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Abstract

Self-paced learning (SPL) mimics the cognitive mechani$mumans and ani-
mals that gradually learns from easy to hard samples. Onéskag in SPL is to
obtain better weighting strategy that is determined by minér function. Exist-
ing methods usually pursue this by artificially designing &xplicit form of SPL
regularizer. In this paper, we focus on the minimizer fumttand study a group of
new regularizer, named self-paced implicit regularizat ts deduced from robust
loss function. Based on the convex conjugacy theory, theémizer function for
self-paced implicit regularizer can be directly learnemhirthe latent loss function,
while the analytic form of the regularizer can be even knowrgeneral frame-
work (named SPL-IR) for SPL is developed accordingly. We destrate that the
learning procedure of SPL-IR is associated with latent sblmss functions, thus
can provide some theoretical inspirations for its workingcmanism. We further
analyze the relation between SPL-IR and half-quadraticropation. Finally, we
implement SPL-IR to both supervised and unsupervised tasksexperimental
results corroborate our ideas and demonstrate the coesecamd effectiveness of
implicit regularizers.

1 Introduction

Inspired by the learning process and cognitive mechanishuofans and animals, Bengét al.
propose a new learning strategy callaariculum learning(CL) in [I], which gradually includes
more and more hard samples into training process. A cuumguwian be seen as a sequence of
training criteria. For example, in the training of a shapmmition system, images that exhibit less
variability such as squares and circles are considered firifdwed by hard shapes like ellipses.
The curriculum in CL is usually determined by some certaiargt and thus is problem specific and
lacks generalizations. To alleviate this, Kunedral. propose a new learning strategy named self-
paced learning (SPL) that incorporates the curriculum tipgan the process of model optimization
[14]. General SPL model consists of a problem specific weighiss term on all samples and a SPL
regularizer on sample weights. Alternative search styat@§S) is generally used for optimization.
By gradually increasing the penalty of the SPL regulariagirdy the optimization, more samples
are included into training from easy to hard by a self-pacadmer. Due to its ability of avoiding
bad local minima and improving the generalization perfarogg many works have been developed

based on SPIL[16, 17, 13,131.]25] 15].

One key issue in SPL is to obtain better weighting strategy it determined by the minimizer
functions, and existing methods usually pursue this bficetily designing the explicit form of SPL

regularizers[29, 32, 11, 12]. Some examples are listeddragipendix. Specifically, a definition of
self-paced regularizer is given in_J11]. Though shown to fiective in many applications exper-
imentally, the underlying working mechanism of SPL is gtiticlear and is heavily desired for its
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future development. One attempt in this aspectis [19], gheyv that the ASS method used for SPL
accords with thenajorization minimizatiorfi26] algorithm implemented on a latent SPL objective,
and deduce the latent objective of hard, linear and mixtegelraizers.

Considering the crucial role of minimizer function in SPLeocus on it and study a group of
new regularizer (named self-paced implicit regularizer)SPL based on the convex conjugacy the-
ory. Comparing with existing SPL regularizers, the selégrhimplicit regularizer is deduced from
robust loss function and its analytic form can be even unknolts properties and corresponding
minimizer function can be learned from the latent loss fiomctirectly. Besides, the proposed
self-paced implicit regularizer is independent of the iéag objective and thus leads to a general
framework (named SPL-IR) for SPL. SPL-IR can be optimizesd AES algorithm. More impor-
tantly, we demonstrate that the learning procedure of SPis-Indeed associated with latent robust
loss functions, thus may provide some theoretical insipinatfor its working mechanism (e.g. its
robustness to outliers and heavy noid&k further analyze the relations between SPL-IR and half-
guadratic (HQ) optimization and provide a group of selfggh@mplicit regularizer accordingly.
Such relations can be beneficial to both SPL and HQ optinsimatFinally, we implement SPL-IR
to three classical tasks (i.e. matrix factorization, @usig and classification). Experimental results
corroborate our ideas and demonstrate the correctnesdfantiveness of SPL-IR.

Our work has three main contributions: (1) We propose satfed implicit regularizer for SPL,
and develop a general implicit regularization frameworaned SPL-IR) based on it. The self-
paced implicit regularizers not only enrich the family ofjuéarizers for SPL but also can provide
some inspirations on the working mechanism of SPLW®)analyze the connections between SPL-
IR and HQ optimizationand provide a group of robust loss function induced setfegamplicit
regularizers for SPL-IR accordingly. (3) Experimentaluléson both supervised and unsupervised
tasks corroborate our ideas and demonstrate the corrsandsffectiveness of SPL-IR.

2 Preliminaries

2.1 Self-Paced Learning via Explicit Regularizers

Given training dataseD = {(x;,y;)}", with n samples, where;; € R? is thei-th sample,
y; is the optional information according to the learning objex(e.g. y; can be the label ok;

in classification model). Lef(. ,w) denote the learned model ard be the model parameter.
L(yi, f(x;, w)) is the loss function of-th sample.

