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Objective:Psychiatricdisorderscommonlycomprisecomorbid
symptoms, suchas autismspectrumdisorder (ASD), obsessive-
compulsive disorder (OCD), and attention deficit hyperactivity
disorder (ADHD), raising controversies over accurate diagnosis
and overlap of their neural underpinnings. The authors used
noninvasive neuroimaging in humans and nonhuman pri-
mates to identify neural markers associated with DSM-5
diagnoses and quantitative measures of symptom severity.

Methods: Resting-state functional connectivity data obtained
from both wild-type and methyl-CpG binding protein
2 (MECP2) transgenic monkeys were used to construct
monkey-derived classifiers for diagnostic classification in four
human data sets (ASD: Autism Brain Imaging Data Exchange
[ABIDE-I], N=1,112; ABIDE-II, N=1,114; ADHD-200 sample:
N=776; OCD local institutional database: N=186). Stepwise
linear regressionmodelswereapplied toexamineassociations
betweenfunctionalconnectionsofmonkey-derivedclassifiers
and dimensional symptom severity of psychiatric disorders.

Results: Nine core regions prominently distributed in frontal
and temporal cortices were identified in monkeys and used
as seeds to construct the monkey-derived classifier that in-
formed diagnostic classification in human autism. This same
setofcoreregionswasuseful fordiagnosticclassification in the
OCD cohort but not the ADHD cohort. Models based on
functional connections of the right ventrolateral prefrontal
cortex with the left thalamus and right prefrontal polar cor-
tex predicted communication scores of ASD patients and
compulsivity scores of OCD patients, respectively.

Conclusions: The identified core regionsmay serve as a basis
for building markers for ASD and OCD diagnoses, as well as
measures of symptom severity. These findings may inform
future development of machine-learning models for psy-
chiatric disorders and may improve the accuracy and speed
of clinical assessments.

Am J Psychiatry 2021; 178:65–76; doi: 10.1176/appi.ajp.2020.19101091

The pursuit of imaging-based biomarkers for autism spec-
trum disorder (ASD) has been challenged by a lack of bi-
ological accounts (1, 2) and divergent research results (3–5),
owing largely to the constraints of ASD’s substantial het-
erogeneity and comorbidity with other diseases, such as
obsessive-compulsive disorder (OCD) and attention deficit
hyperactivity disorder (ADHD) (6–8). The high frequency of
comorbidity could be a result of shared genetic vulnerability
and pathophysiology, secondary effects of growing up with
autism, shared symptom domains and associated mecha-
nisms, or overlapping diagnostic criteria (9, 10). Emerging
evidence from recent trans-diagnostic neuroimaging studies
reveals that ASD-ADHD and ASD-OCD may share common
features of a dysfunctional brain network, such as regions of
high hubness (7, 11). Given the daunting clinical heteroge-
neity of ASD, a subset of homogeneous samples with a single
genetic etiology may help disentangle the complexity of ASD

by establishing a tangible, symptom-related pathway from
gene to brain to behavior (12). As extensively demonstrated
in both humans (13) and rodent models (14, 15), methyl-CpG
binding protein 2 (MECP2) is one of few exceptional genes
causing autistic features, including intellectual disability,
motor dysfunction, anxiety, and social behavior deficits.
Mutation of the X-linked MECP2 gene is found in 90%
of patients with Rett syndrome. Duplications of MECP2-
containing genomic segments cause MECP2 duplication
syndrome, which shares core symptoms with ASD (13, 16).
Themost recent reports on nonhuman primates have further
demonstrated that MECP2 gain and loss of function in ge-
netically engineered monkeys recapitulate typical pheno-
types in autism, such as less active social contact, increased
stereotypical behaviors, and elevated anxiety (17, 18). More
efficiently, acute viral-based molecular manipulation in the
primate amygdala has been successfully used to probe a
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causal role for multiple components of the circuit that may
underlie early-life anxiety (19–21). Cumulative evidence from
primate genetic models suggests that they have substantial
potential to deepen our mechanistic understanding of psy-
chiatric disorders and inform the development of effective
therapeutics (12, 17, 18, 22).

