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Abstract

Class Incremental Learning (CIL) aims at learning a
classifier in a phase-by-phase manner, in which only data of
a subset of the classes are provided at each phase. Previous
works mainly focus on mitigating forgetting in phases after
the initial one. However, we find that improving CIL at its
initial phase is also a promising direction. Specifically, we
experimentally show that directly encouraging CIL Learner
at the initial phase to output similar representations as the
model jointly trained on all classes can greatly boost the
CIL performance. Motivated by this, we study the differ-
ence between a naı̈vely-trained initial-phase model and the
oracle model. Specifically, since one major difference be-
tween these two models is the number of training classes,
we investigate how such difference affects the model rep-
resentations. We find that, with fewer training classes, the
data representations of each class lie in a long and narrow
region; with more training classes, the representations of
each class scatter more uniformly. Inspired by this obser-
vation, we propose Class-wise Decorrelation (CwD) that ef-
fectively regularizes representations of each class to scatter
more uniformly, thus mimicking the model jointly trained
with all classes (i.e., the oracle model). Our CwD is simple
to implement and easy to plug into existing methods. Ex-
tensive experiments on various benchmark datasets show
that CwD consistently and significantly improves the per-
formance of existing state-of-the-art methods by around 1%
to 3%. Code: https://github.com/Yujun-Shi/CwD.

1. Introduction

The ability to continually acquire new knowledge is a
key to achieve artificial intelligence. To enable this ability
for classification models, [8, 12, 19,20, 26, 29,33] introduce

*Work done when interning with Song Bai at ByteDance.
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Figure 1. Visualization of representations (normalized to the unit
sphere) in a two-phase CIL setting (learning 2 classes for each
phase). (a) Naı̈ve training at the initial phase (a.k.a., phase 0). The
data representations of each class lie in a long and narrow region.
(b) Joint training on all 4 classes (oracle model). The data repre-
sentations of each class scatter more uniformly. (c) Directly mim-
icking the oracle model at the initial phase, i.e., training the CIL
learner with a regularization term that enforces the learner to out-
put representation that is similar to the oracle model. This makes
the representations of each class scatter more uniformly (like (b)).
(d) Training at the initial phase with our CwD regularizer, which
also yields uniformly-scattered representations (like (b) and (c)).
Best viewed in color.

and study Class Incremental Learning (CIL). In CIL, train-
ing is conducted phase-by-phase, and only data of a subset
of classes are provided at each phase. The goal of CIL is to
perform well on classes learned at the current phase as well
as all previous phases.

The major challenge of CIL is that the model per-
formance on previously learned classes usually degrades
seriously after learning new classes, a.k.a. catastrophic
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forgetting [9, 23]. To reduce forgetting, most previous
works [8,12,18,26,29] focus on phases after the initial one,
e.g. introducing forgetting-reduction regularization terms
that enforce the current-phase model and the previous-phase
model to produce similar outputs of the same input.

However, the role of the initial phase in CIL (the phase
before the CIL learner begins incrementally learning new
classes) is largely neglected and much less understood.
We argue that the initial phase is of critical importance,
since the model trained at this phase implicitly affects
model learning in subsequent CIL phases (e.g., through the
forgetting-reduction regularization term). In this work, we
thus study whether and how we can boost CIL performance
by improving the representations of the initial phase.

To start with and to motivate our method, we conduct an
exploratory experiment to investigate the potential of im-
proving CIL at its initial phase. Specifically, at the ini-
tial phase, we regularize the CIL learner to produce sim-
ilar representations as the model trained with data of all
classes (i.e., the oracle model), since the upper bound of
CIL is the oracle model. According to our results, this addi-
tional regularization drastically improves CIL performance.
In addition, as we experimentally show that, although this
term is used in the initial phase, it yields little performance
gain in the initial phase. In contrast, it significantly benefits
CIL performance in subsequent phases. This demonstrates
that the performance improvements are not simply due to a
higher accuracy at the initial phase, but because this regu-
larization makes the initial-phase representations more fa-
vorable for incrementally learning new classes.

Inspired by this, we consider improving CIL from a
novel perspective—encouraging the CIL learner to mimic
the oracle model in the initial phase. To achieve this, we
first need to understand the difference between representa-
tions produced by a naı̈vely-trained initial-phase model and
the oracle model. Specifically, since the oracle model is
trained with more classes, we investigate how representa-
tions are affected by the number of training classes. To this
end, we compute and analyze the eigenvalues of the covari-
ance matrix of representations of each class. Interestingly,
we find that when training with fewer classes, the top eigen-
values of the covariance matrix of representations of each
class dominate, indicating that the representations of each
class lie in a long and narrow region (see Fig. 1 (a) for ex-
ample). On the other hand, for models trained with more
classes (particularly, the oracle model), the top eigenvalues
become less dominant, indicating that the representations of
each class scatter more uniformly (see Fig. 1 (b)).

We are thus motivated to enforce data representations
of each class to be more uniformly scattered at the initial
phase, which mimics the representations produced by the
oracle model. To this end, we first theoretically show that,
a group of embeddings will scatter more uniformly in the

space if its correlation matrix has smaller Frobenius norm.
We then propose to minimize the Frobenius norm of the
correlation matrix of the data representations for each class.
We refer to our regularization term as Class-wise Decor-
relation (CwD). We provide a visualization to summarize
our motivation and methodology in Fig. 1. Our proposed
CwD regularizer can serve as a generic plug-in to other CIL
methods and can be easily implemented.

Extensive experiments on various benchmark datasets
show that our CwD regularizer works well with state-of-the-
art CIL methods, yielding significant and consistent perfor-
mance gain in different settings. In addition, we also per-
form detailed ablation studies on how the effectiveness of
CwD is influenced by factors such as the number of classes
at the initial CIL phase, the number of exemplars for each
class and regularization coefficient of the CwD term.

