
LEARNING DISCRIMINATIVE GEODESIC FLOW KERNEL FOR UNSUPERVISED
DOMAIN ADAPTATION

Jianze Wei†, Jian Liang§,¶,∗, Ran He§,‡,¶, Jinfeng Yang†

† Tianjin Key Lab for Advanced Signal Processing, CAUC
§ CRIPAC & NLPR, CASIA ¶ University of Chinese Academy of Sciences (UCAS)
‡ CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)

caucweijianze@163.com, {jian.liang, rhe}@nlpr.ia.ac.cn, jfyang@cauc.edu.cn

ABSTRACT
Extracting the domain-invariant features provides an impor-
tant intuition for unsupervised domain adaptation. Due to
the unavailable target labels, it is difficult to guarantee that
the learned domain-invariant features are good for target in-
stances classification. In this paper, we extend the classic
geodesic flow kernel method by leveraging the pseudo labels
during the training process to learn a discriminative geodesic
flow kernel for unsupervised domain adaptation. Specifically,
the proposed method alternately discovers the pseudo target
labels and builds the geodesic flow from a discriminative
source subspace to another ‘discriminative’ target subspace.
More specially, the pseudo target labels are inferred via the
learned kernel based on an easy yet effective label propaga-
tion strategy. Hence, the proposed method not only holds the
property of domain-invariance, but also maximizes the con-
sistency between pseudo label structure and data structure.
Experimental results illustrate that the proposed method out-
performs the state-of-the-art unsupervised domain adaptation
methods for object recognition and sentiment analysis.

Index Terms— unsupervised domain adaptation,
geodesic flow kernel, label propagation.

1. INTRODUCTION

Supervised learning has shown phenomenal performance in
recent years, however, it relies heavily on labeled data. In
order to alleviate the affect of manual labeling, it is vital to
utilize extensive given labeled data from related domains to
perform classification. With a little or no help of target labels,
domain adaptation leverages the prior knowledge from source
domain on the similar task of target domain and has been
extensively studied in many areas due to its characteristics.
Presently, there are two settings for domain adaptation tech-
nology, including semi-supervised domain adaptation where
a few labeled target data are available and unsupervised do-
main adaptation where the target data are completely unla-
beled. Without the supporting of target labels, there exists a
performance gap between semi- and un-supervised domain

adaptation settings. Even being challenging, unsupervised
domain adaptation is appealing because you do not need any
prior knowledge from target domain. No matter unsupervised
or semi-supervised domain adaptation, the greatest challenge
they face is the large distribution difference between differ-
ent domains, which is named as distribution shift or domain
shift. This shift always leads to a bad situation where classi-
fiers trained on source domain often exhibit significant degra-
dation in recognition accuracy of another target task.

To tackle the distribution shift, one intuition is to discover
the domain-invariant feature representation for both source
and target domains. In this manner, Daumè III [1, 2] and
Li [3] proposed Easy Adaptation (EA or EA++) and Het-
erogeneous Feature Augmentation (HFA), respectively, and
these methods built an augmented space to include common,
source-specific and target-specific components. However,
both EA++ and HFA were semi-supervised methods, the de-
pendence on target labels limited their application. Gopalan
[4] investigated manifold learning and proposed Sampling
Geodesic Flow (SGF). SGF contributed the geodesic flow
curve to connect the source and target domains, then sam-
pled a fixed number of subspaces derived from the flow and
concatenated the features from these subspaces to generate an
augmented features. However, there was no easy strategy to
tune the parameters for SGF, which limited its performance.
Gong [5] extended SGF and proposed an unsupervised do-
main adaptation method based on Grassmann manifolds to
build the augmented space. This feature space included all
intermediate subspaces derived from a geodesic flow between
source space and target space, and it was insensitive to id-
iosyncrasies in either domain. However, due to lack of the
prior knowledge of target labels, it was hard to ensure that
feature spaces are class-discriminative for the target task.