Comparative analyses of brain connectomics in closely
related species demonstrate a functional resemblance be-
tween macaque monkeys and humans under healthy con-
ditions (23–25) and have laid the foundation for exploiting
knowledge acquired fromnonhumanprimate diseasemodels
to identify viable diagnostic markers for human brain dis-
orders. Nevertheless, there exists no translational road map
that describes the brain-wide mapping of neural circuits
between a primate genetic model and human psychiatric
patients (26).Thus,weproposeanovel cross-speciesmachine-
learning framework that leverages connectome-based fea-
tures learned from a primate genetic model of autism and
then builds a classifier for diagnostic utility in humans.

The conceptual design of this cross-species framework
originated from considering what features can be learned from
the monkey model that capture the underlying neural patho-
physiology that is likely shared with ASD patients. Within the
network graph setting (25), two basic elements of brain
circuitry—nodes (brain regions) and interconnecting edges
(connections between pairs of nodes)—are considered (25, 27).
Our intuitionwas that characteristics ofnodes aremore likely to
be homologous between the primate species, given the sub-
stantial variations of edges subserving species-specific behav-
ioralandcognitiveadaptations (22,25,28).Moreover, supposing
that only a subset of brain regions (not the entire brain) are
particularly relevant to the core neuropathology of autism
(termed “core regions”here) (4, 29),wededuced that only these
core regions are useful for significantly reducing the complexity
of cross-species mapping of this framework (Figure 1A).

We therefore adopted the group lasso feature selection
process (30, 31) to determine core regions by treating all edges
connecting to one region as a group (i.e., rows in an adjacency
matrix). Next, we performed a one-to-one mapping of the
identified core regions in the human brain network and used
them as seeds to construct classifiers for patient classification.
By using whole-brain functional connectivity data sets ob-
tained from wild-type and MECP2 transgenic monkeys (17)
and from four human data sets—the Autism Brain Imaging
Data Exchange (ABIDE-I), N=1,112 (3); ABIDE-II, N=1,114
(32); the ADHD-200 sample, N=776 (33); and an OCD local
institutional database (N=186) (34)—we aimed to test two
specific hypotheses: whether the monkey-derived features
(coreregions)couldinformdiagnosticclassification intheASD
cohort and whether these monkey-derived features could be
generalized to differentiate patients from healthy comparison
subjects in the OCD and ADHD cohorts. To further parse the
biological accountsof themonkey-derivedclassifiers, stepwise
linear regression models based on features (i.e., functional
connections of the monkey-derived classifiers) were built to
predict clinical measures of symptom severity in patients.

METHODS

Data Sets
In this study, we included one monkey data set and four
independent human data sets. The monkey data set com-
prised fiveMECP2-duplication transgenicmonkeys (Macaca
fascicularis: mean age, 4.40 years [SD=0.29], mean weight,
3.26 kg [SD=0.75]; two males and three females) and 11 wild-
type monkeys (Macaca fascicularis: mean age, 4.68 years
[SD=0.46], mean weight, 3.97 kg [SD=1.36]; four males and
seven females). Characteristics of the monkey data set are
provided in Table S1 in the online supplement. All experi-
mental procedures for animal subjects were approved by the
InstitutionalAnimalCare andUseCommittee of the Institute
of Neuroscience and the Biomedical Research Ethics Com-
mittee of the Shanghai Institutes for Biological Sciences,
ChineseAcademyof Sciences, and conformed to theNational
Institutes of Health guidelines for the humane care and use
of laboratory animals. Details of animal preparation are pro-
vided in the online supplement.

We analyzed data from the two publicly available ABIDE
repositories, ABIDE-I (3) and ABIDE-II (32), one ADHD
cohort from theADHD-200 sample (33), andoneOCDcohort
from our local institutional database. Similar to other ABIDE
and ADHD studies, inclusion and exclusion criteria for
participants included right-handedness, a full IQ score.80,
known current medication status, and images accepted after
quality control and meeting head motion criteria. Additional
information on the characteristics of the study participants is
provided in the online supplement. Data were available for a
total of 336 study subjects fromABIDE-I (ASD group: N=133,
male:female ratio, 118:15; healthy control group:N=203,male:
female ratio, 167:36) (see also Table S2 in the online sup-
plement), 149 study subjects from ABIDE-II (ASD group:
N=60, male:female ratio, 56:4; healthy control group: N=89,
male:female ratio, 62:27) (see also Table S3 in the online
supplement), and 266 study subjects from the ADHD-200
cohort (ADHDgroup: N=96,male:female ratio, 79:17; healthy
control group: N=170, male:female ratio, 97:73) (see also
Table S4 in the online supplement). For the OCD data set,
exclusion criteria were translation or rotation in any axis of
head motion larger than 3 mm or 3° during scanning; any
neurological disorders, psychosurgery, current or past sub-
stance abuse or dependence, or pregnancy; and any relevant
physical illness, such as brain tumor or brain injury. TheOCD
cohort comprised 171 participants (OCD group: N=92, male:
female ratio, 55:37; healthy control group: N=79, male:female
ratio, 51:28) (see also Table S5 in the online supplement).