The contributions of this paper are as follows: 1) We em-
pirically discover that encouraging the CIL learner to mimic
the oracle model in the initial phase can boost the CIL per-
formance. 2) We find that compared with naı̈vely-trained
initial-phase model, data representations of each class pro-
duced by the oracle model scatter more uniformly, and that
mimicking such representations at the initial phase can ben-
efit CIL. 3) Based on our findings, we propose a novel
Class-wise Decorrelation (CwD) regularization technique
to enforce representations of each class to scatter more uni-
formly at the initial CIL phase. 4) Extensive experiments
show that our proposed CwD regularization yields consis-
tent improvements over previous state-of-the-art methods.

2. Related Works
Two classic setups of Incremental Learning are Class In-

cremental Learning (CIL) [1,12,13,19,20,22,26] and Task
Incremental Learning (TIL) [2, 16, 21, 24, 28, 30, 31]. CIL
and TIL both split all training classes into multiple tasks
and learn them sequentially. The difference between these
two setups is that TIL allows using task information during
inference (i.e., knowing what task does test data belong to)
but the CIL does not. In this work, we focus on the setting
of CIL. The major challenge of CIL is that model perfor-
mance on previously learned classes degrades drastically af-
ter learning new classes, i.e. catastrophic forgetting [9, 23].

Many CIL methods mitigate forgetting through knowl-
edge distillation [8, 12, 18, 26, 29]. In these methods, when
learning at a new phase, the model of the previous phase
is used as the teacher, and the CIL Learner is regularized
to produce similar outputs as the teacher. In this way, the
knowledge of previously learned classes can be preserved.

However, distillation-based methods introduce the
dilemma of balancing between previously learned classes
and current classes. In particular, if the distillation term is
too large, then the model’s ability to learn new classes will
be limited. In contrast, if the distillation term is too small,



forgetting will be amplified. To mitigate this dilemma, some
methods have been proposed to maintain a good balance be-
tween old and new classes [4, 19, 32, 33].

The common focus of existing methods is on improving
CIL at phases after the initial one. Differently, we study
CIL from a less-explored perspective — improving CIL at
its initial-phase representations. Previously, [25] also stud-
ied the initial-phase representation for CIL. However, their
work focuses on the relation between over-fitting at the ini-
tial phase and CIL performance. Their main observation is
that leveraging some known generalization-improving tech-
niques (e.g., heavy-aug [6], self-distillation [10]) can im-
prove CIL. By contrast, in our work, based on the novel
observation that mimicking the oracle model at the ini-
tial phase is beneficial, we reveal how number of training
classes affects model representations, and further propose
our Class-wise Decorrelation (CwD). Unlike techniques
such as self-distillation [10] and heavy-aug [6] that brings
significant higher accuracy at initial phase, our CwD bene-
fits CIL mainly by making the initial-phase representation
more favorable for incrementally learning new classes.

Feature decorrelation has also been explored in some
other research fields. For example, [3, 14, 35] rely on fea-
ture decorrelation to solve the mode collapse problem in
self-supervised learning when negative pairs are missing,
and [5,15,34] use decorrelation to improve neural networks’
features and hence boost generalization. Differently, our
work focuses on CIL, and propose to use class-wise feature
decorrelation to mimic the oracle model.

[27] uses eigenvalue analysis on representations of Deep
Metric Learning (DML) models. They find that preventing
representations to be overly compressed can improve DML
generalization. They achieve this by randomly switching
negative samples with positive samples in the ranking loss.
Differently, our work focuses on CIL, and propose to use
class-wise feature decorrelation, which is a more effective
way to counter compression of representations.

3. Methodology
In this section, we investigate boosting CIL performance

by improving the initial-phase representations. This strat-
egy is different from most previous works.

Firstly, in Sec. 3.1, we investigate the potential of im-
proving CIL through mimicking the oracle model represen-
tations at the initial phase.

Motivated by the observation made, in Sec. 3.2, we con-
duct an eigenvalue analysis on covariance matrix of repre-
sentations of each class to study how the number of classses
used for training affects representations.

We then further develop a novel regularization term,
namely the Class-wise Decorrelation (CwD) in Sec. 3.3.
We show mathematically and experimentally that this regu-
larization term is effective in enforcing data representations

of each class to scatter more uniformly.

3.1. Directly Mimicking the Oracle Model Repre-
sentation at Initial Phase Improves CIL

In this section, we conduct an exploratory experiment to
see whether encouraging the CIL learner to directly mimic
the oracle model at the initial phase can improve perfor-
mance.

Specifically, at the initial CIL phase, we add an addi-
tional regularization term to encourage the model to output
similar representations as a oracle model, yielding the fol-
lowing objective function:

min
θ
Lce(x, y, θ) + β

(
1− fθ(x)>fθ∗(x)

‖fθ(x)‖2‖fθ∗(x)‖2

)
, (1)

where θ denotes the model parameters, and θ∗ denotes pa-
rameters of the oracle model (which are fixed). Lce(x, y, θ)
is the standard cross entropy loss, (x, y) is the input training
data-label pair, and β is a hyper-parameter controlling the
strength of the regularization. fθ(x) and fθ∗(x) denote the
representations produced by the CIL learner and the oracle
model, respectively. The second term in this objective is the
regularization that enforces fθ(x) to be similar to fθ∗(x).