Mimicking the cognitive mechanism of humans and animalg, &ks to optimize the model from
easy to hard samples gradualljhe objective of SPL is to jointly optimize model parameteand

latent sample weighté = [vy, va, . .., v,] via the following minimization problem:
rgvlin ]E(W7V7)\) = ZUiL(yi7f(xiaw))+g(A7vi)a (1)
v i=1

whereg (A, v) is called self-paced regularizer aids a penalty parameter that controls the learning
pace. ASS algorithm is generally used fdr (1), which altévedy optimizesw andv while keeping
the other fixed. Specifically, given sample weightsthe minimization ovesv is a weighted loss
minimization problem that is independent of regularigék, v); given model parametex, the
optimal weight ofi-th sample is determined by

1111}11 vi L(yi, f(xi, W) + g\, v;). 2)

Sincel; = L(y;, f(x:, w) is constant once is given, the optimal value af; is uniquely determined
by the corresponding minimizer functieri\, ¢;) that satisfies

0'(/\, éz)éz + g(/\7 0'()\, /1)) < vil; + g()\, Ui),V’Ui S [0, 1] (3)
For example, ifg(\, v;) = —Av; [14], the optimal} is calculated by
vi =0\ b)) = { 0, otherwise )

By gradually increasing the value af more and more hard samples are included into the training
process. Many efforts have been put into the learning of mizer functions[[20, 32, 11, 12, 5],
and we name them as SPL with explicit regularizers as thegllystequire the explicit form of
regularizerg(\, v) . o(\, £) is then derived from the form af(\, v).



Table 1: Loss functiong(), t) and the corresponding minimizer functieti\, ¢), X is a hyper-parameter.

Huber Cauchy L1-L2 Welsch
: tz/27 [t <A 2 2 2 t?
Loss functionp(, t) = 22 i > A Aflog(1+ (£/A)°)|[VA + 12 — 1IA*(1 — exp(—xz))
-2
Minimizer functiono (X, t) )\/1|t| IiI § i 2/(1+(t/N?) | 1I/VATE| 2exp(—1iz)

2.2 Half-Quadratic Optimization

Half-quadratic optimizatior [21.5] 4] is a commonly usedimization method that based on the
convex conjugacy theory. It tries to solve a nonlinear afdjedunction via optimizing a series of
half-quadratic reformulation problems iteratively [7/89[6,[30].

Given a differentiable functiom(t) : R — R, if ¢(¢) further satisfies the conditions of the multi-
plicative form of HQ optimization in[20], the following eation holds for any fixed,

1
ot0) = int {50+ 00} ©
where(p) is the dual potential function ef(¢t) and R, = {¢|t > 0}. ¢)(p) is convex and reads
v = swp {5+ 000} ©
tER,

More analysis aboup(t) and+(p) refers to [[21]. The optimagh* that minimize [) is uniquely
determined by the corresponding minimizer func#gt) , which is derived from convex conjugacy
and is only relative to functiog(t). For each, ¢(t) is such that

SO + (1) < 2pt” + (), o € R ©

The optimization ofp(¢) can be done via iteratively minimizingandyp in (). One only needs to
focus ong(t) and its corresponding minimizer functiof) in HQ optimization, and the analytical
form of the dual potential functiotit(p) can be even unknown.

3 The Proposed Method

In this section, we first give the definition of the proposdftgaced implicit regularizer and derive
its minimizer function based on convex conjugacy. Then weelte a general self-paced learn-
ing framework, named SPL-IR, based on implicit regulaiaat Finally, we analyze the relations
between SPL-IR and HQ optimization.

3.1 Self-Paced Implicit Regularizer

Based on our above analysis of SPL, we define the self-pagqaatitmegularizer as follows,

Definition 1. Self-Paced Implicit Regularizer. A self-paced implicit regularizep (), v) is defined
as the dual potential function of a robust loss functig\, ¢), and satisfies

1. ¢(A 1) = miny>o vt + (A, 0);

2. 0 (), t) is the minimizer function af(\, ¢) that satisfiesr (A, t)t + (A, o(A, 1)) < vt + (A, v),
Yve R+,

3. 0(\, t) is non-negative and up-boundétl, € R ;
4.0 (A, t) is monotonically decreasing w.rt,V¢ € R, ;

5. 0(\, t) is monotonous w.r.t\ € R ;
where) is a hyper-parameter and it is the samegit\, ¢), ¢ (A, v) ando (A, t). A is considered to
be fixed in the first four conditions.



Latent loss function ¢(A, ¢) Minimizer function o(, £)

2
1
I
o .
<15 0B[N
~ i VTS
+ o] 061N N
= ! PR + ' e ~
o L] zoal N ~-
— AR F \
05 e = s
T .‘:’5__— o ‘—‘0.2 .. \§~~~‘
S R el e
0 0
0 1 2 0 2. 2
J4
fmemiASL e A=07 = = = A=05 -~ = A=0.3

Figure 1:Example of latent loss function and its corresponding minénfunction in Definition 1. The x-axis
refers to original losg. The solid lines are given for comparison, itjis= x in left figure, andy = 1 in right
one.