Monkey MRI Data Acquisition and Preprocessing
A total of 144 functional MRI (fMRI) data sets from all
monkeys were acquired from the Institute of Neurosci-
ence, Chinese Academy of Sciences, on a 3-T whole-body
scanner (Trio, Siemens Healthcare, Erlangen, Germany),
running with an enhanced gradient coil insert (AC88; 80
mT/m maximum gradient strength, 800 mT/m per second
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FIGURE 1. Schematic of a cross-species machine-learning frameworka
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a ACC=anterior cingulate cortex; ADOS COMM=Autism Diagnostic Observation Schedule communication subscale; ASD=autism spectrum disorder;
clPFC=centrolateral prefrontal cortex; CTC=central temporal cortex; dlPFC=dorsolateral prefrontal cortex; L=left; M1=primary motor cortex;
OCD=obsessive-compulsive disorder; R=right; ROIs=regions of interest; S1=primary somatosensory cortex; SLR=sparse logistic regression;
SPL=superior parietal cortex; STG=superior temporal cortex; TG=transgenic monkey; vlPFC=ventrolateral prefrontal cortex; Y-BOCS=Yale-Brown
ObsessiveCompulsive Scale. Panel A is a diagramof a cross-species circuit-mapping strategy,whichwas formulated on the basis of thehypothesis that
characteristics of the brain circuitry between nonhuman and human primates are evolutionarily conserved at the node or edge level. Panel B illustrates
use of a group lasso algorithm to identify core regions in monkeys. Panel C shows associations between characteristics of core regions and behavior
abnormalities in transgenic monkeys. Panel D shows how feature engineering in the human data set was initiated by a one-to-one projection of core
regions frommonkeys to humans and then subjected to a nested 10-fold feature selection for use in patient classification. Panel E shows how optimal
features were input into the SLR procedure for patient classification. Panel F shows spatial profiles of the identified functional connections in ASD and
OCD classifiers. Panel G shows associations between characteristics of nodes and edges in ASD and OCD classifiers and symptom severity in patients.
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maximum slew rate). Whole-brain resting-state fMRI data
were collected using a gradient-echo echo-planar sequence,
and high-resolution T1-weighted anatomical images were
acquired using a magnetization prepared rapid gradient
echo sequence. The acquisition and preprocessing of
monkeyMRI data are described elsewhere (35), aswell as in
the online supplement.

Human MRI Data Acquisition and Preprocessing
Details of the public data are available online for ABIDE-I/II
and theADHD-200 sample (http://fcon_1000.projects.nitrc.org/
indi/abideandhttp://fcon_1000.projects.nitrc.org/indi/adhd200).
For the OCD data set, resting-state fMRI and high-resolution
three-dimensionalT1-weighteddata setswere collectedwitha
12-channel head coil on a Siemens Tim Trio 3-T scanner.
Details of the scan protocol are provided in Table S6 in the
online supplement. The preprocessing of ABIDE-I was per-
formed by the Preprocessed Connectomes Project (http://
preprocessed-connectomes-project.org/abide/index.html)
using the Data Processing Assistant for Resting-State fMRI
toolbox (36). The same preprocessing pipelinewas applied to
the ABIDE-II, ADHD, and OCD data sets; technical details
are summarized in the online supplement.

Monkey and Human Brain Parcellation and
Network Construction
Thecortical organizations of bothmonkeys andhumanswere
parcellated inaccordancewith the regionalmap template (37,
38). Because the regional map parcellation does not include
subcortical regions, subcortical parcellation for the two
species was added on the basis of the INIA19 primate brain
atlas (39) and theFreeSurfer template (40), respectively. This
generated awhole-brain templatewith a total of 94 regions of
interest for both monkeys and humans. Anatomical regions
are listed in Table S7 in the online supplement. Pearson’s
correlationcoefficientsbetweenthemean timecoursesof any
pair of regions were calculated to represent their functional
connectivity, resulting in a 94394 connectivity network
matrix. Fisher’s z transformation was then applied to the
connectivity matrix, which was subject to a covariate-
regression procedure. Both age (linear and quadratic) and
sex were used as covariates for monkey and human data.
When information on full IQ score, site, current medication
status, and eyes opened/closed condition were available at
the time of scanning, they were used as additional covariates
for human data.

