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Abstract. How to bridge heterogeneous gap between different modali-
ties is one of the main challenges in cross-modal retrieval task. Most exist-
ing methods try to tackle this problem by projecting data from different
modalities into a common space. In this paper, we introduce a novel
X-Shaped Generative Adversarial Cross-Modal Network (X-GACMN)
to learn a better common space between different modalities. Specifi-
cally, the proposed architecture combines the process of synthetic data
generation and distribution adapting into a unified framework to make
sure the heterogeneous modality distributions similar to each other in
the learned common subspace. To promote the discriminative ability,
a new loss function that combines intra-modality angular softmax loss
and cross-modality pair-wise consistent loss is further imposed on the
common space, hence the learned features can well preserve both inter-
modality structure and intra-modality structure on a hypersphere mani-
fold. Extensive experiments on three benchmark datasets show the effec-
tiveness of the proposed approach.

Keywords: Cross-modal retrieval · Generative adversarial network ·
Hypersphere embedding

1 Introduction

With the help of well-annotated large scale datasets and advancing machine
learning techniques, the majority computer vision and pattern recognition tasks
have achieved impressive performance, such as machine translation [32], image
classification [44], and object detection [13]. However, real-world information
often presented in more complex ways at the same time. Tasks that are aiming
at solving more complicated problems such as image captioning [18] and visual
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question answering [11] always involve more than one modality data form. Over
the past few years, multi-modal learning has become a super hot topic with the
increase of massive multi-modal data [37]. To make computing equipment under-
stand the world better, representing and matching data from different modalities
is crucial and remains challenging.

Data from different modalities are always quite different from each other.
Taking image modality and text modality as an example, images are consti-
tuted by pixels and show more details while texts are presented in the form of
word sequences which contain high-level semantic information. Such differences
between different modalities are collectively known as the heterogeneous gap
which is one of the most challenging problems to solve in cross-modal retrieval
task. Many of existing cross-modal retrieval works try to solve this problem
by projecting different modality data into a common space in which similar-
ity between different modality data can be quantitatively measured. Various
cross-modal mapping methods [3,12,23,34] with all kinds of common space con-
straint losses emerge in recent years have achieved noticeable improvement on
the cross-modal retrieval task. However, these methods still suffer from the lack-
ing of effective constraint in the common space, which declines the cross-modal
retrieval performance.

To make the learned features intra-modality discriminative, the softmax loss
is widely used in cross-modal retrieval task. However, softmax loss only learns
separable features that are not discriminative enough. Previous works [23,34,39]
combine softmax loss with other Euclidean distance based constraints to enhance
the discrimination power of features. However, the features learned with original
softmax loss have natural angular distribution. Directly combining Euclidean
distance based constraint with softmax loss may destroy such angular distribu-
tion. To take full advantage of the angular distribution of the original softmax
loss, [16,17] make efforts to learn angular distributed features with A-softmax
or L-softmax and achieve success in face recognition task.

Inspired by these works above, in this paper, we leverage angular constraint
in cross-modal retrieval task to learn angular distributed common space repre-
sentation. By constraining the hypersphere embedding metric for each modality
to be the same and adding cross-modality pair-wise consistent to the original A-
softmax, the similarity between different modality representations can be evalu-
ated on a uniformed hypersphere manifold. The proposed cross-modal A-softmax
abandon the time-consuming negative instance sampling process in triplet rank-
ing based constraint, which makes it has high computational efficiency and not
relying too much on the annotation of data. Besides, to the best of our knowl-
edge, this work is the first work that tries to solve cross-modal retrieval problem
with angular constraint, and the experimental result shows the effectiveness of
the newly designed cross-modal A-softmax method.