We experiment on the following two protocols with Ima-
geNet100 and ResNet18 [11]: (1) the CIL learner is initially
trained on 50 classes and then incremented with 10 classes
per phase for 5 more phases; (2) the CIL learner is ini-
tially trained on 10 classes and then incremented 10 classes
per phase for 9 more phases. Under these two protocols,
we use Eqn. (1) as the optimization objective for the initial
phase with the strong baseline of LUCIR [12]. For the fol-
lowing phases, no regularization is added and the original
LUCIR [12] is applied. As can be observed in Fig. 2, the
regularization term at the initial phase can greatly improves
CIL performance. Notably, in the second protocol, although
only 10 classes are used at the initial phase, this regulariza-
tion still brings significant improvements. In addition, in
both protocols, although this regularization is only applied
at the initial phase, it negligibly improves the accuracy of
initial phase, but significantly improves the performance in
subsequent phases. This would demonstrate that the im-
provements are not due simply to an accuracy boost at the
initial phase, but because the initial-phase model is more
favorable for incrementally learning new classes.

Since the oracle model is not directly available in prac-
tice, in the following sections, we explore the characteristics
of the oracle model representations and try improving CIL
by mimicking this characteristic.

3.2. Class-wise Representations of Oracle Model
Scatter More Uniformly

Motivated by the significant improvements yielded by
mimicking the oracle model at the initial phase, we inves-
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Figure 2. The effectiveness of directly the mimicking the repre-
sentations of the oracle model at the initial phase. (a) Initially
trained on 50 classes, and then incremented with 10 classes per
phase for 5 more phases. (b) Initially trained on 10 classes and
then incremented with 10 classes per phase for 9 more phases.
The regularization coefficient β is defined in Eqn. (1). We show
the accuracy of each CIL phases. Results are averaged over 3 runs.

tigate the difference between naı̈vely-trained initial-phase
model and the oracle.

Specifically, since the oracle model is trained with more
classes than naı̈vely-trained initial-phase model, we con-
duct an eigenvalue analysis to understand how the num-
ber of classes used for training affects representations.
Using ImageNet100, we generate four subsets containing
10/25/50/100 classes, where the subset with more classes
contains the subset with fewer classes (the 10 classes of
the first subset are shared by all 4 subsets). We train four
ResNet18 models on each of the subset, and analyze the
difference on the representations.

The details of our eigenvalue analysis are elaborated as
follows. For a given class c, suppose we have n data points,
we denote Z(c)

i ∈ Rd as the model output representation on
the i-th data point of class c, and the mean vector of all rep-
resentations of class c is denoted as Z̄(c) = 1

n

∑n
i=1 Z

(c)
i .

The covariance matrix of class c’s representations is esti-
mated in an unbiased manner as

K(c) =
1

n− 1

n∑
i=1

(Z
(c)
i − Z̄

(c))(Z
(c)
i − Z̄

(c))>. (2)

Based on the estimated covariance matrix of class c’s rep-
resentations, we perform an eigendecomposition K(c) =
UΣ(c)U>, where Σ(c) is a diagonal matrix with eigenval-
ues (λ

(c)
1 , λ

(c)
2 , . . . , λ

(c)
d ) on the diagonal. Without loss of

generality, we assume that the eigenvalues are sorted in de-
scending order. To observe whether the top eigenvalues
dominate, we define

α
(c)
k :=

∑k
i=1 λ

(c)
i∑d

i=1 λ
(c)
i

∈ [0, 1], (3)

Figure 3. Visualization on how α
(c)
k changes with increasing

k for models trained with different number of classes. α(c)
k ,

which measures the proportion of variance represented by the top
k eigenvalues, is defined in Eqn. (3). We plot curve of α(c)

k for
ResNet18 models trained with 10/25/50/100 ImageNet classes.

which measures the proportion of variance represented by
the top k eigenvalues. If α(c)

k is close to 1 even when k is
small, then the top eigenvalues of K(c) dominate.

For one of the 10 shared classes among the four models,
we visualize how α

(c)
k changes with increasing k. Results

on representations of other classes show similar trend, and
are in the Appendix. As can be observed in Fig. 3, for the
model trained with only 10 classes, α(c)

k increases quickly
for k ∈ {1, 2, . . . , 10}, and then saturates at a value close
to 1 as k keep increasing. This shows that for the 10 class
model, the top eigenvalues dominate for covariance matrix
of data representations of each class, indicating that data
representations lie in a long and narrow region. In addition,
for any fixed k, α(c)

k strictly decreases as the model is being
trained with more classes. This shows that, as the model
is trained with more classes, the top k eigenvalues become
less dominant, suggesting that the data representations of
each class scatter more uniformly.

Since the oracle model is trained with more classes than
the naı̈vely-trained initial-phase model, class-wise data rep-
resentations of the oracle model scatter more uniformly.

3.3. Class-wise Decorrelation

The observation in Sec. 3.2 suggests that one way to en-
courage the CIL learner to mimic the oracle model at the
initial phase is to enforce data representations of each class
to scatter more uniformly.

This can be achieved by adding the following regulariza-
tion objective for each class c in the initial phase:

L
(c)
shape =

1

d

d∑
i=1

(
λ
(c)
i −

1

d

d∑
j=1

λ
(c)
j

)2

, (4)

where d is dimension of the representation space. Minimiz-
ing this objective will enforce all eigenvalues to be close,



(a) 10 classes (b) 25 classes (c) 50 classes

Figure 4. Effects of class-wise decorrelation on representations of each class. α(c)
k , which measures the proportion of variance repre-

sented by the top k eigenvalues, is defined in Eqn. (3). η is the CwD coefficient used in Eqn. (9). We plot curve of α(c)
k with or without

CwD objective when training with 10/25/50 classes. We also plot the curve for the model trained on all 100 classes for comparison.

preventing the top eigenvalues to dominate and encourag-
ing the data representations of class c to scatter more uni-
formly. However, this regularization objective is not practi-
cal because computing eigenvalues is expensive.