Cross-Species Diagnostic Classification for Humans
We adopted a sparse linear regression model based on the
group lasso penalty (30, 31), which is designed to eliminate a
group of edges simultaneously. Here, we treated all edges
connecting to one brain region as a group (i.e., rows in an
adjacencymatrix): if a specific brain region is irrelevant, then
coefficients of all connections should be adjusted to zero. The
penalty is deployed to impose a network structure and
thereby regularize the problem (i.e., core regions versus

nonrelevant regions) (Figure 1B). It automatically and ob-
jectively identified nine core regions (Figure 1B) from the
monkey data. Using these nine core regions as seeds, a
monkey-derived classifier composed of the functional con-
nections of the human functional connectome was con-
structed (Figure 1D). Specifically, using the standard lasso
method with a 10310 nested cross-validation (41), we de-
termined a subset of relevant, nonredundant edge features of
all 801 functional connections among nine core regions for
use in classification. The lasso was applied with L1-norm
penalty to achieve a sparsemodel byexcluding themajority of
features from the model (41). The sparsity of the model fa-
cilitated the optimization of predictors and reduced the
model complexity (42). A sparse logistic regression (43) in
tandem with leave-one-participant-out cross-validation was
then implemented to distinguish patients with ASD from
healthy control subjects (for further details, see Figure S1 in
the online supplement).

To test the robustness of themonkey-derived classifier,we
compared the predictive accuracies of the monkey-derived
classifier with that of the randomization classifier and the
human-derived classifier, using McNemar’s test (44). Spe-
cifically, the randomization classifier was constructed on the
basis of a randomly selected nine out of 94 regions, and the
human-derived classifierwas constructed on thebasis of core
regions identified from the ASD cohort (for further details,
see the online supplement). Finally, the monkey-derived
classifier was applied to the OCD and ADHD data sets.

Statistical Analysis and Associations With
Symptom Severity
A two-sample t test was applied to evaluate whether a dif-
ference in the node strength of nine core regions existed
between transgenic andwild-typemonkeys. The significance
threshold was set at a p value of 0.05 (false-discovery-rate
corrected). We quantitatively evaluated the distribution of
functional connections for distinguishing patients from
healthy comparison subjects in the ASD and OCD cohorts.
We sorted functional connections on the basis of lobar lo-
cation (i.e., prefrontal lobe, orbitofrontal lobe, temporal lobe,
parietal lobe, occipital lobe, cingulate cortex, insula, and
subcortical region). The spatial profiles of the functional
connections were compared by intralobe and interlobe
connections (i.e., whether node-to-node functional connec-
tions belong to the same lobe or different lobes). One-sided
Fisher’s exact test was applied to assess shared and disorder-
specific functional connections between ASD and OCD. The
significance thresholdwas set at a p value of 0.05 (one-tailed).

To investigate brain-behavior associations, we conducted
Pearson’s correlation analyses between the node strength
of each core region and behavior abnormalities in trans-
genic monkeys (17) or symptom severity in patients with ASD
and OCD (p,0.05, subject to false-discovery-rate correc-
tion for multiple comparisons). For the core regions that
showed significant correlations with symptom severity scores
(but did not withstand false-discovery-rate correction), we
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conducted a post hoc analysis for core region-based functional
connections and dimensional symptom severity using
a stepwise linear regression model, which modeled the
relationship between the dependent variable (symptom
severity score) and independent variables (functional con-
nections to a specific region). For each model, the stepwise
regression method iteratively determined a combination
of functional connections that were linearly linked to di-
mensional symptoms. At each iteration, one connection was
added or removed from the model for better fitting. The
Pearson correlation coefficient and r2 between the predicted
values and its measured values were used to assess the per-
formance of the regression model. The significance threshold
of associations of functional connections with dimensional
symptoms was set at a p value of 0.05 (subject to false-
discovery-rate correction).