However, the task of cross-modal retrieval expects the learned features to be
not only intra-modality discriminative but also inter-modality coherent. There-
fore, we should find another constraint to narrow the heterogeneous gap between
different modalities. The emergence of Generative Adversarial Networks (GANs)
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[7] brings new ideas to many tasks. With the development of GANs, computing
equipment can generate different kinds of data adversely. Attempts like gener-
ating images with captions [28], and generating captions with images [18] have
already proved to be possible. Although these works have different tasks from
cross-modal retrieval, they show new possibilities of cross-modal matching. In
addition, to generate synthetic data, adversarial training is also widely used in
tasks like domain adaption [33] because it can make distributions of the learned
features becoming close to each other. The task of cross-modal retrieval also
requires that the learned features from different modalities have the same dis-
tribution, which makes people intuitively think to use GANs to solve the cross-
modal problem. Actually, attempts have already been made in the previous
works [23,34] and some of them achieve impressive performance.

Our proposed method tries to combine the process of synthetic data genera-
tion and distribution adapting into a unified adversarial training framework to
make the learned common space representations to be more modality invariant.
A novel X-shaped Generate Adversarial Network (X-GACMN) architecture as
shown in Fig. 1 is designed to achieve this. In the proposed X-GACMN model, we
first assume that there exists an intermediate state in the middle of the process of
cross-modality synthetic data generation. By constraining this intermediate state
with adversarial training, we can obtain a common space for different modalities
and the heterogeneous gap can be implicitly narrowed.

The contribution of this paper is mainly threefold,

1. An X-shaped generative adversarial cross-modal network (X-GACMN) is
designed for cross-modality matching to ensure inter-modality coherent. With
two generators to form an information loop and three discriminators to con-
strain the feature distribution, the correlation between different modalities is
maximized and the heterogeneous gap is narrowed.

2. A novel common space angular constraint is applied to learn more intra-
modality discriminative features in the common space. With the cross-modal
A-softmax constraint, the learned common representations are angularly dis-
tributed and can be measured on a hypersphere manifold effectively.

3. Experimental results on three public benchmarks show that the proposed X-
GACMN achieves competitive results compared with other state-of-the-art
cross-modal retrieval approaches.

2 Related Work

2.1 Cross-Modal Retrieval with GAN

Cross-modal retrieval is the most common and basic task among tasks involve
more than one modality. Briefly speaking, cross-modal retrieval aims to bridge
the heterogeneous gap between different modalities. Most of the existing cross-
modal retrieval method try to solve this by learning common representation and
can be divided into two broad categories according to the type of the target rep-
resentation. Binary representation learning is also called hashing method [3,12],
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Fig. 1. The architecture of the proposed X-GACMN.

which aims to project original data or features from different modalities into a
common hamming space. In the hamming space, the similarity between binary
representations can be measured with hamming distance. These hashing meth-
ods have high computational efficiency, but sometimes at the cost of retrieval
accuracy (effectiveness). The method this paper proposed falls into the other cat-
egory called real-valued representation learning. Real value representing learning
as [37] summarized can be divided into four subclasses: unsupervised [10,20,31],
pairwise [25,40,41,43], ranking-based [5,8,19,30], and supervised [6,35,36,38,42]
ones. Our approach is a supervised method with generative adversarial networks.
Such combination can be seen in some recently published works [9,23,34]. In [34],
a modality discriminator is directly applied to the learned multi-modal represen-
tations to discriminate generated representations from different modalities. The
representations from different modalities get close to each other with adversarial
learning. [23] involves intra-modality reconstruction constraint through append-
ing discriminators to adversarially make reconstructed features getting close to
original ones. Similar to our approach, the method [9] proposed also tries to use
data from one modality to generate data from other modality. But their app-
roach tries to use raw images to generate sentences whose performance could be
constrained by the scale of the dataset.

Following but not limited to the works mentioned above, our X-GACMN
has two generators to perform cross-modal generation. Three discriminators are
appended to image feature space, text feature space and the learned common
representation space to constrain cross-modal reconstruction and common rep-
resentation learning process respectively.
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2.2 Hypersphere Embedding

The idea of hypersphere embedding is first proposed in [16], and originally
designed for face recognition. By modifying softmax loss to A-softmax loss, the
original features can be constrained with an angular margin and obtain better
recognition performance.