In order to achieve our desired regularization in an
implementation-friendly way, we first normalize all repre-
sentations of class c by

Z
(c)
i :=

Z
(c)
i − Z̄(c)

σ(c)(Z)
, (5)

where σ(c)(Z) ∈ Rd is the vector of standard deviations
all the representations, and the division is done element-
wise. This normalization results in the covariance matrix
K(c) (defined in Eqn. (2)) being equivalent to a correlation
matrix, which satisfies

d∑
j=1

λ
(c)
j = Tr(K(c)) = d, (6)

where Tr(·) is the matrix trace operator and d is the dimen-
sion of K(c).

Then, by the following proposition, we can relate the
Frobenius norm of a correlation matrix and its eigenvalues.

Proposition 1. For a d-by-d correlation matrix K and its
eigenvalues (λ1, λ2, . . . , λd), we have:

d∑
i=1

(
λi −

1

d

d∑
j=1

λj

)2

= ‖K‖2F − d. (7)

The proof of this proposition is given in the Appendix. It
shows that for any correlation matrixK, minimizing Lshape

defined in Eqn. (4) is equivalent to minimizing ‖K‖2F.
With this proposition, we convert the impractical reg-

ularization in Eqn. (4) into the Class-wise Decorrelation
(CwD) objective below, which penalizes ‖K(c)‖2F for every
class c:

LCwD(θ) =
1

C · d2
C∑
c=1

‖K(c)‖2F, (8)

Algorithm 1 PyTorch-style pseudocode for CwD.

# N: batch size
# d: representation dimension
# z: a batch of representation, with shape (N, d)
# y: a batch of label corresponding to z
def class_wise_decorrelation_loss(z, y):

loss_cwd = 0.0 # initialize cwd loss
unique_y = y.unique() # all classes in the batch
for c in unique_y:

# obtain all representation of class c
z_c = z[y==c, :]
N_c = z_c.size(0)

# skip if class c only have 1 sample
if N_c == 1:

continue

# normalize representation as in eq.(5)
z_c = (z_c - z_c.mean(0)) / z_c.std(0))
# estimate correlation matrix
corr_mat = 1/(N_c-1)*torch.matmul(z_c.t(), z_c)
# calculate CwD loss for class c
loss_cwd += (corr_mat.pow(2)).mean()

return loss_cwd

where C is the number of classes used when training at the
initial phase, K(c) is the correlation matrix of class c es-
timated over the training data batch. Note that K(c) is a
function of the parameters θ through its eigenvalues λi.

Therefore, the overall optimization objective at the initial
phase is:

min
θ
Lce(x, y, θ) + η · LCwD(θ), (9)

where η is the hyper-parameter controlling strength of our
CwD objective. A Pytorch-style pseudocode for our pro-
posed CwD regularization is given in Algorithm 1.

To empirically verify that our proposed LCwD is indeed
effective in encouraging representations of each class to
scatter more uniformly, we conduct the same eigenvalue
analysis as in Sec. 3.2. We apply LCwD to conduct exper-
iments with the same 10/25/50-class settings in Sec. 3.2.
As can be seen in Fig. 4, applying LCwD can effectively
decrease α(c)

k for every fixed k and every model, and using
larger η will decrease α(c)

k more. These observations show
that the data representations of each class scatter more uni-
formly after applying LCwD.



Method
CIFAR100 (B=50) ImageNet100 (B=50) ImageNet (B=100)

S=10 5 2 10 5 2 100 50

LwF [18] 53.59±0.51 48.66±0.58 45.56±0.28 53.62† 47.64† 44.32† 40.86±0.13 27.72±0.12

iCaRL [26] 60.82±0.03 53.74±0.25 47.86±0.41 65.44† 59.88† 52.97† 49.56±0.09 42.61±0.15

BiC [33] 51.58±0.16 48.07±0.02 43.10±0.37 70.07† 64.96† 57.73† 43.23±0.13 38.83±0.12

LUCIR [12] 66.27±0.28 60.80±0.29 52.96±0.25 70.60±0.43 67.76±0.40 62.76±0.22 56.40±0.10 52.75±0.18

+CwD (ours) 67.26±0.16 62.89±0.09 56.81±0.21 71.94±0.11 69.34±0.31 65.10±0.59 57.42±0.11 53.37±0.22

PODNet [8] 66.98±0.13 63.76±0.48 61.00±0.18 75.71±0.37 72.80±0.35 65.57±0.41 57.01±0.12 54.06±0.09

+CwD (ours) 67.44±0.35 64.64±0.38 62.24±0.32 76.91±0.10 74.34±0.02 67.42±0.07 58.18±0.20 56.01±0.14

AANet [19] 69.79±0.21 67.97±0.26 64.92±0.30 71.96±0.12 70.05±0.63 67.28±0.34 51.76∗±0.14 46.86∗±0.13

+CwD (ours) 70.30±0.37 68.62±0.17 66.17±0.13 72.92±0.29 71.10±0.16 68.18±0.27 52.30∗±0.08 47.61∗±0.20

Table 1. Comparison of average incremental accuracy (%) with or without Class-wise Decorrelation (CwD) at the initial phase.
B denotes number of classes learned at initial phase and S denotes number of classes learned per phase after the initial one. Number of
exemplars for each class is 20. For AANet, we use its version based on LUCIR [12]. AANet [19] on ImageNet (denoted by ∗) is running
without class-balance finetuning after each phase due to missing implementation in its code. All results are (re)produced by us except the
ones denoted by †, which are taken from [19]. Results (re)produced by us are averaged over 3 runs (mean±std).

4. Experiments

In this section, we first elaborate on the experimental se-
tups in Sec. 4.1. Next, in Sec. 4.2, we add our proposed
Class-wise Decorrelation (CwD) on some State-Of-the-Art
(SOTA) methods [8, 12, 19] to validate its effectiveness. Fi-
nally, in Sec. 4.3, we provide ablation study on how factors
such as number of classes of the initial phase, number of ex-
emplars for each class, and CwD coefficient (η in Eqn. (9))
affects our proposed method. In addition, empirical com-
parison between our CwD and other decorrelation methods
are given in the Appendix.