RESULTS

Core Region Mapping Between Two Primate Species
The group lasso algorithm identified nine core regions out
of 94 nodes of the monkey brain: the left central temporal
cortex, right superior temporal cortex (STG), right dorso-
lateral prefrontal cortex (dlPFC), right primary somatosen-
sory cortex, right primary motor cortex, left anterior
cingulate cortex (ACC), right centrolateral prefrontal cortex,
left superior parietal cortex, and right ventrolateral pre-
frontal cortex (vlPFC) (Figure 2A). Compared with the wild-
type group, the transgenic group exhibited significantly
increased node strength in the right vlPFC (p=0.004), left
ACC (p=0.008), right centrolateral PFC (p=0.001), and right
dlPFC (p=0.004) (Figure 2B). In contrast, the right primary
somatosensory cortex (p=0.002) and right primary motor
cortex (p=0.025) showed decreased node strength in the
transgenic group (Figure 2B). In addition, we observed a
significant negative relationship between the right vlPFC
and circular routing (r=–0.932, p=0.021) and between the
left superior parietal cortex and locomotion (r=–0.922,
p=0.026) (see also Figure S2 in the online supplement).
Conversely, node strength in the left ACC was positively
associated with relative circular routing in the transgenic
group (r=0.910, p=0.032) (see also Figure S2 in the online
supplement).

Highly Accurate Monkey-Derived Classifier for ASD
In the ABIDE-I cohort, the monkey-derived classifier
achieved an accuracy of 82.14% (95% CI=77.53, 86.00; per-
mutation test, p,0.001 [see also Figure S3 in the online
supplement]), a sensitivity of 79.70% (95% CI=71.66, 85.98),
and a specificity of 83.74% (95% CI=77.78, 88.40), corre-
sponding to an area under the receiver operating charac-
teristic curve of 0.884 (Figure 2C; see also Table S8 in the
online supplement). In the independent ABIDE-II cohort,
the monkey-derived classifier also achieved performance
with an accuracy of 75.17% (95%CI=67.30, 81.71; permutation
test, p=0.014 [see also Figure S3 in the online supplement]),

a sensitivity of 70.00% (95% CI=56.63, 80.80), and a speci-
ficity of 78.65% (95%CI=68.43, 86.35), and the area under the
curve was 0.769 (Figure 2C; see also Table S8 in the online
supplement).

In the ABIDE-II data set, the same group lasso algorithm
identified nine core regions: the left STG, left dorsal part of
the anterior visual area, left secondary visual cortex, right
primary motor cortex, left and right ACC, right centrolateral
PFC, right vlPFC, and right globuspallidus (see alsoFigure S4
in the online supplement). The classifier based on these core
regions achieved an accuracyof 61.31% (95%CI=55.85, 66.51),
a sensitivity of 56.39% (95% CI=47.53, 64.88), a specificity of
64.53% (95%CI=57.49, 71.02), and an area under the curve of
0.644 in the ABIDE-I cohort (Figure 2C; see also Table S8 in
the online supplement), which was significantly lower than
that for the monkey-derived classifier (p,0.001; see also
Table S8 in the online supplement). Similarly, in theABIDE-I
data set, this group lasso algorithm identified four core re-
gions: the left thalamus, right primary visual area, right
secondary visual cortex, and right STG (see also Figure S4 in
the online supplement). The classifier based on these four
core regions achieved an accuracy of 60.40% (95%CI=52.04,
68.21), with a sensitivity of 53.33% (95% CI=40.10, 66.14), a
specificity of 65.17% (95% CI=54.26, 74.76), and an area un-
der the curve of 0.611 in the ABIDE-II cohort, which was
significantly lower than that for the monkey-derived clas-
sifier (p=0.003; Figure 2C; see also Table S8 in the online
supplement).

Because only the identity information of nine core re-
gions was translated from the monkey model to humans,
we questioned whether this particular set of nine core
regions would outperform an arbitrary choice (i.e., ran-
domly selecting nine of the whole brain nodes as core re-
gions). We observed that the performance of the monkey-
derived classifier was significantly better than chance in
the ABIDE-I cohort (p=0.0002) and ABIDE-II cohort
(p=0.052) (Figure 2D). Note that some random selections
showed higher accuracy than that for the monkey-derived
classifier (Figure 2D). However, on closer examination,
we found that even though a randomselection of nine regions
outperformed the monkey-derived classifier in one cohort,
it always failed to achieve reasonable performance in other
cohorts, indicating poor generalizability for the random se-
lection of core regions (see also Figure S5 in the online
supplement).

