00 24.68 19.17 23.44 21.74
Ensemble 11.36 5.38 2.57 6.03 4.40 9.32 5.80 6.41
PseudoCal 2.72 1.45 2.38 1.25 1.64 3.48 2.13 2.15
Oracle 0.80 1.36 1.09 0.96 1.18 0.97 1.70 1.15
Accuracy (%) 47.65 51.27 71.62 50.51 59.02 45.14 56.46 54.52

Table 22: ECE (%) of a closed-set UDA method CDAN [5] on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 17.00 10.51 5.56 9.83 8.26 11.88 11.03 10.58
MatrixScal-src 35.28 27.82 15.80 22.11 18.34 27.24 27.76 24.91
VectorScal-src 17.44 10.88 4.37 12.88 9.45 17.90 9.81 11.82
TempScal-src 13.39 6.58 2.75 9.27 8.30 11.22 8.32 8.55
CPCS 2.40 17.27 5.57 4.24 6.75 11.42 1.81 7.07
TransCal 14.85 20.65 22.93 21.19 22.27 19.01 20.55 20.21
Ensemble 12.96 7.47 3.54 6.96 5.73 9.62 7.75 7.72
PseudoCal 3.48 1.65 1.86 1.51 1.70 1.85 2.08 2.02
Oracle 1.03 1.61 1.07 1.28 0.73 0.84 1.43 1.14
Accuracy (%) 49.07 53.25 71.82 52.98 60.75 49.11 57.51 56.36

Table 23: ECE (%) of a closed-set UDA method SAFN [34] on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 21.82 17.98 10.15 17.90 13.63 20.70 15.25 16.78
MatrixScal-src 33.45 22.54 11.16 21.05 15.53 26.33 21.85 21.70
VectorScal-src 19.61 14.11 4.73 17.45 10.40 21.04 10.49 13.98
TempScal-src 15.12 8.37 4.12 10.86 8.23 13.25 8.07 9.72
CPCS 21.96 14.58 8.22 7.26 7.52 23.23 4.31 12.44
TransCal 6.58 11.28 14.28 10.21 12.67 7.18 13.10 10.76
Ensemble 19.74 16.66 9.08 16.51 12.48 19.31 14.03 15.40
PseudoCal 3.40 4.44 1.50 2.23 0.81 2.12 1.79 2.33
Oracle 0.86 1.75 1.21 1.11 0.78 0.57 1.06 1.05
Accuracy (%) 48.14 48.65 66.40 50.54 59.89 47.18 56.17 53.85

Table 24: ECE (%) of a closed-set UDA method MCD [6] on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 12.97 9.47 3.80 9.65 7.01 12.89 7.80 9.08
MatrixScal-src 31.47 19.56 10.05 20.32 14.30 24.98 18.45 19.88
VectorScal-src 19.63 12.59 5.75 16.53 10.21 20.95 10.27 13.70
TempScal-src 11.61 5.39 4.06 7.58 7.19 10.79 6.74 7.62
CPCS 19.75 6.09 1.96 7.94 3.92 23.82 3.10 9.51
TransCal 19.44 21.53 27.45 21.44 25.19 18.45 24.79 22.61
Ensemble 11.60 7.54 2.86 6.95 5.35 11.07 5.19 7.22
PseudoCal 1.66 3.60 1.01 0.93 1.11 1.73 1.21 1.61
Oracle 0.62 1.81 0.56 0.85 0.91 0.73 1.03 0.93
Accuracy (%) 49.09 48.21 65.32 49.49 59.58 46.81 56.40 53.56

Table 25: ECE (%) of closed-set UDA methods on Office-31.

Method ATDOC [21] BNM [32] MCC [33]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