The original softmax loss is designed for classification tasks. Many works try
to improve the original softmax loss to make it learn more discriminative features.
L-softmax loss [17] also involves the concept of angle but it doesn’t normalize the
weights, thus the learned features are not constrained to hypersphere manifold
and not suitable for open-set problems. Another modified method proposed in
[39] combines softmax loss with Euclidean distance constraint by minimizing the
distance between intra-class samples and the class center.

In cross-modal retrieval task, softmax loss is also widely used. Previous work
like [23,34] combine softmax loss with Euclidean distance based triplet rank-
ing loss to make the learned representations more semantically discriminative.
However, it has been proved in [16,17] that the representations learned with
original softmax loss have nature angular distribution, immediately combining
Euclidean distance based constraint with softmax loss may destroy such angular
distribution and cause bad influence.

In the proposed X-GACMN, we follow the above thinking and apply the
angular constraint to cross-modal task and designed a cross-modal A-softmax
to take full advantage of the angular constraint of softmax loss so as to enhance
the retrieval performance.

3 Our Approach

As shown in Fig. 1, the network structure of the proposed X-GACMN is made up
of two modules. The feature extracting module extracts original features V and
T from image modality and text modality respectively. In this paper currently
existing feature extracting methods such as CNN modal and BoW are applied.
As for the feature projecting module, we will explain it in detail in the following
subsections.

3.1 Notation

Without losing generality, we aim to conduct cross-modal representation learn-
ing on two modalities e.g., image and text. We assume there exists a multi-
modal training dataset which is composed of image-text pairs, denoted as
D = {(v, t)i}

n
i=1 where (v, t)i represents the i-th instance of image-text pair and

n is the total number of instances in the dataset. In addition, each instance
is assigned a semantic category label {ci}n

i=1. After feature learning phase,
instances can be represented by original features, and the dataset converts to
D = {V, T } where V = {vo1, . . . , von} ∈ Rdv×n and T = {to1, . . . , ton} ∈ Rdt×n

denote the original feature matrixes of image and text respectively and dv, dt

are the dimensions of the original features.
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The original features vo ∈ V and to ∈ T may follow different complex distri-
butions and have different kinds of statistical properties and dimensions. Thus
it is hard to compare them directly. Our primary goal is to find a common sub-
space S in which the features after projection is comparable so that the similarity
between different modalities can be calculated. The mapping functions for each
modality can be formulated as fV (vo; θV) and fT (to; θT ). After projection, the
original features are transformed into SV ∈ Rdc×n and ST ∈ Rdc×n, where dc

represents the dimension of the common representation. The ultimate goal of
the proposed approach X-GACMN is to make SV and ST modality-invariant
and semantically discriminative. To achieve this goal, we apply X-shaped GAN
structure to establish an information loop between different modalities and cross-
modal A-softmax to maintain the underlying semantic information on a hyper-
sphere manifold.

3.2 X-Shaped Generative Adversarial Cross-Modal Network

X-shaped architectures can be found in some recently published cross-modal
researches [2,9]. These X-shaped architectures maximize the correlation between
two modality-specific feature spaces by projecting data from one modality into
the common representation space and then using the projected common repre-
sentations to reconstruct data from the other modality. By minimizing the recon-
struction loss, the correlation between the two pathways can be maximized. Just
like these works, the proposed X-GACMN applies two cross-modal generators GI

and GT to accomplish the task of cross-modal feature generation. The ultimate
goal of these two generators is twofold: (1) to maximize the similarity between
the generalized synthetic data and the real data. (2) to make the distribution of
the learned common representations in the middle of each generator as close as
possible. To accomplish this, three discriminators DI , DT and DC are applied
to image feature space, text feature space and common representation space
respectively. By training the discriminators and generators iteratively, these two
kinds of modal can beat each other with a minimax game, and finally, make the
features in the aforementioned three kinds of feature space modality-invariant.