To address this problem, we put forward Discrimina-
tive Geodesic Flow Kernel (D-GFK), a simple but effective
unsupervised domain adaptation method that considers the
domain-invariant feature representation and the geometric re-
lationships in the reproducing kernel Hilbert spaces (RKHS).
The proposed method aims to guide the geodesic flow ker-
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nel learning toward a class-discriminative direction accord-
ing to the geometric relationships, which is precious prior
knowledge for unsupervised domain adaptation. The pro-
posed D-GFK with two steps can be optimized by an alter-
native strategy. The first step is to learn the Geodesic Flow
Kernel (GFK). According to the source basis and the current
target basis, we compute the kernel for geodesic flow between
source and target domains, which is almost similar to GFK
[5]. The second step learns the target basis points on Grass-
mann manifold. It first estimates the pseudo labels for target
data with the graph-based transition in RKHS, then utilizes
them to generate a set of new target basis vectors which is bet-
ter at classification than before. These two steps are executed
alternately until convergence. The resulted kernel of D-GFK
not only has a good property of domain-invariance, but also
contains the geometric relationships between data from both
domains. Moreover, the empirical experiments show that the
proposed D-GFK can quickly converge within several itera-
tions. The main contributions of this paper are summarized
as follows: 1). We propose a better domain-invariant fea-
ture learning method to expect that the learned feature spaces
are latently discriminative with the aid of pseudo labels. 2).
Based on the kernel similarities on the learned invariant fea-
ture space, the label propagation method is natively utilized
and shows the potential on domain-invariant feature learn-
ing. 3). The experimental results demonstrate that the pro-
posed method outperforms state-of-the-art unsupervised do-
main adaptation methods on the visual and sentiment adapta-
tion benchmarks.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide a brief review of related works, especially
methods for specific domain or tasks. Section 3 presents our
proposed method and algorithm. In Section 4, we give the
introduction of datasets and the details of experimental eval-
uation. Finally, the conclusion is given in Section 5.

2. RELATED WORK

Recently, domain adaptation has drawn a widespread atten-
tion of researchers and become a hot research field, which is
considered as an important direction in machine learning.

The most commonly used domain adaptation ap-
proaches can be classified into two categories, instance-based
adaptation methods and feature-based adaptation methods.
Instance-based adaptation methods weight the labeled source
data to fit the distribution of target domain, then apply the
classifier trained from the weighed source data to the target
domain. TrAdaBoost [6] and Transfer Joint Matching (TJM)
[7] can be attributed to this category. TrAdaBoost weights the
source instances to filter out the data that is irrelevant to tar-
get domain, and TJM implements instance-weighting using
a l2,1-norm constraint to select sparse instances that can be
reused on target domain.

For feature-based methods, some of them, like Transfer

Component Analysis (TCA) [8], Joint Distribution Analy-
sis (JDA) [9], Subspace Alignment (SA) [10], CORrelation
ALignment (CORAL) [11], Adaptation Regularization Trans-
fer Learning (ARTL) [12], Balanced Distribution Adapta-
tion (BDA) [13], Joint Geometrical and Statistical Alignment
(JGSA) [14] etc., aim to map data into a common space to
match the distribution of the source domain and that of the
target domain. The others are to build an augmented space
that contains original source and target spaces, and the rep-
resentative work of this part includes EA++ , HFA, SGF and
GFK.

Of particular relevance to our work is GFK, a domain-
invariant feature representation which belongs to the second
category. GFK extends SGF and overcomes the limitation of
parameter tuning using a kernel-based framework. It uses all
collections of d-dimensional subspaces from a smooth Rie-
mannian manifold to represent data from source and target
domain. The merit of this idea is that the feature representa-
tion of GFK covers the source domain, target domain and in-
termediate domains between source and target domain, guar-
anteeing the domain-invariance. However, the lack of tar-
get labels makes it difficult to ensure that the GFK feature
is class-discriminative for target task.

3. PROPOSED APPROACH

In this section, we begin with the definition of terminologies,
then detail the proposed method.

The source data Xs = [xs1,x
s
2, . . . ,x

s
ns
] ∈ RD×ns

are drawn from the distribution Ps(xs), and Xt =
[xt1,x

t
2, . . . ,x

t
nt
] ∈ RD×nt denotes the target data drawn

from the distribution Pt(xt), where D represents the feature
dimensionality of the data, ns and nt are the number of sam-
ples from source and target domain respectively. For unsu-
pervised domain adaptation, there are labeled data available
from source domain Ds = {(xi, yi)}ns

i=1 and unlabeled target
instances Dt = {(xj)}nt

j=1 in the training stage. Assuming
the feature space and label space are the same, Xs = Xt and
Ys = Yt, while Ps(Xs) 6= Pt(Xt) due to the domain shift.