Proposition 1 For any fixed), if ¢(\, t) in Definition 1 further satisfies the conditions referred in
[20], its minimizer functionr(\, t) is uniquely determined by(\, t) and the analytic form of the
dual potential function) (A, v) can be even unknown during the optimization.

The proof of Proposition 1 is given in the appendix. Accogdia Definition 1, the self-paced im-
plicit regularizer is derived from robust loss functiors froperties can be learned from bath\, v)
and the latent loss functiop(\, t). The corresponding minimizer functier(A,¢) can be learned
from ¢(\, t) directly. During the optimization, the optimaf is determined by (), ¢) and the ana-
lytic form of ¢)(, v) can be even unknown, hengé€), v) is named self-paced implicit regularizer.
Besides, the last three conditions in Definition 1 are resfufor SPL regimes. Specifically, let
denote the sample loss, condition 4 indicates that the msdikkly to select easy samples (with
smaller losses) in favor of hard samples (with larger lIos&@sa fixed A, and condition 5 makes
sure that we can incorporate more and more samples throughduyparametei.

Besides, Jiangt al. have given a definition of self-paced regularizer and @erivecessary condi-
tions of the regularizer and the corresponding minimizacfion for SPL in[11]. However, it s still
nontrivial to design self-paced regularizers or analyairthroperties accordingly. The self-paced
implicit regularizery) (X, v) defined here is derived from robust loss functig(\, ¢). By establish-
ing the relations between(A, t) and (A, v), we can analyze their working mechanisms as well
as develop new SPL regularizers based on the developmeniasirioss functions. Moreover, the
properties ofiy(A, v) and its corresponding minimizer functieti), t) can be learned from(\, t).

3.2 Self-Paced Learning via Implicit Regularizers

We can develop an implicit regularization framework for SPased on the proposed self-paced
implicit regularizer. By substituting the regularizatitexm g(\, v) in @) with a self-paced implicit
regularizer) (A, v) given in Definition 1, we obtain the following SPL-IR problem

n

min E(w,v; ) = ZviL(yi, f(xi,w)) + (N v;). (8)

W,V ¢
=1

It can be solved via ASS algorithm, which alternatively aptiesw andv while keeping the other
fixed. However, different from existing SPL regularizetse tanalytic form ofi)(A, v) in (@) can
be unknown and the optimal* is determined by the corresponding minimizer function giure
Definition 1. The optimization procedure &1 (8) is descriliedlgorithm[d. Model [8) is called an
implicit regularization framework since it does not reguihe explicit form of)(\, v). The benefit
of implicit regularization has been analyzed|[in|[18, 22].

An insightful phenomenon is that the learning procedureRif-8R is actually associated with cer-
tain latent loss functions. For example, for a certain igiptiegularizer and its corresponding min-
imizer functionv} = o(\,¢;) = 1/(1 + £;/A?) in Algorithm [ (wherel; = L(y;, f(xi, w*))),
one is actually minimizing a latent robust functidi’_, A\* log(1 + ¢;/A?) during each round. Fig-
ure[d gives a graphical illustration. The latent loss fumeth(), ¢) can be considered to carry out
a meaningful transformation on original lo&s When/ is larger than a certain threshold(\, ¢)
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(a) Toy Example (b) HQ and SPL-IR
Figure 2: In (a), training samples are roughly divided into three §ypeasy samples, hard sample¢ and
outliers¥. X is usually fixed in HQ methods (e.g.= 0.5), hence some samples may be discarded incorrectly.
In contrast, SPL-IR can gradually incorporate more samiptea easy to hard (i.eA grows iteratively). (b)
demonstrates the performances of HQ and SPL-IR methodsyartteesic matrix factorization dataset, Welsch
minimizer function is adopted for both methods. For HQ-whk|sstandard HQ algorithmi [21] is implemented
with each)\ independently. More details refer to Section 3.3 and 4.1.

becomes a constant and its corresponding minimizer fumet{, ¢) becomes zero, hence the re-
lated sample is not considered for optimization. Throug thcan suppress the influence of hard
samples (refer to large) while retaining that of easy samples (refer to smal)erThis may also
provide some inspirations on the robustness of SPL-IR thepsiand heavy noise as they can usu-
ally cause larger losses. More specifically, starting wignmall A (e.g. 0.3), only a small part of
samples with very small losses will be involved (they aresidered to contain reliable information).
As ) increases, the suppressing effecth)O, ¢) on larger losses becomes weaker and their corre-
sponding weights increase, consequently more and moreshargles with larger losses (may also
contain more knowledge) are involved into training proceaéile gradually incorporating these
knowledge, the model becomes stronger and stronger. Thairgaprocedure of some existing
regularizers like hard and linear [19] can also be explainsder the framework of SPL-IR.