Each generator in the proposed X-GACMN modal is composed by an encoder
and a decoder. Original features vo and to are projected to common representa-
tions vc and tc with encoder GIenc

and GTenc
respectively. Then the reconstruc-

tion representations vr and tr can be captured with GIdec and GTdec
respectively.

The three discriminators are of two kinds. Discriminators DI and DT are syn-
thetic data discriminators which are designed to discriminate generated synthetic
data from the real ones. The adversarial loss of them can formally be defined as:

LDI
= − 1

ntr

ntr∑

i=1

(log DI (voi
; θDI

) + log (1 − DI (vri
; θDI

))) (1)

LDT
= − 1

ntr

ntr∑

i=1

(log DT (toi; θDT
) + log (1 − DT (tri; θDT

))) (2)
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where ntr denotes the total number of instances in training set, θDI
and θDT

are
the parameters of DI and DT respectively.

Discriminators DC is a modality discriminator which is designed to discrim-
inate projected representations vc and tc in the common space. The adversarial
loss of DC can be defined as:

LDC
= − 1

ntr

ntr∑

i=1

(log DC (vci; θDC
) + log (1 − DC (tci; θDC

))) (3)

where θDC
are the parameters of DC After discriminators DI , DT and DC been

optimized, generators GI and GT are optimized with θDI
, θDT

and θDC
fixed

and the loss of them can be defined as following:

LGi
=

1
ntr

ntr∑

i=1

(log DT (GI (vo; θGI
)) + log DC (GIenc

(vo; θGI
))) (4)

LGt
=

1
ntr

ntr∑

i=1

(log DI (GT (to; θGT
)) + log DC (GTenc

(to; θGT
))) (5)

where θGi
and θGt

are the parameters of Gi and Gt respectively.

3.3 Common Space Constraint

In this work, we introduce an angular constraint to cross-modal retrieval task
and make efforts to adjust it to the multi-modal scenario. The angular con-
straint ensures the projected representations with different semantic labels be
discriminative on a hypersphere manifold. By projecting representations from
different modalities onto the same hypersphere manifold, the heterogeneous gap
between different modalities can be further narrowed. The proposed angular con-
straint abandons the time consuming negative sampling and distance calculation
process in the Euclidean distance based triplet constraint, which makes it not
only preserve the angular feature distribution but also have high computational
efficiency without relying too much on the annotation of data. More detailed
descriptions are followed in the remainder of this section.

The widely used original softmax loss can be written as

Lsoftmax =
1
N

∑

i

− log

(
efyi

∑
j efj

)
(6)

where N is the number of training instances and f is the posterior probabilities of
input feature xi. The hypothesis function can be represented as fj = WT

j xi + bj

and fyi
= WT

yi
xi + bj where WT

j and WT
yi

denotes the j-th and yi-th column of
the weight metric of the last fully connected layer in the CNN modal. We can
rewrite Eq. (6) as follows in angular form:

Lsoftmax =
1
N

∑

i

− log

⎛

⎝ e‖WT
yi

‖‖xi‖ cos(〈WT
yi

,xi〉)+byi

∑
j e‖WT

j ‖‖xi‖ cos(〈WT
j ,xi〉)+bj

⎞

⎠ (7)
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where
〈
WT

∗ , xi

〉
is the angle between feature xi and WT

∗ .

Fig. 2. A Comparison between softmax loss and A-softmax loss.