Application of the Monkey-Derived Classifier to Other
Human Disorders
Next, we tested the generalizability of the monkey-derived
classifier in theOCDandADHDdata sets. In theOCDcohort,
the classifier based on the same set of nine core regions from
the monkey cohort achieved an accuracy of 78.36% (95%
CI=71.29, 84.13; permutation test, p=0.002 [see also Figure S3
in the online supplement]), a sensitivity of 73.91% (95%
CI=63.53, 82.26), a specificity of 83.54% (95% CI=73.14,
90.61), and an area under the curve of 0.848 (Figure 2C),
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which outperformed two other human-derived classifiers
(ABIDE-I, p=0.044; ABIDE-II, p,0.001; see also Table S8 in
the online supplement), as well as the randomization clas-
sifiers (p=0.047) (Figure 2D). However, in the ADHD cohort,
themonkey-derived classifier performedwith an accuracy of
68.80% (95% CI=62.80, 74.24), a sensitivity of 56.25% (95%
CI=45.76, 66.23), a specificity of 75.88% (95% CI=68.61,
81.96), and an area under the curve of 0.700,which yieldedno
significant difference compared with other human-derived
classifiers (Figure 2C; see also Table S8 in the online sup-
plement). Still, core regions identified in the monkey model
showedbetter generalizability than randomlygeneratedones

in the ASD and OCD cohorts (see also Figure S5 in the online
supplement).

Characteristics of Nodes and Edges in the
Monkey-Derived Classifier for ASD and OCD
The sparse logistic regression algorithm automatically
identified 101, 74, and 64 functional connections from the
ABIDE-I, ABIDE-II, and OCD data sets, respectively, for
reliable classification of patients and healthy control subjects
(Figure 3A). We observed a biased distribution of intralobe
functional connections within the prefrontal lobe in both the
ASD and OCD cohorts (ABIDE-I: N=10/101, ABIDE-II: N=9/74,

FIGURE2. Performanceof diagnostic classification for autism spectrumdisorder (ASD) andobsessive-compulsive disorder (OCD) cohorts
with monkey- and human-derived classifiersa
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averaged node strength, and gray shading represents standard deviation. *p,0.05 (false-discovery-rate corrected); #p,0.05 (uncorrected). Panel C
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FIGURE3. Characteristics of the identified functional connections for autismspectrumdisorder (ASD) andobsessive-compulsive disorder
(OCD)a
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identified functional connections and their terminal regions (nodes) for reliable distinction of ASD patients from healthy control subjects and OCD
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corrected; ##p,0.01, uncorrected.

Am J Psychiatry 178:1, January 2021 ajp.psychiatryonline.org 71

ZHAN ET AL.

http://ajp.psychiatryonline.org


FIGURE 4. Genetically linked neural circuits associated with distinct symptomatic domains in autism spectrum disorder (ASD) and
obsessive-compulsive disorder (OCD)a
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OCD: N=15/64) (Figure 3B), which exhibited a significant
proportional difference between the ABIDE-I and OCD
cohorts (p=0.017) but not between the ABIDE-II and OCD
cohorts (p=0.065) (Figure 3C). Meanwhile, interlobe func-
tional connections mainly connecting prefrontal lobes with
temporal lobes in patients with ASD compared with OCD
patients (ABIDE-I: N=14/101, ABIDE-II: N=11/74, OCD:
N=3/64) (Figure 3B) exhibited a significant proportional
difference between groups (ABIDE- I compared with OCD,
p=0.048; ABIDE-II compared with OCD, p=0.043) (Figure
3C). In contrast, OCD appeared to have a biased distribution
of interlobe functional connections between prefrontal and
subcortical areas (ABIDE-I: N=3/101, ABIDE-II: N=1/74,
OCD: N=9/64; ABIDE-I compared with OCD, p=0.010;
ABIDE-II compared with OCD, p=0.004) (Figure 3C).