SPL-IRin [8) is considered as a general SPL framework fromaspects: firstly)(\, v) represents

a spectrum of self-paced implicit regularizer that is depel based on robust loss function and con-
vex conjugacy theory; secondly(\, v) is independent of specific model objectivéy;, f(x;, w))

and thus can be used in various applications. Besides,&@hAES strategy is used for both SPL
with explicit regularizer (mode[{1)) and SPL-IR (model )8} includes a weighted loss minimiza-
tion step and a weight updating step at each iteration, amtirtte overhead is mainly in the former
step. Hence for a specific loss functidiy;, f(x;, w)) and a fixed number of iteration, the time
complexities of SPL with explicit regularizer and SPL-IRrnghe same order of magnitude.

3.3 SPL-IR and Half-Quadratic Optimization

We can develop new self-paced implicit regularizers basetthe development of robust loss func-
tions. Specifically, we analyze the relations between SRkarAd HQ optmization and provide sev-
eral self-paced implicit regularizers accordingly. Fottbedemonstration, we first give an equiva-
lent quadratic form definition of self-paced implicit regtiker,

Definition 2 (Quadratic Form). Self-Paced Implicit Regularizer. A self-paced implicit regularizer
(A, v) is defined as the dual potential function of a robust losstiones(\, t), and satisfies

1. (A, t) = min,>g % vt? + (A, v);

2. o(\, t) is the minimizer function of(), ) and satisfies (X, t)t2 + (X, o(\, 1)) < S0t +
YA\ v), Vv e Ry.

3. 0(\, t) is non-negative and up-boundétl, € R, ;
4. 0(\,t) is monotonically decreasing w.rt, V¢ € Ry;

5. 0(\,t) is monotonous w.r.tA € Ry;
where) is a hyper-parameter and it is the samegit\, t), (A, v) anda (), t). A is considered to
be fixed in the first four conditions.



Algorithm 1 : Self-Paced Learning via Implicit Regularizers

Input: Input dataseD = {x;,y;}!" ,, step size: > 1.
Output: Model parametew.
1: Initialize sample weights* and parametex;
2: repeat
Update(w*, v*) = argminy, v E(w,v;\) by using ASS algorithmsy is iteratively opti-
mized by the corresponding minimizer functien
Monotone increase (or decreasedy step-sizeu;
until convergence.
return wsx

w

o aR

Table 2: Numerical results off.;-norm MF problem withL2-norm regularization. The best results are
highlighted in bold.
Method| PRMF SPL-hard SPL-mixture SPL-IR-huber SPL-IR-L1-L2 SIR-eauchy SPL-IR-welsch
RMSE [0.1528 0.0949 0.0625 0.0627 0.0650 0.0620 0.0596
MAE [0.0994 0.0672 0.0475 0.0476 0.0493 0.0472 0.0455

The equivalency of Definition 1 and Definition 2 is shown in #mpendix. Seen from Definition 2,
there is a close relationship between self-paced impkgjtifarizer and the dual potential function
defined in HQ reformulatioi{5). Apparently, the dual potanfiunction in [3) and the minimizer
function in [1) satisfy the first two conditions in Definitidy and self-paced implicit regularizer
imposes further constraints on the minimizer functiqn\, ¢) for the regimes of SPLMany loss
functions and their corresponding minimizer functions ialtiplicative form of HQ have been de-
veloped (some of them are tabulated in Tdlle 1). It is easyetidythat the functions in Tablgl 1
satisfy all the conditions in Definition 2, hence they can dgisted for self-paced implicit regular-
izers. The loss functions in Tall¢ 1 are well defined and hawegn to be effective in many areas
[9]. Meanwhile, though self-paced implicit regularizemcle developed from HQ optimization,
their optimization procedures are quite different. In HQeanainly focuses on the minimization
of loss functiony(\, t) and hyper-parameteris predetermined and fixed during the optimization.
While aiming to gradually optimize from easy to hard samp&BL-IR uses the right-hand side
vt?/2 + 1p(\, v) to model problems and one key concern is the weighting styateat determined
by the minimizer functiors(\,t). Besides, in order to gradually increase sampleis, updated
stage by stage in SPL-IR.

Figure2 gives an intuitive interpretation. If we set= \/L(y;, f(x;, w*)) and use the minimizer
function of Welsch given in Tablgl 1 for weight updating in Atithm[1, model[(B) can be con-
sidered to sequential optimize a group of Welsch loss fonstwith monotonically increasing.
Hence SPL-IR is able to gradually optimize from easy to hardiges while incorporating the good
properties of robust Welsch functions. On the other hand;ifQ optimization,\ is predefined and
fixed during the whole optimization. Hence its performanag/ioe largely influenced by the selec-
tion of \. For example, when is somehow small (e.g\ < 1 in Figure[2(B)), some hard samples
will be simply considered as outliers and discarded. Froencthmparisons in Figufe 2{b), we can
find that SPL-IR can always outperform HQ for every

4 Experiments

To illustrate the correctness and effectiveness of theldped SPL-IR model, we apply it to three
classical tasks: matrix factorization, clustering andsification. Experimental results demonstrate
that the proposed self-paced implicit regularizers odtwer baseline algorithms and achieve com-
parable or even better performance comparing to the aafifialesigned SPL regularizers.

