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Discrete cross-modal

hashing is a

supervised method

that exploits

classification tasks to

learn heterogeneous

binary codes. DCMH

also updates the

binary codes for each

modality and learns

discrete hashing

codes bit by bit,

making it promising

for large-scale

datasets.

H
ashing is an effective technique

for approximate nearest-neigh-

bor search. Because hashing

methods have low storage costs,

they’ve drawn considerable attention in the big

data era, with numerous methods being pro-

posed in the past few years.1,2 Traditional hash-

ing methods focus on homogenous data forms.

However, the ever-increasing amount of multi-

media data on social websites and mobile appli-

cations are naturally surrounded by textual

information, including descriptions, tags, and

user comments. To capture these heterogene-

ous image and text modalities, researchers

have proposed numerous cross-modal retrieval

methods.3–5 Furthermore, the binary codes

for cross-modal retrieval—that is, cross-modal

hashing—have been exploited to meet the needs

of storage usage and training time.6–8

Most cross-modal hashing methods focus on

how to design hashing functions to preserve

data similarities in the Hamming space (see the

“Related Work in Cross-Modal Hashing” side-

bar for more information). However, these

approaches typically relax the binary con-

straints to simplify the optimization process,

thereby degrading retrieval performance.

Inspired by unimodal hashing methods,2 we

developed a discrete hashing method for cross-

modal retrieval called discrete cross-modal hash-

ing. DCMH employs an iterative optimization

method to learn hashing functions without

relaxing the discrete constraints. We formulate

the objective function by reconstructing the

semantic intersimilarity matrix and regard the

learned binary codes as ideal features for intra-

modal classification. To simplify the optimiza-

tion process, DCMH uses linear regression to

form both hashing functions and the classifica-

tion matrix. To address the NP-hard binary opti-

mization problem, we apply the discrete cyclic

coordinate descent method.2 The overall objec-

tive function consists primarily of two intramo-

dal hashing functions and one intersimilarity

reconstruction term; the intramodal hashing

function primarily relies on binary features clas-

sification-error criterion.

Here, to show the effectiveness of our hash-

ing model and optimization methods, we

describe the traditional relax-and-threshold sol-

ution (dubbed DCMH rat) and compare it with

DCMH (see the sidebar for more on the relax-

and-threshold solution).

This article expands on our previous confer-

ence paper9 as follows. First, we provide a relaxa-

tion solution with our objective function and

compare it with the formerly proposed discrete

solution to further verify the advantages of the

proposed objective function and the benefits

brought by discrete optimization. Second, to fur-

ther show the effectiveness of our proposed

methods, we add two novel large-scale datasets,

including a multilabel dataset, to the experi-

ments. Finally, we evaluate the intramodal

retrieval performances—that is, image-to-image

and text-to-text—to prove our cross-modal mod-

el’s generalization abilities.

Discrete Cross-Modal Hashing
In this section, we explain the proposed

method and describe the associated optimiza-

tion algorithm.

Problem Definition

For simplicity, we assume here that there are

only two modalities, but DCMH can be easily
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extended to more. Assume X ¼ fxigni¼1; xi ¼
fx1

i ; x
2
i g represents n data points of two different

modalities, where x1
i 2 Rm is an m-dimensional

image feature, and x2
i 2 Rd is a d-dimensional

text feature vector. Given the code length k, our

goal is to learn hashing functions fq(�) that map

the original continuous features x
q
i to binary

codes h
q
i 2 f�1;1gk; q ¼ f1;2g. Here, for each

modality, we adopt the simple linear hashing

function fqð�Þ ¼ sgnðWT
q xÞ, where matrices Wq

are the projection matrices that we need to

learn. Y � {0,1}c�n denotes the label matrix and

yi � Rc denotes the ith label vector, where c is

the number of semantic categories in the

dataset.