4.1. Settings

Datasets: We briefly introduce the 3 datasets used in
our experiments: CIFAR100 [17] contains 100 classes, with
60000 samples, and the size of each image is 32 × 32; Im-
ageNet [7] contains 1000 classes, with ≈ 1.3 million sam-
ples, and the size of each image is 224×224; ImageNet100
is a 100-class subset of the full ImageNet [7], which is gen-
erated similarly as in [8, 12, 19]. The classes of all datasets
are first shuffled using seed 1993 as in [12,13,19,20,26,29],
and then split into multiple phases.

Implementation Details: For all experiments, we use
ResNet18 [11] and the SGD optimizer, with the initial learn-
ing rate of 0.1, momentum of 0.9 and batch size of 128. The
strategy of Herding [8,12,19,26] is used to select exemplars
after each phase. For experiments based on CIFAR100, in
each CIL phase, all models are trained for 160 epochs and
the learning rate is divided by 10 at the 80-th and 120-th
epoch. For experiments based on ImageNet100/ImageNet,
in each phase, all models are trained for 90 epochs and the

learning rate is divided by 10 at the 30-th and 60-th epoch.
When performing CIL, we reserve a constant number

of exemplars for each previously learned class as had been
done in [8, 12, 19, 20].

Baselines: We apply our proposed CwD to the following
three strong SOTA baselines: LUCIR [12], PODNet [8],
and AANet [19]. For AANet, we use its version based on
LUCIR [12]. In addition, we also report results of some
other classical methods, including LwF [18], iCaRL [26]
and BiC [33] for comparison.

Evaluation Metric: We use the the average incremental
accuracy to evaluate performance of CIL methods as in [8,
12, 13, 19, 20]. Formally, suppose the CIL is conducted for
N + 1 phases and test accuracy at the i-th phase is Ai, then
the average increment accuracy is defined as:

Ā =
1

N + 1

N∑
i=0

Ai. (10)

4.2. CwD improves previous SOTA methods

In this section, we add our proposed CwD on three previ-
ous SOTA methods, namely LUCIR [12], PODNet [8] and
AANet [19], to validate the effectiveness of our method. We
denote the number of classes learned at initial phase by B
and number of new classes learned per phase after the initial
one by S. For CIFAR100 and ImageNet100, we evaluate
our methods with three protocols: learning with B = 50 at
the initial phase, and then learning with S = 10/5/2 for the
rest of the classes. For ImageNet, we evaluate our methods
with two protocols: learning with B = 100 at the initial
phase, and then learning with S = 100/50 for the rest of
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Figure 5. Accuracy at each phase. With ImageNet100, learning 50 classes at initial phase and 5 classes per phase for the rest 50 classes.
Shading areas denote standard deviation.

the classes. The number of exemplars of each class is 20
for these experiments. The experimental results are shown
in Tab. 1.

As shown in Tab. 1, across various CIL benchmarks,
CwD can consistently improve the average incremental ac-
curacy of previous SOTAs by around 1% to 3%. In par-
ticular, as we increment with fewer classes per phase (i.e.,
smaller S), the improvements provided by adding CwD at
the initial phase is more apparent. For example, with LU-
CIR [12] on CIFAR100 and ImageNet100 when S = 2,
CwD can improve the baseline performance by up to 3.85%
and 2.34%, respectively. This shows that, in settings that
are more challenging (e.g., with longer incremental learn-
ing sequences), our CwD can be even more effective.

Furthermore, in the large-scale CIL setting of ImageNet,
CwD enables the weaker baseline LUCIR [12] to compete
with or even outperform the stronger baseline PODNet [8].

To further understand CwD’s improvement at each
phase, we plot how each method’s accuracy at each phase
(i.e., Ai in Eqn. (10)) changes as CIL proceeds on Ima-
geNet100 with S = 5. From Fig. 5, we observe similar
situation as directly mimic oracle model representation (see
Fig. 2): our CwD barely affects accuracy at the initial phase,
but bring strong improvements when learning at the follow-
ing phases. This shows that the improvements by CwD on
average incremental accuracy is not due to naı̈ve perfor-
mance improvements on the initial phase, but mainly due
to an initial-phase representation that is favorable for incre-
mentally learning new classes.

4.3. Ablation study

In this section, we study how the following factors af-
fect the effectiveness of CwD: (1) number of classes for the
initial phase, (2) number of exemplars, and (3) CwD co-
efficient (η in Eqn. (9)). Experiments in this section are
based on LUCIR [12], with the ResNet18 model and the
ImageNet100 dataset.

Ablation on the number of classes of the initial phase.
We vary the number of classes learned at the initial phase
(denoted by B) from 10 to 50 and run LUCIR [12] with or
without our CwD. From the results in Tab. 2, we can see
that, even when B = 10, CwD can bring a notable im-

S B LUCIR +CwD (ours) ↑

10

10 57.01±0.14 57.90±0.07 +0.89
20 61.21±0.35 62.49±0.36 +1.28
30 64.82±0.38 66.54±0.35 +1.72
40 67.68±0.37 69.70±0.10 +2.02
50 70.60±0.43 71.94±0.11 +1.33

5

10 50.47±0.31 51.92±0.10 +1.45
20 56.41±0.37 58.14±0.13 +1.73
30 61.00±0.09 63.18±0.14 +2.18
40 63.73±0.23 66.25±0.16 +2.52
50 67.76±0.40 69.34±0.31 +1.58

Table 2. Ablation study on impact of number of classes of the
initial phase. In these experiments, we learn B classes at the ini-
tial phase, and then learn the rest of the classes with S classes per
phase. Number of exemplars is set to 20 for each class. Average
incremental accuracy (%) is reported. All results (mean±std) are
produced by us, and are averaged over 3 runs.

provements (0.89% when S = 10 and 1.45% when S = 5).
This shows that our CwD can improve CIL even when there
is only a few number of classes in the initial phase. Note
that this setting is quite challenging, since CwD can only
directly affect representations of 10 out of 100 classes.