There are two hyper-parametgy, i) that need to be tuned in Algorithinh 1. We follow a standard
setting in SPLI[[14] for all our experiments. That isjs initialized to obtain about half samples,
then it is iteratively updated to involve more and more sasgradually. The practical updating
direction depends on the specific minimizer function. Ferctions given in TablEIL\r11 = Ar/p

for L1-L2 while Ap1 = Ay * u for Huber, Cauchy and Welsch, whare> 1 is a step factor and’
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Figure 3:Tendency curves of RMSE and MAE w.r.t. the iterations.

Table 3: Clustering performance on the Handwritten Digit datasee Best results are highlighted in bold.

20 30
lteration

10 20 30

lteration

Method | ACC NMI AR F-score Purity
FOU 0.612(0.066) 0.628(0.029) 0.484(0.049) 0.539(0.043) 48[®051)
FAC 0.588(0.044) 0.597(0.017) 0.453(0.031) 0.512(0.027) 3®032)
KAR 0.734(0.062) 0.730(0.030) 0.634(0.055) 0.672(0.049) 61T.048)
MOR 0.415(0.014) 0.500(0.003) 0.295(0.004) 0.374(0.003) 7™@.004)
PIX 0.677(0.059) 0.701(0.031) 0.585(0.050) 0.629(0.045) 1M@.047)
ZER 0.524(0.033) 0.504(0.016) 0.369(0.024) 0.434(0.021) 51®3.022)
Con-MC 0.775(0.078) 0.773(0.037) 0.690(0.066) 0.722(0.058) 0Z(@059)
SPL-hard 0.821(0.059) 0.758(0.029) 0.709(0.050) 0.739(0.044) 34@045)
SPL-mixture | 0.845(0.068) 0.812(0.030) 0.763(0.057) 0.787(0.051) 61(@050)

MSPL 0.840(0.070) 0.806(0.035) 0.751(0.064) 0.776(0.057) 54@054)
SPL-IR-huber | 0.843(0.070) 0.810(0.035) 0.756(0.064) 0.781(0.057) 5&(®053)
SPLIR-LI-L2 | 0.835(0.068) 0.801(0.034) 0.743(0.061) 0.769(0.054) 4Q(@052)
SPL-IR-cauchy| 0.845(0.071) 0.814(0.035) 0.762(0.064) 0.786(0.057) 61(@053)
SPL-IR-welsch| 0.862(0.071) 0.833(0.035) 0.790(0.064) 0.812(0.057) 7&@053)

is an iteration numbey. is empirically set to 1.05 in our experiments. Similar seft are adjusted
for the competing SPL regularizers, including SPL-hard frrd SPL-mixture[32].

4.1 Matrix Factorization

Matrix factorization (MF) is one of the fundamental probkeim machine learning and data mining.
It aims to factorize amn x n data matrixY into two smaller factor®J € R™*" andV € R"*",
wherer < min(m,n), such thafUV7 is possibly close tdv. MF has been successfully imple-
mented in many applications, such as collaborative filtgf2].

Here we consider the MF problem on synthetic dataset. Spaitjfithe data used here is generated
as follows: two matrice®J andV, both of which are of siz&00 x 4, are first randomly generated
with each entry drawn from the Gaussian distributi®it0, 1), leading to a ground truth rank-
matrix Yo = UV7. Then we randomly choos#% of the entries and treat them as missing data.
Another 20% of the entries are randomly selected and addediform noise on—20, 20], and
the rest are perturbed with Gaussian noise drawn (0, 0.12). Similar to [32], we consider
Li-norm MF problem withL,-norm regularization, and the baseline algorithm is PRMF.[2Ve
modify it with different SPL regularizers for comparisorwd commonly used metrics are adopted

here: (1)root mean square erro(RMSE): ﬁHYO — UVT||p, and (2)mean absolute error

(MAE): -1 || Y~ UVT||;, whereU andV denote the outputs of MF algorithms. All the algorithms
are impfgmented with 50 realizations and their mean valtesegported.

Table[2 tabulates their numerical results. All SPL-IR altjons obtain performance improvements
over baseline algorithm PRMF, which shows the benefits of &gimes. Comparing among dif-
ferent SPL regularizers, the results of proposed self-gbanplicit regularizers are comparable to or
even better than that of mixture and hard schemes, espef@alSPL-IR with welsch regularizer.
These demonstrate the correctness and effectivenesspfapesed self-paced implicit regularizer.
Figure[3 further plots the tendency curves of RMSE and MABWifferent self-paced implicit reg-
ularizers and mixture regularizer for better understagdine results of PRMF are also reported as
a baseline. The performances of all implicit regularizerpriove rapidly for the first few iterations



Table 4:Statistical Information of Databases.