A-softmax makes ameliorate on the basis of the original softmax by firstly
normalize

∥∥WT
j

∥∥ = 1,∀j and zero the biases, so that the original decision
boundary for class i and class j can be presented in an angular margin form
‖xi‖ (cos (θi) − cos (θj)), where θ∗ is the angle between WT

∗ and xi. Secondly,
A-softmax introduce a lower bound parameter m to quantitatively control the
decision boundary and enhance the discrimination power. The decision bound-
ary can be denoted as ‖xi‖ (cos (mθi) − cos (θj)) and ‖xi‖ (cos (θi) − cos (mθj))
for each class respectively. These two steps makes the features learned with A-
softmax have angular margin and semantically discriminative. The A-softmax
loss can be formulated as:

LA−softmax =
1
N

∑

i

− log

⎛

⎝ e‖xi‖ψ(〈WT
yi

,xi〉)

e‖xi‖ψ(〈WT
yi

,xi〉) +
∑

j �=yi
e‖xi‖ cos(〈WT

j ,xi〉)

⎞

⎠ (8)

where
ψ

(〈
WT

yi
, xi

〉)
= (−1)k cos(m 〈Wyi

, xi〉) − 2k,

〈Wyi
, xi〉 ∈

[
kπ

m
,
(k + 1) π

m

]
, k ∈ [0,m − 1]

(9)

ψ
(〈

WT
yi

, xi

〉)
is a monotonically decreasing angle function which is generalized

by expanding the definition range of cos
(〈

WT
yi

, xi

〉)
,
〈
WT

yi
, xi

〉
∈

[
0, π

m

]
. m � 1

is an integer parameter that controls the size of angular margin. With bigger m
narrower angular margin can be obtained. The difference between the original
softmax loss and A-softmax can be seen in Fig. 2a and b.

The A-softmax has an intuitive hypersphere interpretation. Because A-
softmax loss requires ‖Wj‖ = 1, bj = 0, the original features are projected to a
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hypersphere manifold, on which the similarity between instances can be quanti-
tatively evaluated by angle or the length of hyperarc. In our cross-modal task,
we not only need to make sure instances with different semantic labels be dis-
criminative but also expect items from different modalities can be quantitatively
evaluated on the same manifold. Hance for different modalities, we use the same
Wj to make sure the original features are projected to the same hypersphere
manifold so that the heterogeneous gap between different modalities can be fur-
ther narrowed. To maximize the correlation between two modalities while at the
same time not destroying the inner modality angular distribution, an additional
l2 norm loss is added as a pair-wise consistent constraint to the common space
to ensure the representations belong to the same image-text pairs as close as
possible. A sketch map of the proposed constraint can be seen in Fig. 2c.

3.4 Loss Function and Optimization

The final objective functions for the generators GI and GT can be written as:

LGI
= λ1Ll2 + λ2LGi

+ λ3LA−Softmaxi
, (10)

LGT
= λ1Ll2 + λ2LGt

+ λ3LA−Softmaxt
, (11)

where λ1, λ2 and λ3 are the weights of l2 loss, generation loss and A-softmax
loss respectively.

The process of optimizing the feature representation is conducted by opti-
mizing the generator loss and the discriminator loss iteratively. The optimization
goal of these two stage are opposite, which makes it a minimax game [7] of two
sub-processes:

arg min
(
LGI

(
θ̂GI

, θ̂A−Softmax

)
− LDT

− LDC

)

arg min
(
LGT

(
θ̂GT

, θ̂A−Softmax

)
− LDI

− LDC

) (12)

arg max
(
LGI

− LDT

(
ˆθDT

)
− LDC

(
ˆθDC

))

arg max
(
LGT

− LDI

(
ˆθDI

)
− LDC

(
ˆθDC

)) (13)

The overall training procedure is presented in Algorithm 1.