Intermodality Similarity Preservation

Unlike previous unified binary-code-based

methods,10,11 we used two binary matrices, H1

and H2, each of which represents a separate

Related Work in Cross-Modal Hashing
Existing cross-modal hashing methods can be categorized

as unsupervised and supervised methods. One classical

unsupervised method extended spectral hashing to the mul-

timodal setting by minimizing the weighted distance.1 Gui-

guang Ding and his colleagues used collective matrix

factorization for different modalities to obtain the hashing

functions with latent a factor model.2

Supervised methods usually achieve much better per-

formance because they use semantic labels or pairwise rela-

tionships to learn the discriminative hashing functions via

label-similarity preserving criterion.

Jingkuan Song and his colleagues considered the differen-

ces between each modality by exploring single modality cor-

relations and keeping the different modalities’ codes

consistent.3 Other researchers proposed maximizing the

semantic correlation and further optimizing the objective

function in a greedy way for large-scale datasets.4 In addi-

tion, Yueting Zhuang and his colleagues used neural network

models for cross-media hashing,5 while Xiaobo Shen and his

colleagues exploited matrix factorization for multiview

data.6 Recently, Dekui Ma and his colleagues proposed a sim-

ple two-step approach and obtained impressive retrieval per-

formances on various benchmark datasets, where the binary

codes obtained via unimodal hashing methods were consid-

ered as unified codes for both modalities.7

In addition to data similarity preservation, quantization

qualities are also crucial for hashing-based retrieval methods, as

proven in the classical unimodal hashing papers.8 Similar to

the unimodal hashing methods, cross-modal hashing

approaches have inevitable binary constraints, which make the

objective function challenging to optimize. To make the opti-

mization problem feasible, most hashing approaches adopt a

two-step relax-and-threshold strategy: first, they learn real hash-

ing functions to relax the constraints, and then they threshold

them to obtain the discrete codes. However, this trick brings

nonnegligible quantization errors, and is thus suboptimal.

Recently, many research efforts—including the classic iter-

ative quantization (ITQ) method—have aimed to minimize

quantization.9 By introducing a rotation matrix, ITQ mini-

mized quantization errors and thus obtained better hashing

projection matrices. By introducing an auxiliary variable for

discrete codes, supervised discrete hashing (SDH)10 reformu-

lated the objective function and obtained an efficient dis-

crete solution via cyclic coordinate descent. Work by Go Irie

and her colleagues was pioneering in its focus on quantiza-

tion errors for cross-modal hashing.11 Their efforts sought

binary quantizers for each modality by simultaneously mini-

mizing the binary quantization problem and subspace

learning.
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binary space and connects it with intermodality

similarity-preserving terms. This should let het-

erogeneous points from different modalities in

the projected binary space be close to each

other. The heterogeneous similarity affinity

matrix S is directly generated from Y, while si,j¼
1 indicates that the ith and jth objects share at

least one common semantic label; otherwise si,j

¼ �1. For multilabel datasets, we can use a

more complex similarity metric, such as cosine

distance; however, we found that cosine dis-

tance does not improve performance.

We define the basic object function on inter-

modal similarity preservation as follows:

min jjHT
1 H2 � cSjj2F ; (1)

where H1, H2 � {�1, þ1}k�n are the learned

hashing codes, and each binary code h
q
i ¼

sgnðPT
i x

q
i Þ and P1 � Rm�k, P2 � Rd�k are learned

hashing projection matrices. The inner prod-

ucts of H1 and H2 reflect the opposite of their

Hamming distance (to some extent). We

adopt the square loss for similarity reconstruc-

tion, which is widely used in hashing

methods.

Intramodality Similarity Preservation

In addition to similarity preservation across

modalities, we aim to preserve the similarity

within each modality, which is also the main

focus of unimodal hashing methods.

To simplify the optimization problem, we

adopt an approach similar to that of Fumin

Shen and his colleagues2 to obtain hashing

functions—that is, we use simple linear

regressions. To leverage the semantic labels

to hashing function learning, we optimize

the learned binary codes into a classification

task. Our goal is that the learned hashing

codes be well classified along with the seman-

tic labels.