Dataset #.Category  #.Instance  #.Feature
Breast 2 569 30
Spambase 2 4601 57
Svmguidel 2 7089 4

Table 5:Classification accuracy (%).
Without Label Noise
Method LR SPL- SPL- SPL-IR-  SPL-IR- SPL-IR-  SPL-IR-
hard mixture huber L1-L2 cauchy welsch
Breast [97.36(2.22) 97.54(2.22) 98.25(1.69)8.77(1.19) 97.90(1.79) 98.42(1.54) 98.25(1.65)
Spambase 92.35(1.47) 92.63(1.08) 92.83(1.44) 93.05(1.25) 93.@&(1 93.09(1.41)93.13(1.34)
Svmguidel] 95.39(0.95) 95.39(0.95) 95.51(1.04) 95.57(0.95) 95.83M)1 95.65(1.01) 95.68(0.90)
With 20% Random Label Noise
Method LR SPL- SPL- SPL-IR-  SPL-IR- SPL-IR-  SPL-IR-
hard mixture huber L1-L2 cauchy welsch
Breast |92.08(2.96) 96.13(2.15) 96.66(2.12) 96.84(2.33) 94.BB( 97.54(1.90) 97.89(1.63)
Spambase 89.28(1.66) 89.81(1.61) 90.76(1.82) 90.92(1.65) 90.@%()1 90.85(1.55)91.37(1.37)
Svmguidel] 91.52(0.65) 92.72(1.12) 93.81(0.79) 93.54(0.75) 92.§3(0 93.88(1.05) 94.37(0.90)

as more and more easy samples are likely to be involved ie fhleases. With the increasing of the
iterations, the improvements become steady as some haéaddes or outliers are included.

4.2 Multi-view Clustering

Multi-view clustering aims to group data with multiple visvinto their underlying classes [28].
Most existing multi-view clustering algorithms fit a nonra@x model and may be stuck in bad lo-
cal minima. To alleviate this, Xet al. propose a multi-view self-paced learning algorithm (M$PL
that considers the learnability of both samples and vievesanhieves promising results in_[29].
Here we simply modified their MSPL model with different SPIguéarizers for comparison. The
UCI Handwritten Digit datasé} is used in this experiment. It consists of 2,000 handwrittign

its classified into ten categories (0-9). Each instancepsesented in terms of the following six
kinds of features (or views): Fourier coefficients of thereltéer shapes (FOU), profile correlations
(FAC), Karhunen-Love coefficients (KAR), pixel averageinx 3 windows (PI1X), Zernike mo-
ments (ZER), and morphological features (MOR). Here we musleeof all the six views for all the
comparing algorithms. The baseline algorithms are stahklaneans on each single view’s repre-
sentation and Con-MC (the features are concatenated oiead ¥irstly, and then standard k-means
is applied).

Five commonly used metrics are adopted to measure the ghgsperformances: clustering accu-
racy (ACC), normalized mutual information (NMI), F-scoRyrity, and adjusted rand index (AR)
[10]. Higher value indicates better performance for alliietrics. All algorithms are implemented
20 times and both mean values and standard derivations poeted. Tablé13 tabulates their nu-
merical results. It can be seen that all the multi-view alfans obtain significant improvements
over single-view ones, which demonstrates the benefitstegrating information from different
views. More importantly, comparing to Con-MC, the SPL-IRa@ithms can further improve the
performance by gradually optimizing from easy to hard sasgind avoiding bad local minima.
The proposed self-paced implicit regularizers are conipar® or even better than the compared
SPL regularizers.

4.3 Classification

The proposed self-paced implicit regularizers can be flexibplemented to supervised tasks. Here
we conduct a binary classification task. Specifically, wizatithe L2-regularized Logistic Regres-
sion (LR) model as our baseline, and incorporate it withedéht SPL regularizers for comparison.
Liblinear [3] is used as the solver of LR. Three real-worldateses are considered: BrBasSpam-
bas® and Svmguide1]2]. Their statistical information is sumized in Tabld#. For each dataset,

https://archive.ics.uci.edu/ml/datasets



we consider it without additional noise and with 20% randaivel noise, respectively. The 20%
random label noise means we randomly select 20% samplestfeaning data and reversal their
labels (change positive to negative, and vice-versa). Véelsfold cross validation for all the
databases, and report both their mean values and theiesthderivations.

Classification accuracy is used for performance measurbleBareports their numerical results.
For both situations, SPL-IR algorithms can get performamgeovements over original LR method
to some extent. Moreover, when adding random label noisepénformance of original LR de-
generates a lot, while the SPL algorithms can still obtdiatirely high performance, especially for
SPL-IR with welsch regularizer. This corroborates our gsialabout the robustness of SPL-IR to
outliers and heavy noise.

5 Conclusions

In this paper, we study a group of new regularizer, namedps=aied implicit regularizer for SPL
based on the convex conjugate theory. The self-paced inpigularizer is derived from robust
loss function and its analytic form can be even unknown. ridgprties and the corresponding mini-
mizer function can be learned from the latent loss functioeatly. We then develop a general SPL
framework (SPL-IR) based on it. We further demonstrate ti@tearning procedure of SPL-IR is
actually associated with certain latent robust loss fmstj thus may provide some theoretical in-
spirations on the working mechanisms of SPL-IR (such asahestness to outliers or heavy noise).
We later analyze the relations between SPL-IR and HQ op#itioiz and develop a group of self-
paced implicit regularizer accordingly. Experimentaluies on both supervised and unsupervised
tasks demonstrate the correctness and effectivenessapesed self-paced implicit regularizer.