Additionally, as B increases, the performance of CwD
first increases and reaches the peak when B = 40 (2.02%
and 2.52% when S = 10 and 5 respectively), and then de-
creases. We posit that the reason for this increasing-then-
decreasing trend is that, as B increases from 10 to 40, CwD
can directly affect representations of more classes (in the
initial phase), which enables it to yield greater improve-
ments. However, as B continues increasing from 40 to 50,
the gap between CIL and jointly training with all classes
shrinks, resulting in less room for improvement of CIL.

Ablation on the number of exemplars. In this ablation,
we vary the number of exemplars per class (denoted by R)
and run LUCIR [12] with or without CwD.

As can be observed in Tab. 3, with more exemplars per
class (e.g., R = 40), the gap between CIL and jointly train-
ing with all classes is smaller, resulting in a still notable



S R LUCIR +CwD (ours) ↑

10

40 72.41±0.61 73.29±0.11 +0.88
30 71.70±0.37 72.63±0.15 +0.93
20 70.60±0.43 71.94±0.11 +1.34
10 68.73±0.52 69.77±0.04 +1.04
5 66.49±0.52 67.63±0.07 +1.14

5

40 70.74±0.49 72.06±0.11 +1.32
30 68.56±0.42 70.04±0.12 +1.44
20 67.76±0.40 69.34±0.31 +1.58
10 64.07±0.38 66.07±0.46 +2.00
5 60.41±0.77 62.58±0.53 +2.17

Table 3. Ablation study on impact of number of exemplars. In
these experiments, we learn 50 classes at the initial phase, and then
learn the rest of the classes with S classes per phase. Number of
exemplars for each class is R. Average incremental accuracy (%)
is reported. All results (mean±std) are produced by us, and are
averaged over 3 runs.

Av
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cc
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)

(a) Init. 50 then 10/phase

(b) Init. 50 then 5/phase

Figure 6. Impact of CwD Coefficient (η in Eqn. (9)). Average
incremental accuracy (%) is reported. Results are averaged over 3
runs. Shadowed region denotes intervals that CwD is robust to η.

but smaller improvements (0.88% when S = 10 and 1.32%
when S = 5). As R decrease, improvements provided by
our CwD generally increase, reaching 1.34% when S = 10
and R = 20, and 2.17% when S = 5 and R = 5. This
shows that our CwD yields more significant improvements
in the more challenging setting with less exemplars.

Ablation on the CwD coefficient. In this ablation, we
study how the average incremental accuracy changes when
CwD coefficient (i.e., η in Eqn. (9)) varies in the range of

[0, 1.25]. This ablation is based on LUCIR [12] and Im-
ageNet100, with two CIL protocols that initially learn 50
classes and then learn 10/5 classes per phase for the rest.

From Fig. 6, we can see that, with both protocols, as η
increases, the performance improvement brought by CwD
first increases, then plateaus, and finally decrease.

The stable performance improvement (i.e., the plateau
interval) suggests that our CwD is robust to the choice of
η. Furthermore, the plateau interval of the second proto-
col is larger than that of the first protocol ([0.25, 1.0] vs
[0.25, 0.75]), indicating that our CwD is even more robust
to η when the incremental learning sequence is longer.

When the η is too large (e.g., larger than 0.75 for the
first protocol and 1.0 for the second), the performance gain
demonstrates a decreasing trend. The reason might be that
an excessively large penalization on the Frobenius norm of
class-wise correlation matrix would make the representa-
tions of each class to spread out drastically, resulting in
large overlaps among representations of different classes.
This is further studied in the Appendix.

5. Conclusion

In this work, we study Class Incremental Learning (CIL)
from a previously underexplored viewpoint — improving
CIL by mimicking the oracle model representation at the
initial phase. Through extensive experimental analysis, we
show the tremendous potential of this viewpoint. We pro-
pose a novel CwD regularization term for improving the
representation of the initial phase. Our CwD regularizer
yields consistent and significant performance improvements
over three previous SOTA methods across multiple bench-
mark datasets with different scales.

Although we have developed our method through obser-
vations on the differences between the oracle model and the
naı̈vely-trained initial-phase model, the underlying reason
why more uniformly scattered representations for each class
benefit CIL is still yet to be explored. Some analysis on why
CwD improves CIL are provided in the Appendix, but we
leave more rigorous understandings as future works.
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A. Proof of Proposition 1 (Main text Sec. 2.3)
Proof. Recall that for a d-by-d correlation matrix K, we have:

d∑
i=1

λ
(c)
i = Tr(K) = d. (11)

This is because for a square matrix, summation of eigenvalues equals trace of the matrix. In addition, for a correlation matrix,
all its diagonal elements are 1, which results in tr(K) = d.

Next, for the left hand side of the equation, we have:

d∑
i=1

(λi −
1

d

d∑
j=1

λj)
2 =

d∑
i=1

(λi − 1)2 (Plug-in Eqn. (11))

=

d∑
i=1

λ2i − 2

d∑
i=1

λi + d

=

d∑
i=1

λ2i − d (Plug-in Eqn. (11)).

(12)

Next, for the right hand side, we have:

‖K‖2F − d = Tr(KTK)− d
= Tr(UΣUTUΣUT )− d (Applying eigendecomposition on K)

= Tr(UΣ2UT )− d

=

n∑
i=1

λ2i − d.