When we consider only one modality, the

objective function of classification with hidden

binary codes can be written as

min
W;H

Xn

i¼1

Lðyi;W
ThiÞ þ kkWk2F; (2)

where each code hi ¼ sgn(PTxi), L(�) is the loss

function of a classification model, and k is the

regularization parameter. Because we can select

any appropriate loss function for L, we chose l2
loss due to its simplicity. By introducing the

matrix expression, we can rewrite the problem

in Equation 2 as

min W;P;H2f61gk�n jjY �WTHjj2F
þ gjjH � PTXjj2F þ kRðW;PÞ:

(3)

To avoid trivial solutions, we use Rð�Þ ¼ k � k2F
as regularization terms.

Overall Formulation and Optimization

Combining the inter- and intramodality simi-

larity preservation terms in Equations 1 and 3,

we get the final objective function of the pro-

posed DCMH:

min H;W;P G ¼
X
i¼1;2

jjY �WT
i Hijj2F þ gjjHi � PT

i Xijj2F

þ kRðWi;PiÞ þ cjjHT
1 H2 � cSjj2F

s:t: Hi 2 f�1;þ1gk�n:

(4)

Here, g, k, and c are tradeoff parameters.

Nonlinear embedding beforehand can boost

the performances of linear methods; it is also

scalable for high-dimensional data matrices.

Hence, we adopt a simple yet effective nonlinear

technique1 as follows: F(x) ¼ sgn(PT/(x)), where

/ðxÞ ¼ ½exp ðkx� z1k2=rÞ; � � �; exp ðkx� zlk2=rÞ�.
Here, fzjglj¼1 are the randomly selected l land-

mark points and r is the kernel width.

Obviously, the objective function in Equa-

tion 4 is nonconvex. Fortunately, the subpro-

blem for any of the six variables is convex while

fixing the other five variables. Thus, we can

obtain local optima in an alternating optimiza-

tion manner. DCMH alternately updates the six

variables by following the listed three steps

until convergence. We found that only a few

iterations within each modality can give rea-

sonably stable performances.

P-Step. When we fix H and W and let @G
@Pi
¼ 0,

we obtain

Pi ¼
�
/ðXiÞ/ðXiÞT þ kI

��1
/ðXiÞHT

i ; (5)

where I is an identity matrix. This step can be

seen as a simple least-square linear regression.

W-Step. When we fix H and P and let @G
@Wi
¼ 0,

we obtain

Wi ¼ ðHiH
T
i þ kIÞ�1HiY

T : (6)

Here, we can also obtain a closed-form solu-

tion for each Wi.

H-Step. When we fix W and P, we can rewrite

Equation 4 asIE
E
E
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min H2f61gk�n jjY �WT
i Hijj2F þ gjjHi � PT

i /ðXiÞjj2F
þ cjjHT

1 H2 � cSjj2F:
(7)

Given the discrete constraints, solving H

becomes an NP-hard problem. Most existing

methods directly relax this constraint and

binarize the optimal continuous solution,

while other methods try to optimize it by intro-

ducing a sigmoid function. However, we

attempt to learn the binary codes along with

the discrete constraints. One naive approach is

enumeration, but it is uncomputable. Here, for

H1, Equation 7 is directly decomposed as

follows:

min H12f61gk�n jjW1H1jj2F
� 2TrðHT

1 ðW1Y þ gPT
1 /ðX1ÞÞ þ ccH2SÞÞ:

(8)

We then adopt the discrete cyclic coordinate

(DCC) descent method2 to solve this discrete

optimization problem—that is, the ith column

of H is updated when the remains are fixed. We

adopt the DCC descent method to optimize

Equation 8 in several iterations.

Optimization with the Relax-and-Threshold

Strategy

To measure the respective contributions of the

proposed hashing model and optimization

method shown in Algorithm 1 (Figure 1), we also

give an optimization algorithm for DCMH with

the relax-and-threshold strategy, DCMH rat.