In this paper, all the matrices are written as uppercase
bold, and lowercase letters bold for vectors. Mij denotes the
(i, j)-th element of matrix M. M−1 and MT represent the
inverse and transpose of M respectively.

3.1. Revisiting GFK

In statistical learning, there is a basic assumption that data
can be embedded in a low-dimensional linear subspace. One
of the most typical examples is PCA [15], where the original
data are mapped into a low-dimensional subspace. This map-
ping preserves the most important information of the original
data and avoids influence from noise or other irrelevant fea-
tures. The proposition of GFK is also based on this assump-
tion. Here, we make a brief introduction, and details can be
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found in [5].
Assume that the source and target dataset correspond to

two points Φ(0) and Φ(1) on a Grassmann manifold. Ps ∈
RD×d and Pt ∈ RD×d denote two sets of basis of the sub-
spaces for the source and target domain. Rs ∈ RD×(D−d)
presents the orthogonal complement to Ps, where d is the di-
mensionality of the subspace. Then we construct a geodesic
flow [4, 5] between the two points and integrate an infinite
number of subspaces along the flow Φ(t). This geodesic flow
is parameterized as

Φ(t) = PsU1Γ(t)−RsU2Σ(t)

=
[

Ps Rs

] [ U1 0
0 U2

] [
Γ(t)
Σ(t)

]
,

(1)

where U1 ∈ RD×d and U2 ∈ RD×d are two orthonormal
matrices, and can be computed by

PT
SPT = U1ΓVT,RT

SPT = −U2ΣVT. (2)

To ensure the domain-invariance, all subspace features
are concatenated together to form the GFK feature z∞, and
a kernel-based framework is implemented for optimization.
The kernel matrix can be computed in a closed-form

G =
[

PsU1 RsU2

] [ Λ1 Λ2

Λ2 Λ3

] [
UT

1P
T
s

UT
2R

T
s

]
, (3)

where Λ1, Λ2 and Λ3 are three diagonal matrices with ele-
ments

λ1i = 1+
sin(2θi)

2θi
, λ2i =

cos(2θi)− 1

2θi
, λ3i = 1− sin(2θi)

2θi
.

(4)
With the help of GFK, the data from source and target domain
can be embedded into a shared domain-invariant space.

3.2. Label propagation with the kernel transition matrix

Since the target labels are unavailable, it is difficult to en-
sure that the target basis obtained in GFK is always class-
discriminative. To address this problem, [16, 17, 18] have
obtained promising performance in semi-supervised learning
by exploiting the geometric relationship of the data structure.
Following their works, we propose a label propagation with
the kernel transition matrix.

Regarding instances as different nodes in domain-
invariant space, a node is more likely to have the same la-
bel as the nearest node. For xt, there is a larger probabil-
ity of having the same label with the nearest xs in the sup-
port set {(xsi )}

ns
i=1. In order to describe this probability, soft-

label L =
[
lT
1, l

T
2, . . . , l

T
ns+nt

]T ∈ R(ns+nt)×c is employed to

present the label
[
yT
s ,y

T
t

]T
, and c is the number of categories.

The index corresponding to the largest value in li is yti . In our
model, lj can be expressed as

lj =

ns+nt∑
i=1

h(xj ,xi)li, (5)

where h(xj ,xi) denotes the transfer probability from xsi to
xtj . Here, we define h(xj ,xi) as a normalized gaussion dis-
tance between z∞i and z∞j ,

h(xj ,xi) =
exp{− (z∞

i −z
∞
j )2

σ2 }∑ns+nt

i=1 exp{− (z∞
i −z∞

j )2

σ2 }

=
exp{− (xi−xj)

TG(xi−xj)
σ2 }∑ns+nt

i=1 exp{− (xi−xj)TG(xi−xj)
σ2 }

,

(6)

where σ is the scale parameter that controls the transfer prob-
ability h(xj ,xi).

With above definition, the soft-label L can be computed
in a matrix form

L =


∑ns+nt

i=1 h(x1,xi)li
...∑ns+nt

i=1 h(xns+nt
,xi)li



=

 h(x1,x1) · · · h(x1,xns+nt
)

...
...

h(xns+nt
,x1) · · · h(xns+nt

,xns+nt
)


 l1

...
lns+nt


= HTL,

(7)

where H represents the probabilistic transition matrix and
each element denotes Hij = h(xj ,xi). According to [16],
L can converge to an unique fixed point within multiple itera-
tions. Obtaining the pseudo labels for the target data, it is easy
to obtain more class-discriminative target basis using Partial
Least Squares (PLS) [19]. The complete learning algorithm
is summarized in Algorithm 1.