(13)

Therefore, we have shown that left hand side of the equation equals the right hand side.

B. More Analysis on Why CwD Improves CIL
Although we have developed our method through observations on the differences between the oracle model and the

naı̈vely-trained initial-phase model, the underlying reason why more uniformly scattered representations for each class benefit
CIL is still yet to be explored.

In this section, we provide additional analysis on the effectiveness of CwD. We posit the reason why CwD improves CIL
is as follow: after applying CwD, data representations produced by the model are not overly compressed. That being said,
the representations will contain more information about input data besides the information useful for classification at the
initial phase. Although these additional information are not useful for classification at the initial phase, they can be useful for
discriminating between classes of the initial phase and future phases, which will improve CIL when incrementally learning
new classes.

To quantitatively validate that CwD helps preserve more information in representations beyond classification at initial
phase, we adopt the information theoretic quantity I(X;Z|Y ), where random variableX is input data, Z is the representation
produced by model givenX , and Y ∈ {1, 2, ..., C} is the label ofX . I(X;Z|Y ) is the conditional mutual information, which
characterizes, how much information is left in Z about X when conditioned on knowing Y . Therefore, larger I(X;Z|Y )
implies that more information about X are preserved in Z besides the purpose of discriminating classes in {1, 2, ..., C}.

In addition, following the exposition in the main text, we denote the covariance matrix of Z|Y = c as K(c). The number
of classes at the initial phase is denoted by C. We view Z and X as discrete random variable1. In addition, we assume
that PZ|Y (z|c) is a quantized Gaussian distribution. That is to say, although Z|y = c is a discrete random variable, its
probability mass function is infinitely close to the density function of a Gaussian distribution pZ|Y (z|c). Therefore, we
shall have: PZ|Y (z|c) = pZ|Y (z|c)δ.

1This is reasonable because as we know, each pixel of an image is represented by 3× 8 = 24 bits, which makes an image a discrete random variable.



Figure 7. Visualization on how I(X;Z|Y ) change with increasing η. X-Axis is η. Y-Axis is 1
C

∑C
c=1

∑d
i=1 log λ

(c)
i = 1

a
(I(X;Z|Y )−

b) as derived in Eqn. (15). Note that here Y-Axis is negative because it is conditional mutual information minus a very large positive
constant.

To start with, we study I(X;Z|Y = c), which is the mutual information between X and Z conditioned on Y being a
specific class c:

I(X;Z|Y = c) = H(Z|Y = c)−H(Z|X,Y = c)

= H(Z|Y = c) + 0 (Z is deterministic conditioned on X .)

=
∑
z∈Z

PZ|Y (z|c)δ log
1

PZ|Y (z|c)δ

≈
∫
Z
−pZ|Y (z|c) log pZ|Y (z|c) + log

1

δ

= a log det(K(c)) + b (closed-form solution of differential entropy on Gaussian variables.)

= a

d∑
i=1

log λ
(c)
i + b,

(14)

where a, b are positive constant. Furthermore, we assume that probability of one sample being any class are the same, which
further leads to:

I(X;Z|Y ) =

C∑
c=1

p(Y = c)I(X;Z|Y = c)

= a
1

C

C∑
c=1

d∑
i=1

log λ
(c)
i + b.

(15)

To this end, we have obtained an estimation on I(X;Z|Y ) given Eqn. (15).
Based on what we have derived in Eqn. (15), we can visualize 1

C

∑C
c=1

∑d
i=1 log λ

(c)
i as an proxy of I(X;Z|Y ). In this

way, we can get to know how I(X;Z|Y ) varies for model trained with different CwD coefficient (i.e., η in eq. (9) of main
text). Results are shown in Fig. 7.

As can be seen, with larger η, I(X;Z|Y ) consistently increase. This means that as we increase η, representation Z will
contain more information about X besides information useful for classification at initial phase. Although these additional
information are not useful for classification at initial phase, they could be useful for discriminating between classes of initial
phase and future phases. In this way, CwD might be beneficial for incrementally learning new classes.



We leave more systematic and rigorous studies on why CwD can help CIL as future works.

C. Analysis on Why CwD Coefficient Being Too Large is Bad (Main text Sec. 3.3)
In the third ablation study of Sec. 3.3 of main text, we ablate how the CwD Coefficient (i.e., η in eq. (9) of main text)

affect the improvements brought by CwD. From the results, we find that as we increase η, performance gain brought by CwD
will eventually decrease when η is too large.

To understand this phenomenon, we define the volume occupied by representations of class c as V (c). By assuming
representations of class c are Gaussian distributed, we have:

V (c) ∝
d∏
i=1

λ
(c)
i , (16)

where (λ
(c)
1 , ..., λ

(c)
d ) are eigenvalues of the covariance matrix of representations of class c. This is based on the geometric

interpretation of eigenvalues of covariance matrix. Further, combining Eqn. (16) with Eqn. (14), we have:

log V (c) ∝
d∑
i=1

log λ
(c)
i ∝ I(X;Z|Y = c). (17)

Based on Eqn. (17) and the observation in Sec. B that I(X;Z|Y = c) consistently increase with increasing η, we know that
representations of class c will occupy more volume in representation space when η increase. Therefore, when η is too large,
representations of initial phase classes will occupy too much space, causing large overlaps with classes in future phases.

Phase 0: Phase 1: 

(a) Naive Training (b) CwD

Figure 8. Visualization of representations (normalized to the unit sphere) in a two-phase CIL setting (learning 2 classes for each phase).
(a) Naı̈ve training at the initial phase (a.k.a., phase 0) but visualize on data of both phase 0 and phase 1 (i.e., including all 4 classes). The
model has not been trained on class 3 and class 4, but data representations of these class still lie in a long and narrow region between
representations of class 1 and class 2. (b) Training with CwD at the initial phase (a.k.a., phase 0) but visualize on data of both phase 0 and
phase 1. With our CwD, not only representations of class 1 and class 2 scatter more uniformly, representations of class 3 and class 4 also
scatter more uniformly in the space.