4 Experiments

We conduct experiments on three widely-used cross-modal datasets including
Wikipedia dataset [24], NUS-WIDE-10k dataset [1] and Pascal Sentence dataset
[26]. Comparisons with other state-of-the-art methods on these three datasets
verify the effectiveness of our proposed X-GACMN. Additional ablation study
and visualization results are presented in the later part in order to dissect our
method in detail.
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Algorithm 1. Pseudo code of optimizing our X-GACMN.
Require: Vtr, Ttr: Training data from both modality; N : Batch size; m, λ∗: hyperpa-

rameters;
update until X-GACMN converges:
1: vci , vri , tci , tri are generated by GI and GT respectively.
2: Calculate loss of DI , DT and DC with equation (1), (2) and (3) respectively.
3: Optimize DI , DT and DC with equation(13))
4: for K steps do
5: Calculate loss of GI , GT with equation (4) and (5)
6: Optimize GI and GT with equation(12)
7: end for
8: return Modal parameter θGI , θGT and common space feature fV

(
vo; θθGI

)
and

fT (to; θGT ).

4.1 Datasets and Experimental Setup

Datasets. In this subsection, we briefly introduce the three datasets and the
corresponding features in the experiment.

Wikipedia is a widely used dataset for cross-modal retrieval which consists
of 2173 training image-text pair and 693 testing image-text pair annotated by 10
semantic labels. In some works, another dataset partition is used by separate the
dataset into 1300 training pairs and 1566 testing pairs. In our experiment, we
conduct experiments on both partition protocols. 4096-D VGG-19 [29] features
and 1000-D BoW features are used for image modality text modality respectively.
Besides, for a fair comparison with earlier methods, we also conduct experiments
with 128-D SIFT features and 10-D LDA features for each modality.

Pascal Sentence contains 1000 images with 20 semantic labels. Each image
is described by 5 sentences. We divide this dataset into 900 training instances and
100 testing instances as [22,34] did, and use the same 4096-D VGG-19 features
and 1000-D BoW features for image and text modality respectively.

NUS-WIDE-10k is constructed by sampling 10,000 image text pairs from
10 largest categories of NUS-WIDE without overlaps. Following [22,34], 8000
training pairs and 1000 testing pairs are used in our experiment and 4096-D
VGG-19 features and 1000-D BoW features are used for each modality.

Implementation Details. The proposed X-GACMN modal realize feature pro-
jection and reconstruction with GI and GT which are composed of 6 fully con-
nected layers with tanh as active function. The numbers of hidden units in
each network are V → 512 → 100 → 100 → 100 → 512 → T for GI and
T → 512 → 100 → 100 → 100 → 512 → V for GT . In the middle of each
generator, the 100 dimensional output is the common subspace representation
to be learned.

Synthetic data discriminator DI and DT with structure V (T ) → 2000 → 2
are appended to discriminate generated synthetic data from real ones. Modality
discriminator DC with structure 100 → 50 → 2 is appended to the common
feature space to discriminate learned common space features’ modal. An angu-
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lar softmax layer with the same parameters is appended to both modalities to
constrain the learned features to obey angular distribution.

As for hyper-parameters of the modal. The batch size is set to 64 and m is
set to 5. λ1, λ2 and λ3 are set to 10, 5 and 100 respectively to make sure the
scale of each item balance.

4.2 Experimental Results

Comparison with State-of-the-Art Methods. We first compare our X-
GACMN with 13 state-of-the-art methods on three datasets. We choose CCA
[10], CCA-3V [6], LCFS [36], JRL [42], JFSSL [35], PACMR [14], SM [27] and
SPGCM [15] as traditional cross-modal retrieval methods, Multimodal-DBN
[31], Bimodal-AE [20], Corr-AE [4], and CMDN [21], as deep learning based
methods and ACMR [34] as GAN based method.

Table 1. Cross-modal retrieval comparison in terms of the mAP on Wikipedia dataset

Protocol Methods Shallow feature Deep feature

i2t t2i Avg. i2t t2i Avg.