Algorithm 1 Discriminative Geodesic Flow Kernel
Input: Source data {Xs,ys} and target data Xt, X = [Xs,Xt];

subspace dimensionality d, scale parameter σ, # maximum iter-
ation T .

Output: The kernel of D-GFK G; classifier f .
1: Initializ the source basis Ps and the target basis Pt using PLS

and PCA respectively.
2: while not converge and iter ≤ T do
3: Compute G according to Eq. (2) and Eq (3).
4: Construct the probabilistic transition matrix H according to

Eq. (6).
5: while not converge and iter ≤ T do
6: Compute the soft label L according to Eq. (7).
7: end while
8: Update the pseudo target labels yt. Then update the target

basis Ps using PLS
9: end while

10: Re-train a 1-NN classifier f on {(xi, yi)}ns
i=1.
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4. EXPERIMENT

In this section, we compare our approach with several state-
of-the-art unsupervised domain adaptation approaches on two
real-world datasets.

4.1. Benchmarks

4.1.1. Office-Caltech Dataset

The Office-Caltech dataset [5] is publically available in or-
der to support the development of visual adaptation. We use
this dataset for evaluating the performance of our method on
object recognition. This dataset consists of four domains in-
cluding Caltech (C), Amazon (A), Dslr (D), and Webcam
(W ). Each domain contains 10 categories, which are over-
lapped between the Office dataset and Caltech-256 dataset.
The dataset employs SURF BoW histogram features to repre-
sent original images.

4.1.2. Multi-Domain Sentiment Dataset

This dataset is collected by John Blitzer [20] and is a bench-
mark dataset for sentiment analysis or sentiment adaptation.
The dataset includes the reviews about Kitchen appliances
(K), DVDs (D), Books (B) and Electronics (E), the reviews
of each product can be regarded as data from the same do-
main. There are 1000 positive and 1000 negative instances on
each domain. For facilitate comparison with recent studies,
we follow the feature generation method from [21, 22], which
exploits Marginalized Denoising Autoencoders (mSDA) [21]
to improve the feature representations1.

4.2. Experiment setting

In order to evaluate the proposed D-GFK method, we com-
pare it with eight methods of the literature, including 1) TCA
[8] + NN; 2) JDA [9] + NN; 3) TJM [7] + NN; 4) SA [10] +
NN; 5) CORAL [11] + SVM; 6) GFK [5] + NN; 7) BDA [13]
+ NN; 8) JGSA [14] + NN. In Table 1, all the reported per-
formance scores of the eight methods are directly collected
from the authors’ publication. In Table 2 and 3, the scores
are gained by running the algorithms provided by the authors.
We assume that these results are their best performance.

For different problems of domain adaptation, it is un-
reasonable to configure a unified set of hyper-parameters
for them. In our proposed method, there are two hyper-
parameters, i.e. the subspace dimensionality d and the scale
parameter σ. In our experiments, we set 1) d = 20 and σ =
0.2 for the Office-Caltech dataset, 2) d = 10 and σ = 0.5 for
the Multi-Domain Sentiment dataset. Moreover, the ‘fulling
training’ protocol is adopted for each dataset, which means
that all instances from source domain are used in training
stage. In the experiment on the Office-Caltech dataset, we

1https://github.com/GRAAL-Research/domain adversarial neural network

also employ a widely adopted training protocol [5, 11], called
‘splitting sampling’. For each domain adaptation task under
this protocol, p instances per class from source domain are
randomly sampled for training, p = 20 for W , C, A and p = 8
for D. Following the 20 publicly standard splits, the reported
accuracy is the average accuracy of 20 splits.

4.3. Object recognition

Using ‘fulling training’ protocol, the classification accuracies
of the proposed D-GFK method and the eight methods for
comparison are listed in Table 1. In addition, the recogni-
tion results using ‘splitting protocol’ are given in Table 2. We
highlight the highest accuracy for each task in bold.

In Table 1, we note that the proposed method outperforms
the recently proposed unsupervised domain adaptation meth-
ods and reaches the overall accuracy of 50.24%. Compared
with the result of GFK, the proposed method shows different
levels of improvement in all tasks. We can also make a similar
conclusion from Table 2, which reports the recognition result
adopting ‘splitting protocol’.