D. Extended Visualization on Figure 1 of Main Text
More Details on Setups in Figure 1 of Main Text. For the two-phase CIL setting, each phase contains 2 classes from

CIFAR100. We train an AlexNet model for visualization. The representation dimension of AlexNet is set to 3 for convenience
of visualization. Representations are normalized to unit sphere as done in LUCIR [12].

Extended Visualizations. Here, we extended visualization of Figure 1 (a) and Figure 1 (d) of main text. Although for
these two figures, the model is only trained on the 2 classes of initial phase, we visualize data representations of all four
classes. Results are shown in Fig. 8.

Surprisingly, from the figure, we can see that when naı̈vely traiend on the 2 classes of initial phase, data representations
of the other 2 classes (i.e., class 3 and class 4) also only lies in the long and narrow region between representations of class 1



and class 2. However, after applying our CwD, data representations of class 3 and class 4 are also more uniformly scattered
in representation space. These phenomenon further suggest that applying our CwD can enforce representation to preserve
more information about input data, and thus benefit CIL.

(a) class 2 (b) class 3 (c) class 4

(d) class 5 (e) class 6 (f) class 7

(g) class 8 (h) class 9 (I) class 10

Figure 9. Visualization on how α
(c)
k changes with increasing k for models trained with different number of classes. α(c)

k curve
generated by the model trained on 10/25/50/100 classes are denoted by blue/orange/green/red, respectively. From left to right, top to
bottom are figures based on representations of class 2 to 10, respectively. The figure generated by representations of class 1 is shown in the
main text.



E. More Visualizations on Other Classes (Main text Sec. 2.2)

In the Sec. 2.2 of main text, based on ImageNet100, we generate four subsets containing 10/25/50/100 classes, where the
subset with more classes contains the subset with fewer classes (the 10 classes of the first subset are shared by all 4 subsets).
Based on these four subsets, we train four ResNet18 models. Next, given the four ResNet18 models trained on different
number of classes, we visualize α(c)

k for representations of one of the 10 shared classes. Here, we provide the visualization
for the other 9 classes. The results are shown in Fig. 9. As can be observed, for the other 9 shared classes, curve of α(c)

k

show the similar trend as class 1 shown in the main text, i.e., for every fixed k, α(c)
k consistently decrease as the model being

trained with more classes. These results further validated our observations mentioned in main text Sec. 2.2: as the model
being jointly trained with more number of classes, representations of each class scatter more uniformly.

F. Comparison with Other Decorrelation Methods.

As we mentioned in the main text, there are some works in other fields that utilized feature decorrelation for other purposes
(e.g. boosting generalization). Here, we provide comparison between CwD and some of other decorrelation methods [5, 34]
under CIL setting.

Specifically, based on LUCIR, we first use a ResNet18 to learn 50 classes of ImageNet100 at the initial phase, and then
learn 10 new classes per phase. We apply DC [5], SDC [34], and CwD at the initial phase, respectively (see Tab. 4). Our
results show that although adding DC and SDC at initial phase can also boost CIL performance due to their decorrelation
effects, the improvement brought by CwD is larger. The advantage of CwD is possibly because treating each class separately
can better mimic representations of oracle model.

Methods LUCIR +DC +SDC +CwD (Ours)
Acc. 70.60±0.43 71.39±0.21 71.52±0.40 71.94±0.11

Table 4. Comparing CwD with other decorrelation methods. Average Incremental Accuracy (%) is reported. All results (mean±std)
are averaged over 3 runs.

G. Why not apply CwD in “later phases”?

Based on our observations, adding CwD to the later phases is unnecessary. This is because once we apply CwD at the
initial phase, representations of later phase classes will automatically be decorrelated. To see this, we apply eigenvalue
analysis as in Sec. 2.2 of our paper. We analyze representations of a class learned at a later phase with the following three
models: 1) naı̈ve LUCIR model incrementally learned all classes; 2) LUCIR with CwD at initial phase; 3) oracle model.
Results are shown in Fig. 10. Our results show that even though we only apply CwD at initial phase, representations of the
class learned at later phases will also mimic oracle model.

Figure 10. Visualization of how α
(c)
k defined in Eqn. (3) (of the main paper) varies with increasing k for different models.



H. What If Keep Increasing β in Fig. 2 in Main Paper.
According to our experiments, β > 15 (e.g. β = 30) yields similar performance as β = 15. Results are shown in Fig. 11.
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Figure 11. Exploratory experiments the same as Fig. 2 in main paper. β = 30 is added comparing to Fig. 2 of main paper. As one can
observe, β = 30 yields approximately the same results as β = 15.


	1 . Introduction
	2 . Related Works
	3 . Methodology
	3.1 . Directly Mimicking the Oracle Model Representation at Initial Phase Improves CIL
	3.2 . Class-wise Representations of Oracle Model Scatter More Uniformly
	3.3 . Class-wise Decorrelation

	4 . Experiments
	4.1 . Settings
	4.2 . CwD improves previous SOTA methods
	4.3 . Ablation study

	5 . Conclusion
	A . Proof of Proposition 1 (Main text Sec. 2.3)
	B . More Analysis on Why CwD Improves CIL
	C . Analysis on Why CwD Coefficient Being Too Large is Bad (Main text Sec. 3.3)
	D . Extended Visualization on Figure 1 of Main Text
	E . More Visualizations on Other Classes (Main text Sec. 2.2)
	F . Comparison with Other Decorrelation Methods.
	G . Why not apply CwD in ``later phases''?
	H . What If Keep Increasing  in Fig. 2 in Main Paper.