No Calib. 4.59 6.66 11.43 12.91 8.90 11.12 8.27 24.60 22.22 16.55 6.18 7.80 18.60 19.97 13.14
MatrixScal-src 9.58 13.21 14.04 15.35 13.05 11.22 8.81 24.64 21.94 16.65 9.70 10.21 18.99 21.84 15.19
VectorScal-src 4.57 6.43 15.69 17.50 11.05 8.15 4.11 24.82 23.59 15.17 5.12 3.16 20.53 24.01 13.21
TempScal-src 3.39 4.18 24.37 20.41 13.09 9.23 4.98 26.15 21.55 15.48 3.79 3.00 22.07 20.70 12.39
CPCS 7.98 8.94 26.49 22.80 16.55 11.65 2.02 27.16 17.73 14.64 4.69 3.03 29.84 30.47 17.01
TransCal 14.21 14.64 13.27 11.02 13.29 5.22 2.70 16.00 13.72 9.41 3.77 3.91 5.57 7.49 5.19
Ensemble 3.60 4.09 9.04 10.53 6.82 6.92 4.63 19.99 19.56 12.78 3.07 4.88 17.18 17.78 10.73
PseudoCal 6.64 4.98 3.22 4.47 4.83 6.30 3.97 10.75 8.21 7.31 2.68 2.82 4.50 4.71 3.68
Oracle 2.49 3.15 1.90 2.35 2.47 2.65 1.40 2.63 2.41 2.27 2.36 2.67 2.42 2.05 2.38
Accuracy (%) 91.57 88.93 73.41 73.06 81.74 88.35 90.94 71.35 73.77 81.10 91.37 89.06 69.86 69.51 79.95
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Table 26: ECE (%) of closed-set UDA methods on Office-31.

Method CDAN [5] SAFN [34] MCD [6]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

No Calib. 9.34 7.96 16.66 17.39 12.84 6.17 6.68 20.34 22.33 13.88 9.49 8.88 16.39 17.03 12.95
MatrixScal-src 11.90 14.91 17.21 21.12 16.29 9.49 13.97 20.56 23.43 16.86 9.83 13.49 17.86 20.28 15.37
VectorScal-src 6.04 3.60 17.67 25.37 13.17 3.22 2.20 21.07 23.59 12.52 5.87 4.61 17.75 20.52 12.19
TempScal-src 5.70 3.41 16.10 20.97 11.55 3.21 2.83 24.48 23.41 13.48 3.44 2.36 32.09 18.65 14.14
CPCS 30.95 5.67 4.99 29.95 17.89 8.21 18.21 24.18 22.12 18.18 11.85 19.01 32.45 22.92 21.56
TransCal 7.44 6.84 5.51 4.18 5.99 3.04 2.81 6.43 9.86 5.54 5.65 4.76 5.86 4.39 5.17
Ensemble 4.98 3.29 7.41 14.43 7.53 3.81 5.75 17.58 20.20 11.84 6.25 5.49 13.53 15.60 10.22
PseudoCal 4.78 3.04 6.39 6.78 5.25 7.92 5.51 4.00 4.26 5.42 5.97 5.33 4.38 4.06 4.94
Oracle 3.26 2.17 2.94 3.47 2.96 2.90 1.75 2.14 2.27 2.27 3.55 1.76 2.31 1.90 2.38
Accuracy (%) 87.15 87.17 64.82 67.23 76.59 89.96 88.55 69.33 68.58 79.11 86.14 85.53 67.52 66.63 76.46

Table 27: ECE (%) of a partial-set UDA method ATDOC [21] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 28.21 20.87 10.76 17.58 23.49 11.69 19.16 28.98 14.34 13.29 28.22 15.64 19.35
MatrixScal-src 35.85 19.37 13.42 29.69 30.20 21.94 21.96 37.00 14.83 19.36 34.96 16.94 24.63
VectorScal-src 25.87 15.83 7.46 18.37 20.96 11.63 19.96 33.03 12.36 11.16 26.57 11.61 17.90
TempScal-src 21.08 15.04 5.75 12.95 17.86 7.52 18.23 29.63 12.88 9.02 23.66 11.83 15.45
CPCS 28.34 27.40 19.28 14.37 6.27 10.86 32.51 39.04 13.75 11.28 21.84 7.92 19.41
TransCal 4.36 5.07 10.58 9.47 4.98 12.82 9.12 5.81 10.51 13.32 5.34 7.60 8.25
Ensemble 20.32 12.06 8.90 11.80 17.57 7.89 12.32 22.25 9.07 11.81 21.26 10.68 13.83
PseudoCal 9.15 7.08 3.21 7.59 7.53 4.84 11.80 12.79 6.45 4.21 10.75 4.10 7.46
Oracle 3.09 4.24 2.82 4.78 4.93 4.48 4.04 5.03 4.94 3.58 5.24 3.95 4.26
Accuracy (%) 51.46 64.99 77.19 61.89 61.34 73.44 59.50 49.01 70.51 67.68 51.64 71.43 63.34