6 Appendix

6.1 Proof of Proposition 1

Proof. The proof sketch is similar to that ih [20]. For ease of reprgation, we omit\ and use
o(t), ¥(v) ando(t) for short. Some fundamental assumptions alydtt are:H1: ¢ : R, — Ris
increasing withp # 0 and$(0) = 0; H2: ¢(t) is C* and concavetd3: lim; o, ¢(t)/t = 0.

Putd(t) = —¢(t), thend is convex by H2. Its convex conjugated$(v) = sup,~, {vt — 6(¢)}.

By the Fenchel-Moreau theorefm [23], the convex conjugat# a$ 6, that isf(t) = (6*)*(t) =
sup, <o {vt — 0*(v)} = —inf,>0 {vt + 6*(~v)}. Thus we have

Y(v) = 0" (—v) = sup {—vt—0@)} = sup {—vt+ ¢(1)}. )

o(t) = —0(t) = inf {vt +07(—v)} = inf {vt +¥(v)} (10)

Then the problem becomes how to achieve the supremuim ini@yjovith the infimum in [10).
For anyo > 0, definef; : R — R by fs(t) = 0t + 0(¢), then we have)(d) = —inf;>o f5(t)
from (@). According to H1-H3/; is convex withf;(0) = 0 andlim;_, ; f5(¢) = +oo. Thusf;
can reach its unique minimum at & 0, andy)(d) = —ot + ¢(¢) from (@). Hence equivalently the
infimum in (0) is reached atas¢(t) = of + ¢(0). Then we have) = o(t) = —0'(t) = ¢'(t).
Thus the optimal is uniquely determined by the minimizer functie(t) that is derived from(¢).
The analytic form of the dual potential functiai(v) could be unknown during the optimization.
The proof is then completed.

6.2 Definition 1 and Definition 2

To show the equivalency of Definition 1 and Definition 2 in thaimbody, we first give the following
proposition about Definition 2.

Proposition 2 For any fixed), if ¢(A,¢) in Definition 2 further satisfies the conditions referred
in [20], its minimizer functions(\, ) is uniquely determined by (), ¢) and the analytic form of
(A, v) can be even unknown during the optimization.



Proof. The proof sketch is similar to that in [20]. For easeegfresentation, we omit and use
¢(t), ¥(v) ando(t) for short. Some fundamental assumptions alkgus are:H1: ¢ : Ry — R
is increasing withy # 0 and ¢(0) = 0; H2: ¢ — #(\/t) is concave;H3: ¢(t) is C'; H4
limy 00 ¢(2) /12 = 0.

Putd(t) = —4(v/1), thend is convex by H2. Its convex conjugateds(v) = sup,~, {vt — 6(t)}.

By the Fenchel-Moreau theorefm [23], the convex conjugat# a$ 6, that isf(t) = (6*)*(t) =
sup,<q {vt — 0% (v)} = —infy,>0 {vt + 0*(—v)}. Definey(v) = 0*(—1v), we have

9(0) = sup {50t — 6(1)} = sup {50 + 6(0)). 1)
t>0 t>0
B(t) = ~6(t*) = inf {vf* +6"(~v)} = inf {%vt? +9(v)}. (12)
Then the problem becomes how to achieve the supremumlingittlyjwith the infimum in [12).
For anys > 0, definef; : Ry — R by f;(t) = 2ot + 6(t), then we have)(d) = — inf;>q f5(t)
from (11). According to H1- H4fv is convex Wltﬁfv =0 andllmt_>+oo fo(t) = +o0. Thusf;
can reach its unique minimum at & 0, andw) () = ——vfz + ¢(t) from (). Hence equivalently

the infimum in [I2) is reached atas¢(f) = 30t + zp(ﬁ). Then we have) = o(t) = —20'(t?) =
¢'(t)/t. Thus the optimab is uniquely determined by the minimizer functiett) that is only
related top(t). The analytic form of the dual potential functierfv) could be unknown during the
optimization. The proof is then completed.

Denotel; = L(y;, f(x:, w)) and rewrite model (8) in the main body as

W,V

min E(w,v;\) Zvl 2+ b, vp). (13)
i=1

If we adopti(), v;) with an implicit regularizer given in Definition 2 and usg = 3o (A, V/7;),
whereco (), v/¢;) is the minimizer function in Definition 2, moddl([13) is opiing a latent loss
functiond"" | #(\, v/¢;) equivalently.