Generally, DCMH rat also adopts an iterative

updating process, which instantly optimizes a

relaxed continuous objective function by drop-

ping the discrete constraints. Compared with

Algorithm 1, only H-Step needs to be adjusted.

As we show in the following experiments, a spe-

cific gap exists between DCMH and DCMH rat,

where DCMH rat can suffer from larger quanti-

zation errors.

H-Step. When we fix W and P, we can rewrite

Equation 4 as

GðHiÞ ¼ jjY �WT
i Hijj2F þ gjjHi � PT

i /ðXiÞjj2F
þ cjjHT

i Hj � cSjj2F :
(9)

To obtain optimal Hi, Hi is updated by Hi þ d

in each iteration, then the corresponding prob-

lem is defined as arg min G(Hi þ d). Taylor

expansion is further applied to approximate

G(Hiþ d) as

GðHi þ dÞ � GðHiÞ þG
0 ðHiÞd þ 1=2G

00 ðHiÞd2;

(10)

where G0(Hi) and G00(Hi) are the first- and sec-

ond-order derivatives of G about Hi, and their

detailed expressions are listed as

G0ðHiÞ ¼ ðWiW
T
i þ gI þ cHjH

T
j ÞHi

� ðWiY þ gPT
i /ðXiÞ þ ccHjSÞ

G00ðHiÞ ¼WiW
T
i þ gI þ cHjH

T
j :

(11)

Finally, given the classical Newton method,

Hi is updated each time as follows:

Hiðt þ 1Þ ¼ HiðtÞ þ ad: (12)

Here, the direction vector d ¼ G’(Hi)/G
00(Hi),

and a is the step-size parameter, controlling the

convergence of the iterative updating process.

Time Complexity and Convergence Analysis

Because DCMH adopts an iterative optimiza-

tion, P-Step and W-Step are classical linear

regression solutions that occupy O(nl2k) and

O(nd2k).

H-Step occupies O(tk2nþ tk2c) for each iteration,

where t is the number of iterations. The overall

computational complexity is O(T(nk2)), where T

is the number of external iterations. In the test-

ing phase, the complexity of generating hashing

codes is constant, with O(mk) for an image query

and O(dk) for a text query. Hence, DCMH has a

linear complexity to dataset size n and is flexible

for large-scale datasets.

To seek an optimal solution, the variables P,

W, and B are alternately learned for several iter-

ations. The objective function in Equation 4 is

minimized in each step; we show the conver-

gence analysis of DCMH as

GðPðtÞ; WðtÞ; BðtÞÞ � GðPðtþ1Þ; WðtÞ; BðtÞÞ
� GðPðtþ1Þ; Wðtþ1Þ; BðtÞÞ � GðPðtþ1Þ;

Wðtþ1Þ; Bðtþ1ÞÞ;
(13)

where P(t), W(t), and B(t) are matrices in the tth

iteration.

Algorithm 1 shows the proposed DCMH

procedure.

Experiments
We compare our DCMH with baseline methods

on five benchmark datasets, with visual features

for images and textual features for user tags or

webpages.

Datasets and Setting

The Wiki dataset (www.svcl.ucsd.edu/projects/

crossmodal) consists of 2,866 text-image
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documents labeled as one of 10 semantic cate-

gories. Wikiþ4 shares the same settings as the

Wiki dataset, but its images are 4,096-dimen-

sional convolutional neural network (CNN) fea-

tures, and its texts are 5,000-dimensional bag of

words (BoW) features on the term frequency-

inverse document frequency (TF-IDF) weight-

ing scheme.

The LabelMe outdoor dataset consists of

2,686 fully annotated outdoor images from

eight scene categories. Following earlier work,11

we randomly split the dataset into training/test-

ing sets using a 3:1 ratio.