The node strength of the right vlPFC was associated with
communication subscores on the Autism Diagnostic Obser-
vationSchedule (ADOS) (r=–0.333, p=0.021), administeredby
research-reliable personnel, in 48 of 60 ASD patients avail-
able in the ABIDE-II cohort and was also associated with
Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores
(r=–0.217, p=0.038) forOCDpatients (Figure4A). Inaddition,
the node strength of the left central temporal cortex, right
STG, left ACC, right dlPFC, and right primary somatosensory
cortex exhibited significant correlations with the ADOS
communication subscore for ASD patients (Figure 4A; see
alsoTableS9 in theonlinesupplement).Bycontrast,wefound
a significant association between the Hamilton Anxiety
Rating Scale (HAM-A) scores for OCD patients and the node
strength of the left superior parietal cortex (r=–0.237,
p=0.023) (Figure 4A). Note that associations between the
node strength of nine core regions and symptom severity in
patients with ASD and OCD did not survive correction for
multiple comparisons.

We next determined whether functional connections of
the classifiers were commonly shared or uniquely linked to
symptomatic domains of ASD and OCD. Of all the possible
right vlPFC-linked connections, the linear model based on
the connection of the right vlPFC and the right thalamus
achieved an r correlation of 0.437 (r2=0.191, p=0.002) be-
tween the predicted and measured ADOS communication
subscores for patients with ASD in the ABIDE-II group

(Figure 4B; see also Table S10 in the online supplement). The
linear model equation is as follows:

ADOS  communication  subscore ¼   3:962 2:06 3

ðright  vlPFC ;  right  thalamusÞ
In fact, the ADOS communication subscore was significantly
predicted by connections between the right dlPFC and left
STG, the right STG and right orbitolateral prefrontal cor-
tex, and the right primary somatosensory cortex and left
dorsomedial prefrontal cortex, as well as between the left
ACC and both the left medial parietal cortex and left STG
(Figure 4B). By contrast, functional connection between the
right vlPFC and right prefrontal polar cortex was predictive
of the measured Y-BOCS scores for OCD patients (r=0.219,
r2=0.048, p=0.036; Figure 4C; see also Table S10 in the
online supplement). The model equation is as follows:

Y-BOC ¼   31:862 5:07 3 ðright  vlPFC ; 

right  prefrontal  polar  cortexÞ
Of all left superior parietal cortex-linked connections, the
predictedHAM-A scores based on the functional connection
between the left superior parietal cortex and left central
temporal cortexwere significantly correlatedwith the actual
HAM-A scores of these OCD patients (r=0.281, r2=0.079,
p=0.007; Figure 4C; see also Table S10 in the online
supplement).

DISCUSSION

We demonstrated that a set of nine core regions, although
identified in a relatively small number of biologically ho-
mogeneous transgenic monkeys, is sufficiently powerful to
set the stage for cross-species mapping and prioritization of
features for reducing clinical heterogeneity. This is probably
because predisposition of a single genetic manipulation in
animal models can be highly susceptible to specific neural
circuits and pathways, revealing the extent of a tangible
circuit endophenotypeand itsmanifestation in thebehavioral
domain (45). Thesefindings speak to the great heuristic value
of identifying and investigating biologically homogeneous
samples in future clinical studies.