1300/1566 [36] CCA 0.255 0.185 0.220 0.267 0.222 0.245

M-DBN 0.149 0.150 0.150 0.204 0.183 0.194

Bimodal-AE 0.236 0.208 0.222 0.314 0.290 0.302

SPGCM 0.265 0.207 0.236 0.390 0.362 0.376

SM 0.260 0.242 0.251 0.475 0.389 0.432

CCA-3V 0.275 0.224 0.249 0.437 0.383 0.410

LCFS 0.279 0.214 0.246 0.455 0.398 0.427

Corr-AE 0.280 0.242 0.261 0.402 0.395 0.398

JRL 0.344 0.277 0.311 0.453 0.400 0.426

PACMR 0.318 0.224 0.271 0.468 0.429 0.449

JFSSL 0.306 0.228 0.267 0.428 0.396 0.412

CMDN - - - 0.488 0.427 0.458

ACMR 0.316 0.227 0.272 0.477 0.435 0.456

X-GACMN 0.348 0.282 0.315 0.490 0.456 0.473

2173/693 [27] SPGCM 0.254 0.203 0.228 0.351 0.327 0.339

SM 0.255 0.226 0.205 0.479 0.384 0.431

LCFS 0.266 0.209 0.238 0.455 0.417 0.436

PACMR 0.309 0.220 0.264 0.478 0.433 0.456

ACMR 0.310 0.223 0.267 0.476 0.431 0.454

X-GACMN 0.326 0.241 0.284 0.501 0.435 0.468

Tables 1 and 2 shows the experimental results in terms of mAP on Wikipedia
dataset, Pascal Sentence dataset and the NUS-WIDE-10k dataset. From the
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Table 2. Cross-modal retrieval comparison in terms of the mAP on Pascal Sentence
dataset and NUS-WIDE-10k dataset

Methods Pascal sentence NUS-WIDE-10k

i2t t2i Avg. i2t t2i Avg.

CCA 0.363 0.219 0.291 0.189 0.188 0.189

M-DBN 0.477 0.424 0.451 0.201 0.259 0.230

Bimodal-AE 0.456 0.470 0.458 0.327 0.369 0.348

LCFS 0.442 0.357 0.400 0.383 0.346 0.365

Corr-AE 0.489 0.444 0.467 0.366 0.417 0.392

JRL 0.504 0.489 0.496 0.426 0.376 0.401

CMDN 0.534 0.534 0.534 0.492 0.515 0.504

ACMR 0.535 0.543 0.539 0.447 0.505 0.476

X-GACMN 0.532 0.547 0.540 0.501 0.526 0.514

Fig. 3. Precision-scope curves on Wikipedia dataset and NUS-WIDE-10k dataset

results we have the following observations: (1) The proposed X-GACMN out-
performs other methods with a big margin on these three datasets. Experimental
results on these three datasets which have very distinct properties can testify the
effectiveness of the proposed X-GACMN. (2) On Wikipedia dataset, we conduct
experiments with shallow features and deep features on two different partition
protocols. The performance of the proposed X-GACMN achieves best results
with all these four different settings, which can prove the applicability of our
method. (3) Compared with our best competitor ACMR which is also a GAN
based method, our method obtained better results. This can preliminary shows
the superiority of the proposed X-shaped GAN architecture and cross-modal
A-softmax. More detailed comparison and analysis of these two methods are in
the following subsections. (4) The performance on the Pascal Sentence dataset
only be slightly improved, this is mainly because that the training data in Pascal
Sentence dataset is limited in number and the X-GACMN model sufferers from
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Table 3. Cross-modal retrieval comparison with different loss setting on Wikipedia
dataset (1300/1766) in terms of the mAP@50

Methods t2i i2t Avg.

X-GACMN without DC 0.615 0.477 0.546

X-GACMN without DI and DT 0.618 0.482 0.550

X-GACMN without LA−Softmax 0.218 0.188 0.203

X-GACMN without Ll2 0.632 0.472 0.552

X-GACMN with LSoftmax 0.598 0.467 0.533

Whole X-GACMN 0.640 0.483 0.562

Fig. 4. The visualization result on Wikipedia dataset (1300/1766).

the overfitting problem, while in the large-scale dataset NUS-WIDE-10k, such
problem is mitigated and the performance of our modal is sorted.