The PASCAL Visual Object Classes (VOC)þ
dataset includes 2,808 training and 2,841 test-

ing data; the images are associated with only a

single label.12 Following earlier work,10 we use

the CNN features instead of original gist fea-

tures for images.

The MIRFLickr dataset is composed of 16,738

instances collected from the social photography

website Flickr. Following earlier work,11 we ran-

domly split the dataset into a training set and a

testing set, with 15,902 and 836 (5 percent),

respectively. This dataset includes 24 ground-

truth labels (tags), and each instance might be

associated with multiple labels.

The INRIA-Websearch dataset (http://lear.

inrialpes.fr/	krapac/webqueries/webqueries.

html) contains 71,478 pairs of web images and

text annotations from 353 categories, including

actors, logos, and landmarks. We obtained

14,698 pairs as in earlier work13 and randomly

split them into training/testing sets (3:1).

Table 1 shows basic information for each

dataset.

Experiment Setting

Here, we introduce some related cross-modal

hashing methods and compare them with our

DCMH and DCMH rat on some common eval-

uation schemes, such as the mean average pre-

cision (MAP) and normalized discounted

cumulative gain (NDCG).

Baseline methods. We compare DCMH with

several cross-modal hashing methods, includ-

ing unsupervised methods, such as cross-view

hashing (CVH)3 and collective matrix factoriza-

tion hashing (CMFH),6 and supervised ones,

such as intermedia hashing (IMH)14 and

sequential semantic correlation maximization

(SCM Seq).8 All source codes are available pub-

licly, and all parameters are set to be consistent

with their original presentation. We consider

IMH as supervised by training all instances. For

DCMH and DCMH rat, l is fixed at 500. All

results are averaged over four runs to eliminate

the influence of random initialization, and we

use post hoc tests to compare our method with

the other methods. We ran all experiments on a

workstation with a 2.60 GHz Intel Xeon E5-

2650 CPU and 32.0 Gbytes RAM.

Evaluation scheme. Some previous works use

the training set as a gallery for cross-modal

learning, but the high-retrieval performance

might be overfitting. Given this and following

other efforts,4,5 we adopt the testing set as a gal-

lery here.

We adopt MAP, which is widely used for

retrieval tasks, to measure the performance of

all methods. The top r average precision (AP)

can be defined as

AP@r ¼ 1

L

Xr

i¼1

PðiÞ � dðiÞ; (14)

where L is the number of relevant instances,

P(i) denotes the precision value, and d(i) is an

Input: Data matrices X(t), t = 1, 2, semantic label matrix Y and hash code length k.

Output: Hash projection matrices Pi, i = 1, 2.

Procedure:

1. Randomly select l objects to get the nonlinear embedding data φ (X) via the
   RBF kernel function;

2. Initialize H as {–1, 1}k×n randomly;

3. Repeat:
a) Obtain P1 and P2 via Equation 5;

b) Obtain W1 and W2 via Equation 6;

c) Iteratively solve H1 and H2 via Equation 8 with the help of DCC;

Until reaching convergence or maximum iterations.

Figure 1. Algorithm 1: The pseudo code of discrete cross-modal hashing

(DCMH).

Table 1. Dataset characteristics.

Dataset Training/testing Image/text Class Labels

Wiki 2,173/693 128/10 10 Single

Wikiþ 2,173/693 4,096/5,000 10 Single

LabelMe 2,014/672 512/470 8 Single

VOCþ 2,808/2,841 4,096/399 20 Single

MIRFLickr 15,902/836 150/500 24 Multilabel

INRIA-Websearch 10,332/4,366 4,096/1,000 100 Single
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indicator function; r is the number of retrieved

instances and is fixed at 50 here. We consider a

retrieved instance as a true neighbor if it shares

at least one common semantic label with the

query.8,11

In addition, NDCG is a standard and com-

monly used metric for ranking-based datasets.