cortex; Y-BOCS=Yale-Brown Obsessive Compulsive Scale. Panel A illustrates how the effects of a single genetic mutation in animal models may be
limited to specific neural circuits (nine core regions) and associated behavioral manifestations in ASD and OCD. Node strengths of the right vlPFC and
right STG exhibited significant correlations with ADOS COMM subscores of ASD patients; the right vlPFCwas associated with Y-BOCS scores for OCD
patients,while the left SPLwascorrelatedwith theirHAM-A scores. PanelB illustrates thepredictionsofADOSCOMMsubscoresbasedon linearmodels,
shown at the bottom of each plot for core regions, including the right vlPFC, right dlPFC, right STG, right S1, and left ACC. The connection between the
right vlPFC and right thalamus achieved a correlation of r=0.437 (p=0.002) between predicted and measured ADOS COMM subscores for ABIDE-II
patients. Similarly, the measured ADOS COMM subscore was predicted by connections with the right dlPFC and left STG (r=0.413, p=0.004), the right
STG and right lateral orbitofrontal cortex (r=0.407, p=0.004), and the right S1 and left dorsomedial prefrontal cortex (r=0.405, p=0.004), and the
connections between the left ACC and both the leftmedial parietal cortex and left STG (r=0.475, p,0.001), respectively. Panel C shows the predictions
of Y-BOCS and HAM-A scores for OCD patients based on a linear model for the right vlPFC and left SPL (bottom of plot), respectively. The connection
between the right vlPFC and right prefrontal polar cortexwas sufficiently strong to predict Y-BOCS scores forOCDpatients (r=0.219, p=0.036). HAM-A
scores for these OCD patients could be predicted by the functional connection between the left SPL and left CTC (r=0.281, p=0.007). Shaded areas
represent 95% confidence intervals. The abbreviations and parcellation of brain nodes are presented in Table S7 in the online supplement. *p,0.05
(false-discovery-rate corrected).
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This machine-learning framework enables the search for
some straightforward explanations regarding how a neural
circuit informs diagnostic classification for different human
cohorts, thus allowingus to gain illuminating insights into the
mechanisms bywhich these featureswere linked to symptom
domains of ASD and OCD. This is illustrated by the results
showing that the core regions, mostly distributed in frontal
and temporal lobes (including the right vlPFCandrightSTG),
were correlated with social communicative deficits (4, 29,
46). The right vlPFC and left ACC play an important role in
the stop circuit (47, 48), which is heavily implicated in re-
lation to restricted, repetitive behaviors and interests in ASD
(49). Moreover, the functional connection between the left
superior parietal cortex and left central temporal cortex
predicted the severity of anxiety, reiterating the relationship
between anxiety and attention in OCD (50). Additionally, our
findings highlight the crucial role of two core regions—the
primary somatosensory cortex and primary motor cortex—
indicating their attributes to motor impairment in ASD (51)
and impaired social-communicative skill development (51,
52), since deficits in the primary somatosensory cortex may
affect the ability to master motor skills (53). Because sensory
and motor disturbances have been hypothesized as some of
the earliest signs of abnormality in children with ASD (52),
studies characterizing the trajectory of sensorimotor dis-
turbance and the downstream effects on social and com-
municative interaction in later development would be
invaluable to addressing its biological basis and developing
early therapeutics in autistic children. Intriguingly, the set of
nine core regions identified in transgenic monkeys must be
treated as one indiscerptible group to achieve desirable
performance compared with randomly generated ones. Al-
though structural abnormalities of some of these nine re-
gions, including gray matter volume and white matter tracts,
have been reported in part (7, 54, 55), our observation sug-
gests an integrated functional role of these nine regions,
which calls for further investigation for the underlying
neurobiological substrates.

From a circuit perspective, these core regions may si-
multaneously function as critical hubs for forming differ-
ential patterns of functional coupling with the rest of the
brain, andwhich underlie distinct clinical symptomprofiles
in a variety of diseases. ASD-specific features exhibit ap-
parentlymarkeddistributionof fronto-temporal and fronto-
parietal connections, prominently involved in cognitive
control and social communication (56). By contrast, dys-
connectivity in OCD shows a significant bias toward the
fronto-subcortical pathways, largely involved in response
inhibition and cognitive flexibility (4, 47). Addition-
ally, dissection of two distinct vlPFC-centered circuits
from the monkey-derived classifier has revealed dual
neuropathology-dependent roles for the vlPFC (the social
communication of ASD and the compulsivity of OCD), thus
emphasizing both unitary and diverse features contributing
to the overlap of pathophysiological circuits between these
disorders (8, 47).

This is, to our knowledge, the first study to propose this
cross-species machine-learning method for defining circuit
endophenotypes across multiple psychiatric disorders, and
therefore caution is warranted. Replication to validate the
present predictive algorithm with data from other pop-
ulations and settings will be critical to extend the current use
of genetically engineered animal models to broader human
application scenarios, which also represents an important
criterion for validating a primate genetic model. Considering
the complex genetic architecture of ASD and related disor-
ders, further work is essential to fully assess the predictive
validity of nonhuman primate models based on single gene
manipulation.

CONCLUSIONS

In this possibly unique study, we explored the homologous
nature of primate brain connectomes, showing that specific
brain regions or circuits derived from genetically edited
animal models may serve as a basis for defining a biologically
defined circuit endophenotype shared between ASD and
OCD. Such a circuit endophenotype associates genetics with
distinct symptomatic domains across multiple current cat-
egorical diagnoses, whichmay represent an alternative route
to deconstructing inherent heterogeneity and complex
comorbidity. In addition, this translational framework can
serve as an innovative general road map for a wide range of
genetic animal models that bridge gaps between diagnostic
categories of complex brain diseases and genetic and circuit
mechanisms.
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