Now we demonstrate the equivalency of Definition 1 and Dédini2 in the main body. For easy
of representation, we omk, and use€{ ¢ (t), 11 (v), o1 (¢)} and{¢pa(t), ¥2(v), o2 (t)} to refer to the
functions in Definition 1 and Definition 2, respectively. Giaering a simplified model

min vL(y, f(x,w)) +¢(v). (14)

Denotel = L(y, f(x,w)). We show that for a same implicit regularizetv) = 11 (v) = ¥2(v),
the optimalv* and the latent loss function of modgl{14) derived from Déifini 1 and Definition
2 are the same. Specifically, 18§ (v) = 12(v) = sup,~o {—vt + ¢1(t)} (Whereg,(t) satisfies
conditions H1-H3 of Proposition 1 in the main body), it ise#sverify that its corresponding latent
loss function isp; (¢) and optimalb* = o4 (£) = ¢} (¢) according to Definition 1 and Proposition 1.
Meanwhile, we have)s(v) = sup,sq {—vt + ¢1(t)} = sup,>q {—vt* + ¢a(t)}, wherepy(t) =
$1(t?). Then model[{(T¥) can be considered to optimize a latent lasstibng, (V) = ¢, (¢) and

the optimah* = %o—g(\/Z) = ¢ (¢) according to Definition 2 and Proposition 2. Thus we show the
equivalency of Definition 1 and Definition 2.

6.3 Self-Paced Regularizer

Similar definitions of self-paced regularizer (or self-pd¢unction) have been proposed|in][13] 32,
[17]. The definition in[[32] is shown below.

Definition 3 (Self-Paced Regularizer) [B2]: Suppose that is a weight variable/ is the loss, and
A is the learning pace parameter(\, v) is called self-paced rgularizer, if

1. g(\,v) is convex with respect to € [0, 1];
2. v*(A\,¢) is monotonically decreasing w.rt. ¢, and it holds thatlimy_,ov*(),¢) = 1,
limy— 00 v*(X,€) =0
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3. v*(\,¢) is monotonically increasing w.r.t. A, and it holds thatlimy_v*(),¢) = O,
limy oo v* (A, 0) <1

wherev* (A, £) = arg min,ep,1] v€ + g(A, v).

Table 6:Recently proposed self-paced regularizgs, v) and their corresponding* (), £)

gxv) v ()0
n 1, li < A
Kumaretal. [14] |-AY" v, A>0 { 0, otherwise
. 1 1-— %(U b < A
Jianget al [TL,[I3]| 32 3711, (vF — 2v:), A >0 { 0, otherwise
n Cvi
. > (v — =), ez log(li+¢),  Li<A
1 Tog C 7 5 7
Jianget al. [11,[13]| = 0g¢ 0, otherwise
(=1-X20<A<1
— ¢ log(vi + ), 1, 0 < Ao
Jianget al, [T1,[T3 — A1 Qil)C g oA
ianget al. [11,[13] z—)\ \ o M <bi<h
(= 12,)\1>)\2>0 0, tizx
VDY 1
_ noo. ’ = Vi—/i-1
Jianget al. [12] A v = lvlf2,, A >0, v >0 { 0, otherwise
n Y
‘ In(1+e > — ;) Fe 700 -
Xu et al. Z s =
+ In(v;)" — Avg, A >0
17 62 < ( AW3)2
Zhaoet al. [32] fuu+w}\>0 >0 10, ) b= A
~( Nl 5), otherwise
& 1 0
Zhanget al. [37] —/\kzuz:lv —VZ ZU“ { (G A))72 (i-1) L ‘
N — ,  otherwise

Table® tabulates some examples of self-paced regulagizers) and their corresponding (), ¢).
We modify their original expressions for better comparidors still nontrivial to design self-paced
regularizers or analyze their properties according to t&fin3. Besides, though shown to be
effective in many applications experimentally, the ungied working mechanism of SPL is still
unclear.

One attempt about the underlying working mechanism of SRIL9% Starting from SPL regular-
izers and their minimizer functions, they show that the ASShud used for SPL accords with the
majorization minimizatiorf2g] algorithm implemented on a latent SPL objective, anduded the
latent objective of hard, linear and mixture regulraizénscontrast, we start from a latent loss func-
tion ¢(, ¢) directly and propose self-paced implicit regularizer lobse the convex conjugacy the-
ory. We establish the relations between robust loss funetia, ¢), self-paced implicit regularizer
(A, v) and minimizer functiorr (), £). According to Definition 135(\, v) ando (), £) are derived
from latent loss functiom(\, ¢), thus we can analyze their properties based on the develdmhe
o(A, ) (many loss functions have be widely studied in related aré&s further demonstrate that
for SPL with the proposed implicit regularizer, its leamiprocedure actually associates with cer-
tain latent robust loss functions. Thus we can provide sarsgiiations for the working mechanism
of SPL (e.qg. its robustness to outliers and heavy noise).eb\@r, by establishing the relations be-
tweeng(A, £) andy)(\, v), we can develop new SPL regularizers based on the develdpfrebust
loss functions. Specifically, we analyze the relations leetwself-paced implicit regularizer and HQ
optimization. Many robust loss functions and their minierifunctions have been developed and
widely used in HQ optimization, and they can be adjusteddtirgaced implicit regularizers (some
examples are given in Table 1 in main body).
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