The NDCG value for the top k results is defined

as

NDCG@k ¼ 1

Z

Xk

i¼1

2ri � 1

log2ðiþ 1Þ; (15)

where ri is a relevance index between the query

and the ith ranked sample, and Z is a normal-

ization term that ensures the optimal ranking

with an NDCG score of 1. For multilabel data-

sets, the number of shared labels is seen as the

relevance value here.

Experimental Results and Discussion

All of the datasets in Table 1 are summarized

into three categories:

� small-scale datasets (Wiki and LabelMe),

� high-dimensional datasets (Wikiþ and

VOCþ), and

� large-scale datasets (MIRFLickr and INRIA-

Websearch).

When implementing DCMH for large-scale

datasets, we randomly select 5,000 instances as

training sets.

Wiki and LabelMe results. Table 2 shows the

MAP values on the small-scale datasets, with

hashing bits in the range of {16, 24, 32, 64}.

DCMH and DCMH rat significantly outperform

other methods in these two datasets for both

text and image queries. Compared with the sec-

ond best method, SCM Seq, the maximum

gains of DCMH reach 19.9 percent for image

query and 20.7 percent for text query on Wiki,

and, on average, more than 12 percent for

image query and 13 percent for text query on

LabelMe. DCMH also performs better with lon-

ger codes because more information can be

encoded, and it almost always beats DCMH rat,

except for text query at 32 bits on the Wiki

dataset. On these two datasets, DCMH outper-

forms other baseline methods, at a significance

level of 95 percent.

Wikiþ and VOCþ results. Due to their dramatic

performance, high-dimensional features—

especially CNN full-connected features—have

been increasingly popular. To better exploit

DCMH’s performance, we also report the results

for high-dimensional datasets (see Table 3). The

proposed DCMH and DCMH rat again outper-

form other baseline methods.

For VOCþ, DCMH obtains nearly 100 per-

cent MAP value at 64 bits, and the gain

obtained by DCMH is significant over both

retrieval tasks on Wikiþ. Although DCMH rat

does not perform quite as well as DCMH,

it achieves comparable performance and

Table 2. Mean average precision (%) for the top 50 retrieved instances for image and text queries on Wiki

and LabelMe. (Results in bold represent the best performance.)

Wiki LabelMe

Number of bits 16 24 32 64 16 24 32 64

Image query CVH 27.05 26.04 26.02 24.68 36.92 36.58 35.32 35.46

CMFH 32.47 34.01 34.81 35.85 40.09 46.71 60.20 50.12

IMH 23.99 23.55 23.33 21.43 46.14 43.01 40.41 35.57

SCM Seq 34.28 35.24 34.57 36.23 67.10 68.56 70.48 72.53

DCMH rat 37.24 37.89 41.49 38.50 73.17 76.59 78.43 79.63

DCMH 36.81 38.71 41.05 43.44 76.00 78.36 78.88 79.66

Text query CVH 23.13 23.21 22.01 20.12 38.99 39.12 38.35 37.58

CMFH 30.63 32.96 33.98 32.67 40.87 47.75 48.65 49.54

IMH 24.36 22.91 21.62 20.40 48.64 44.81 42.09 35.90

SCM Seq 31.37 32.24 32.41 33.67 74.56 75.11 76.79 80.28

DCMH rat 30.16 34.31 36.22 33.61 80.61 84.73 84.64 85.67

DCMH 37.88 34.24 33.51 36.72 85.57 87.31 86.10 88.03
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outperforms other methods. Compared with

the Wiki results, all methods significantly

improve on Wikiþ, which can be attributed

mostly to the advantages of CNN features.

DCMH’s maximum gains reach 50.9 percent for

images query and 79.8 percent for text query at

32 bits, while SCM Seq reaches 34.9 and 54.3

percent, respectively. DCMH also outperforms

other baseline methods, at a significance level

of 95 percent.

INRIA-Websearch and MIRFLickr results.