To further compare our method with the other GANs based method ACMR
[34], we draw precision-scope curves on Wikipedia dataset and NUS-WIDE-10k
dataset for additional comparison. The results can be seen in Fig. 3 From the
curves we can see that our method outperforms ACMR with all scopes especially
when the scopes are small. In real life retrieval scenario, we are more concern
about the previous recalls, which means our method is significant in practical
applications.

Ablation Study. In this section, we will discuss the effectiveness of each element
in the X-GACMN modal. Table 3 summarizes the mAP@50 scores on Wikipedia
dataset (2173/693) with different settings. To verify the effectiveness of the three
adversarial training processes, we remove two kinds of discriminators respec-
tively. From the first two lines, we can observe that the mAP@50 score drops
when the synthetic data discriminators or the modality discriminator is missing,
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which proves by training the modal adversely with the X-shaped architecture, a
better common feature space can be learned.

Line 3, 4, 5 and 6 show the results with different common space constraint loss
function. From line 3, we can see that without A-softmax loss the performance
drops significantly, which is because the modal is trained unsupervisely without
any semantic information. Line 4 shows the experimental results without l2 norm
loss, from the results we can see that the l2 norm loss as a cross-modal pair-
wise consistent constraint can improve the performance slightly. To compare the
effectiveness of cross-modal A-softmax loss with the original softmax loss, we
trained our model with original softmax and the results can be seen in line 5.
From the results, we can see that cross-modal A-softmax is beneficial for the
X-GACMN to learn more discriminative features.

Visualization of the Learned Feature Distribution. The A-softmax used
in our X-GACMN has an intuitive hypersphere interpretation. To intuitively
show the properties of the proposed common space constraint, we remove the
last tanh active function and set the output dimension to 2, so that the learned
features can be visualized in the two-dimensional space. The 2-D visualization
of training feature distribution of Wikipedia dataset (2173/693) with different
common space constraint can be seen in Fig. 4.

The first column of Fig. 4 shows the intra-modality distribution of common
representations learned with softmax loss and A-softmax loss. From the visual-
ization results, we can see that the features learned with the original softmax
loss have natural angular distribution but sometimes not clear enough. Besides,
the original softmax is designed for classification tasks which aim to find the best
decision boundaries. Such a goal makes the cosine distance between features from
different classes not necessarily smaller than features from the same class, which
makes it not suitable for retrieval tasks. As for features learned with A-softmax,
clear angular distributed margins between different classes can be seen. Such
property ensures the learned features intra-modality discriminative.

The second and the third column of Fig. 4 shows the inter-modality visual-
ization result. The difference between column 2 and column 3 is whether l2 loss
is applied or not. We can see that features obtained with A-softmax retain the
inter-modality angular margin. This is because in our X-GACMN, features from
different modalities are projected to a common hypersphere manifold with the
same angular constraint. Another observation is by combining l2 norm with A-
softmax, the discrepancy between two different modalities is further diminished,
which is because that by constraining distance of features belong to the same
image-text pairs, the inter-modality structure can be preserved.

5 Conclusion

In this paper, we proposed a new X-shaped Generative Adversarial Cross-Modal
Network (X-GACMN) to learn better common space representations for cross-
modal retrieval. Firstly, the proposed X-GACMN designed an X-shaped GAN
architecture to combine cross-modal synthetic data generation and distribution
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adaption together with adversarial training. Secondly, the proposed X-GACMN
for the first time exploited the angular constraint in cross-modal retrieval task
to increase the discriminative ability of the learned features. With the X-shaped
architecture and A-softmax, original features from different modalities are pro-
jected to a common hypersphere manifold on which the similarities between
instances can be quantitatively evaluated by the magnitude of angle. Extensive
experiments on three widely used cross-modal datasets and a detailed analysis
of the experimental results demonstrate the effectiveness of our method.
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