This improvement is achieved due to the fact that the geo-
metric information plays a positive role in object recognition.
Under the guide of the geometric information, the target basis
is reconstructed, then the kernel matrix can be updated con-
tinuously along the correct direction.

4.4. Sentiment adaptation

For sentiment adaptation problem, we compare the proposed
method with the eight methods mentioned above. The de-
tailed accuracies of all methods are reported in Table 3.

In Table 3, most of the methods have a significant im-
provement compared to no adaptation methods (i.e. LP and
1-NN), while our proposed method has the highest average
accuracy, 74.05%. Besides, the improvement of D-GFK over
GFK is up to 7.25%. This improvement benefits from the
geometric relationship, maximizing consistency between es-
timated label structure and data structure in domain-invariant
space. It should be noted that the using of geometric informa-
tion also smooths the iteration and promotes convergence, as
shown in Figure 1(c) and Figure 1(d).

4.5. Parameter and convergence analysis

In order to find the optimal performance, we conduct parame-
ter sensitivity analysis for our method. There are two parame-
ters set in D-GFK, i.e. the subspace dimensionality d and the
scale parameter σ for the transition matrix.

We implement our proposed D-GFK with different values
of d. Figure 1(a) plots accuracy curves w.r.t different values
of subspace dimensionality d, and d is chosen from the range
of 0.1 to 1. In Figure 1(a), the accuracy curve for the Office-
Caltech dataset is drawn in red, while the curve for the Multi-
Domain Sentiment dataset is painted in blue. Both curves
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Table 1: Recognition accuracies (%) on Office-Caltech dataset using the ‘fulling training’ protocol. Notation: Caltech:C;
Amazon:A; Webcam:W; DSLR:D. * means that results are obtained from [14]

Datasets C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W Avg.

LP 19.42 20.34 19.11 19.79 28.14 24.84 12.11 20.46 55.41 16.21 27.14 63.05 27.17
1-NN 23.70 25.76 25.48 25.00 29.83 25.48 19.86 22.96 59.24 26.27 28.50 63.39 31.37

TCA* 45.82 31.19 34.39 42.39 36.27 33.76 29.39 28.91 89.17 30.72 31.00 86.10 43.26
JDA 44.78 41.69 45.22 39.36 37.97 39.49 31.17 32.78 89.17 31.52 33.09 89.49 46.31
TJM 46.76 38.98 44.59 39.45 42.03 45.22 30.19 29.96 89.17 31.43 32.78 85.42 46.33
SA 39.00 36.80 39.60 35.30 38.60 37.60 32.30 37.40 80.30 32.40 38.00 83.60 44.24

CORAL 47.20 39.20 40.70 40.30 38.70 38.30 34.60 37.80 84.90 34.20 38.10 85.90 46.66
GFK* 46.03 36.95 40.76 40.69 36.95 40.13 24.76 27.56 85.35 29.30 28.71 80.34 43.13
BDA 44.89 38.64 47.77 40.78 39.32 43.31 28.94 32.99 91.72 32.50 33.09 91.86 47.15
JGSA 51.46 45.42 45.86 41.50 45.76 47.13 33.21 39.87 90.45 29.92 38.00 91.86 50.04

D-GFK 54.38 46.44 49.68 45.68 41.69 46.50 35.08 38.62 90.45 32.06 38.10 84.41 50.26

Table 2: Recognition accuracies (%) on Office-Caltech dataset using the ‘splitting training’ protocol. Notation: Caltech:C;
Amazon:A; Webcam:W; DSLR:D

Datasets C→A C→W C→D A→C A→W A→D W→C W→A W→D D→C D→A D→W Avg.

LP 15.89 19.92 21.11 16.69 26.39 25.48 12.35 20.69 50.22 14.64 25.91 53.44 25.23
1-NN 21.00 19.00 23.60 20.00 23.10 22.30 12.00 14.70 31.30 19.90 23.00 51.70 23.50

TCA 37.94 35.24 35.99 34.77 36.08 32.36 29.96 30.75 81.72 28.45 31.61 79.47 41.20
JDA 38.47 35.80 36.21 34.17 36.59 33.03 30.73 31.29 81.85 27.65 32.36 79.90 41.50
TJM 38.49 38.17 37.87 33.91 37.44 35.00 31.34 29.40 82.68 26.96 31.69 80.73 41.97
SA 37.77 34.81 39.71 35.94 35.58 37.23 31.81 35.08 78.28 31.49 34.48 82.29 42.87