Table 4 shows results on the INRIA-Websearch

and MIRFLickr large-scale datasets. As expected,

DCMH outperforms DCMH rat, except at 64

bits. SCM Seq obtains the best retrieval per-

formance for image query on MIRFLickr. How-

ever, DCMH is still competitive with SCM Seq

and, for other tasks, DCMH has the best per-

formance. Moreover, all methods perform well

on the MIRFLickr dataset, which can be attrib-

uted to its multilabel property.

To measure the performances on the multi-

label MIRFLickr dataset more accurately, Figure

2 shows the NDCG scores. DCMH achieves the

best scores on the text-query task and obtains

competitive scores on the image-query task.

SCM Seq adopts the cosine similarity, which

might explain why it returns more “close text”

tags. For the text-query task, the traditional fea-

ture representations of images cannot match

the full tag information. However, DCMH con-

sistently outperforms SCM Seq when consider-

ing both query tasks.

Nonlinear embedding results. To evaluate

the effectiveness of the proposed nonlinear

DCMH, we adopt the nonlinear trick described

earlier to boost performance for linear baseline

methods. Here, CMFH and SCM Seq achieve

lower MAP values, while other methods (CVH

and IMH) achieve better performance. For the

MIRFLickr dataset, SCM Seq again achieves the

best performance. Due to the multilabel prop-

erty, the NDCG values are more reliable than

Table 3. Mean average precision (%) for the top 50 retrieved instances for image and text queries on

Wiki1 and VOC1. (Results in bold represent the best performance.)

Wikiþ VOCþ

Number of bits 16 24 32 64 16 24 32 64

Image query CVH 16.97 16.97 16.96 16.96 50.91 52.74 55.45 53.69

CMFH 29.71 31.11 31.55 32.17 22.84 23.58 23.44 24.06

IMH 33.19 33.13 32.49 30.88 64.03 62.99 61.29 58.70

SCM Seq 42.26 46.66 46.66 48.59 83.68 88.91 90.42 91.74

DCMH rat 52.31 57.55 57.58 58.65 95.52 97.53 96.93 98.37

DCMH 53.39 58.43 60.52 61.16 90.89 97.13 98.94 99.11

Text query CVH 18.14 16.80 16.37 18.00 19.33 19.09 17.01 16.54

CMFH 29.60 30.94 31.12 32.12 22.01 20.95 24.70 23.72

IMH 33.40 33.87 32.99 31.37 54.95 49.89 43.79 34.98

SCM Seq 45.75 48.67 47.86 51.95 74.48 76.55 75.61 75.36

DCMH rat 53.33 54.90 56.08 59.16 89.78 94.70 94.08 93.27

DCMH 55.48 58.01 60.27 61.25 87.58 93.24 95.83 96.43

NDCG@5

NDCG@10

NDCG@20

NDCG@50

NDCG@5

NDCG@10

NDCG@20

NDCG@50

NDCG@5

NDCG@10

NDCG@20

NDCG@50

20 30 40 50 60 70 80

Image query

Text query

Image + text

CVH
CMFH
IMH
SCM_Seq
DCMH

Mean average precision (%)

Figure 2. Normalized discounted cumulative gain (NDCG) results on the

MIRFLickr datasets for the image and task query tasks. The top five are

results for image query, the middle five are results for text query, and the last

five are the summation of these two queries.
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MAP values, where DCMH outperforms SCM

Seq consistently (see Figure 2). Moreover, our

DCMH performs better than other methods on

the smallest code bits. Once again, as Tables 5

and 6 show, our DCMH achieves much better

accuracies than the baseline methods.

Results for intramodal retrieval. As Table 7

shows, in addition to cross-modal retrieval, we

also compare different methods at 32 bits in the

intramodal retrieval tasks—that is, image-to-

image (I2I) and text-to-text (T2T). For both

tasks, DCMH significantly outperforms the

other two supervised methods except for on the

T2T task using the VOCþ dataset. Because

VOCþ’s textual features are so powerful (even

in the Euclidean space), all three supervised

methods obtain promising results. Hence, our

DCMH has a good generalization ability for

intramodal retrieval, even though it is designed

for cross-modal retrieval.