Table 28: ECE (%) of a partial-set UDA method MCC [33] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 22.91 11.67 8.45 14.42 14.34 10.29 12.63 21.14 8.22 11.09 22.46 10.63 14.02
MatrixScal-src 35.16 19.13 14.89 29.94 30.26 25.30 24.67 34.81 14.78 18.58 34.09 15.73 24.78
VectorScal-src 19.52 9.73 6.05 12.79 14.23 11.07 16.13 26.53 9.03 9.29 20.18 7.95 13.54
TempScal-src 13.14 5.37 3.05 5.96 6.62 4.21 10.00 20.08 5.79 5.39 14.70 6.12 8.37
CPCS 19.34 10.62 4.00 4.25 4.14 12.00 28.24 37.75 16.08 5.70 27.24 12.51 15.16
TransCal 2.74 6.19 5.25 8.09 5.92 8.40 11.03 6.01 7.29 9.20 4.06 4.13 6.53
Ensemble 18.27 9.86 6.49 9.68 11.37 7.27 8.76 18.05 6.57 9.21 19.31 9.10 11.16
PseudoCal 2.51 7.86 4.70 3.04 6.70 5.78 4.20 4.01 3.96 3.99 4.36 6.23 4.78
Oracle 2.29 3.75 2.04 2.67 3.07 3.11 2.69 3.26 1.97 3.06 3.47 2.35 2.81
Accuracy (%) 51.10 74.17 81.56 62.53 66.72 73.16 63.27 50.03 79.96 70.80 53.91 79.33 67.21

Table 29: ECE (%) of a partial-set UDA method PADA [10] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg

No Calib. 20.35 8.33 5.30 11.10 12.28 10.19 8.93 18.60 4.83 8.31 18.33 6.95 11.13
MatrixScal-src 36.55 24.04 16.23 34.97 33.22 28.87 27.26 37.58 16.54 20.45 35.41 16.45 27.30
VectorScal-src 20.53 7.22 4.71 12.28 13.91 13.44 22.41 31.95 9.35 9.07 19.86 8.57 14.44
TempScal-src 15.15 6.09 3.34 6.51 6.43 4.64 13.91 23.77 4.27 6.34 15.69 6.11 9.35
CPCS 24.22 30.26 24.81 9.80 7.37 43.23 28.84 39.45 14.97 34.57 4.55 14.27 23.03
TransCal 9.39 23.43 26.71 21.37 20.51 21.88 22.49 11.25 31.71 24.23 12.37 25.06 20.87
Ensemble 11.42 4.97 2.88 6.02 4.54 4.65 3.76 11.15 4.24 6.13 13.00 3.79 6.38
PseudoCal 2.95 12.31 7.51 4.68 10.14 5.38 5.77 4.13 7.19 3.71 3.28 9.85 6.41

Oracle 2.16 5.65 2.27 3.89 5.70 2.83 5.06 2.73 3.98 2.87 3.06 3.06 3.61
Accuracy (%) 43.82 59.83 72.45 51.70 52.32 58.14 51.52 40.66 69.02 63.73 47.70 71.54 56.87

Table 30: ECE (%) of a white-box source-free UDA method SHOT [11] on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 21.57 16.14 10.03 18.18 20.86 24.71 21.52 19.00
MatrixScal-src 27.18 19.67 12.49 19.13 16.99 21.60 20.35 19.63
VectorScal-src 17.79 13.95 6.46 19.31 16.25 22.17 13.20 15.59
TempScal-src 13.91 11.32 4.81 16.76 16.47 18.99 10.63 13.27
CPCS 12.52 7.28 4.93 13.64 10.86 16.57 9.10 10.70
TransCal 16.39 23.80 25.37 24.23 18.18 15.87 14.81 19.81
Ensemble 17.57 13.24 7.81 15.24 18.14 21.40 17.73 15.88
PseudoCal 5.82 6.08 2.91 7.23 7.17 7.51 8.38 6.44
Oracle 2.03 3.69 1.37 2.85 2.25 2.33 2.78 2.47
Accuracy (%) 59.80 66.79 78.34 66.25 66.08 59.48 62.88 65.66

Table 31: ECE (%) of a black-box source-free UDA method DINE [19] on DomainNet.

Method C → S P → C P → R R → C R → P R → S S → P avg

No Calib. 31.91 22.54 12.39 21.43 20.63 28.77 24.38 23.15
Ensemble 26.38 18.72 10.83 17.03 17.53 24.28 20.18 19.28
PseudoCal 17.86 15.12 5.30 13.71 11.14 14.44 14.75 13.19
Oracle 1.35 1.87 1.29 1.62 1.94 1.38 1.65 1.59
Accuracy (%) 54.26 63.00 80.69 64.52 67.13 56.75 63.81 64.31
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