CORAL 46.80 38.44 40.16 40.11 37.58 37.64 34.20 37.61 83.54 34.84 38.07 80.66 45.80
GFK 37.46 34.56 38.25 35.73 34.34 35.13 30.19 32.65 82.96 31.03 32.51 77.42 41.85
BDA 40.10 32.61 39.59 34.37 33.61 32.07 31.91 32.89 82.55 30.51 31.54 79.27 41.75
JGSA 35.14 35.78 28.73 31.03 39.90 35.32 25.73 38.00 66.91 26.06 39.17 71.63 39.45

D-GFK 44.27 40.29 42.87 39.31 40.02 37.87 34.11 37.49 85.16 33.75 37.23 79.20 45.96

Table 3: Recognition accuracies (%) on multi-domain sentiment dataset. Notation: Books:B; Dvd:D; Electrics:E; Kitchen:K.

Datasets B→D B→E B→K D→B D→E D→K E→B E→D E→K K→B K→D K→E Avg.

LP 50.05 50.10 50.05 50.00 50.10 49.90 49.95 50.15 50.75 50.15 50.15 50.85 50.18
1-NN 49.60 49.75 50.30 53.25 51.00 53.10 50.75 50.85 51.20 52.20 51.20 52.25 51.29

TCA 63.60 60.90 64.20 63.30 64.15 69.05 59.50 62.05 74.75 64.05 65.40 74.50 65.45
JDA 64.15 62.10 65.35 62.35 66.25 68.90 59.20 61.55 74.65 62.70 64.30 74.00 65.46
TJM 59.15 61.00 66.95 57.10 64.25 68.95 56.35 60.60 72.85 54.90 57.95 73.00 62.75
SA 67.00 70.75 72.15 67.50 67.05 69.40 61.35 64.85 70.40 64.35 64.60 68.20 67.30

CORAL 71.60 65.05 67.25 70.05 65.55 67.05 67.05 66.15 77.55 68.15 68.85 75.40 69.14
GFK 66.40 65.45 69.20 66.25 63.70 67.70 62.35 63.35 73.75 65.50 65.00 72.95 66.80
BDA 61.85 59.35 62.20 63.50 61.05 61.95 60.40 59.75 69.85 61.00 60.30 68.50 62.48
JGSA 66.55 74.95 72.10 55.50 67.30 65.60 51.55 50.75 54.95 58.25 56.40 51.65 60.46

D-GFK 75.20 71.95 72.65 74.40 71.00 72.95 71.85 72.90 80.40 73.45 72.90 79.90 74.05
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Fig. 1: Parameter sensitivity study of D-GFK on several subsets.
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increase first and then decrease with d increasing. Obviously,
curves decrease due to the fact that a lower dimensional fea-
ture has fewer irrelevant items. However, low-dimensional
features may increase the risk of losing important classifica-
tion information, resulting in the decline of performance.

The scale parameter σ affects the performance of the label
propagation. In order to explore an optimal σ, the accuracy
curves for both datasets are plotted in Figure 1(b), where the
value of σ varies from 0 to 1. In Figure 1(b), the effect of
σ on the Multi-Domain Sentiment dataset is much smaller
that that on the Office-Caltech dataset. This may be due to
the fact that the Multi-Domain Sentiment dataset is a binary
classification problem and has fewer categories than that of
the Office-Caltech dataset. According to our experiments, we
recommend σ = 0.2 for the Office-Caltech dataset and σ = 0.5
for the Multi-Domain Sentiment dataset.

Empirically, we explore the convergence property of D-
GFK, Figure 1(c) and Figure 1(d) illustrate the iteration pro-
cesses. Specifically, the degradation cases are marked as the
lines with dots. Overall, we find that the recognition accura-
cies change rapidly and converges within 10 iterations.

5. CONCLUSION

We proposed the D-GFK, a simple but effective unsuper-
vised domain adaptation method. Compared with GFK,
the proposed D-GFK not only retained the advantages of
domain-invariance, but also adjusted the geodesic flow be-
tween source and target space point. Furthermore, an iterative
strategy made the proposed method converge quickly. In the
further, we will try our best to reduce the influence of domain-
invariant features on the basis of domain-invariance.
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