Training time. Finally, as Table 8 shows, we

compare the training time with the baselines at

32 bits. Generally, all methods spend relatively

little time on the low-dimensional datasets.

Table 4. Mean average precision (%) for the top 50 retrieved instances for image and text queries on

INRIA-Websearch and MIRFLickr. (Results in bold represent the best performance.)

INRIA-Websearch MIRFLickr

Number of bits 16 24 32 64 16 24 32 64

Image query CVH 28.40 31.96 35.53 40.87 63.74 63.23 62.88 61.79

CMFH 33.45 39.13 40.63 47.32 57.02 57.13 56.65 56.45

IMH 29.40 30.48 35.37 42.22 63.38 62.68 63.63 61.71

SCM Seq 38.12 38.48 35.03 40.50 69.19 69.49 70.02 70.37

DCMH rat 46.76 50.04 52.05 59.14 65.88 66.71 68.22 67.43

DCMH 49.48 52.76 55.48 51.00 68.68 68.99 69.96 71.32

Text query CVH 29.06 34.98 39.65 46.44 63.48 63.32 62.83 61.13

CMFH 33.52 40.16 44.51 54.37 56.91 57.24 57.11 57.07

IMH 30.50 33.31 39.92 50.08 63.76 62.73 63.03 61.69

SCM Seq 29.03 33.11 38.05 46.11 68.57 69.25 69.55 69.85

DCMH rat 48.13 54.39 58.64 65.58 66.51 67.84 68.89 70.09

DCMH 52.49 56.64 61.13 53.06 68.59 69.97 69.59 69.95

Table 5. Mean average precision (%) for the top 50 retrieved instances for image and text queries with

nonlinear embedding for LabelMe and Wiki1.* (Results in bold represent the best performance.)

LabelMe Wikiþ

Number of bits 16 24 32 64 16 24 32 64

Image query CVH 51.17 49.02 48.30 44.86 17.53 24.50 25.06 25.19

CMFH 26.49 26.39 26.50 26.50 17.53 17.36 17.35 17.50

IMH 46.41 41.28 38.73 36.30 34.14 34.43 34.82 31.14

SCM Seq 53.49 56.88 56.13 54.67 31.36 35.34 31.69 22.42

DCMH 76.00 78.36 78.88 79.66 53.39 58.43 60.52 61.16

Text query CVH 52.59 50.02 49.60 45.81 24.39 25.07 25.44 25.89

CMFH 25.96 25.92 25.88 26.01 18.26 18.36 18.58 18.61

IMH 48.64 44.81 42.09 35.90 32.67 35.38 35.00 32.19

SCM Seq 41.28 56.35 50.56 48.71 19.32 26.66 21.78 17.65

DCMH 85.57 87.31 86.10 88.03 55.48 58.01 60.27 61.25

*All baseline methods adopt the same nonlinear embedding trick.
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SCM Seq always achieves the second best per-

formance, but its training time significantly

increases for high-dimensional data. With the

help of discrete optimization, DCMH’s per-

formances can be further improved at the cost

of additional time. Moreover, DCMH can easily

adapt to high-dimensional datasets and large-

scale datasets.

H eterogeneous hashing is a significant prob-

lem in social media, and we could further

extend our current methods in a semisupervised

manner to address this problem. This could help

us get rid of expensive semantic labels. In addi-

tion, we could extend our methods to multimo-

dal hashing to use heterogeneous information

simultaneously for Web content retrieval. MM
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text tasks for intramodal retrieval at 32 bits

Query Dataset Wiki LabelMe Wikiþ VOCþ INRIA-Websearch MIRFLickr
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Table 8. Training time (in seconds) on different datasets at 32 bits

Datasets Wiki LabelMe Wikiþ VOCþ MIRFLickr
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SCM Seq 0.20 67.88 862.72 798.67 41.01
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DCMH 0.94 1.64 15.31 21.46 4.06
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