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Abstract

Self-paced learning (SPL) mimics the cognitive mechanism of humans and ani-
mals that gradually learns from easy to hard samples. One keyissue in SPL is to
obtain better weighting strategy that is determined by minimizer function. Exist-
ing methods usually pursue this by artificially designing the explicit form of SPL
regularizer. In this paper, we focus on the minimizer function, and study a group of
new regularizer, named self-paced implicit regularizer that is deduced from robust
loss function. Based on the convex conjugacy theory, the minimizer function for
self-paced implicit regularizer can be directly learned from the latent loss function,
while the analytic form of the regularizer can be even known.A general frame-
work (named SPL-IR) for SPL is developed accordingly. We demonstrate that the
learning procedure of SPL-IR is associated with latent robust loss functions, thus
can provide some theoretical inspirations for its working mechanism. We further
analyze the relation between SPL-IR and half-quadratic optimization. Finally, we
implement SPL-IR to both supervised and unsupervised tasks, and experimental
results corroborate our ideas and demonstrate the correctness and effectiveness of
implicit regularizers.

1 Introduction

Inspired by the learning process and cognitive mechanism ofhumans and animals, Bengioet al.
propose a new learning strategy calledcurriculum learning(CL) in [1], which gradually includes
more and more hard samples into training process. A curriculum can be seen as a sequence of
training criteria. For example, in the training of a shape recognition system, images that exhibit less
variability such as squares and circles are considered first, followed by hard shapes like ellipses.
The curriculum in CL is usually determined by some certain priors, and thus is problem specific and
lacks generalizations. To alleviate this, Kumaret al. propose a new learning strategy named self-
paced learning (SPL) that incorporates the curriculum updating in the process of model optimization
[14]. General SPL model consists of a problem specific weighted loss term on all samples and a SPL
regularizer on sample weights. Alternative search strategy (ASS) is generally used for optimization.
By gradually increasing the penalty of the SPL regularizer during the optimization, more samples
are included into training from easy to hard by a self-paced manner. Due to its ability of avoiding
bad local minima and improving the generalization performance, many works have been developed
based on SPL [16, 17, 13, 31, 25, 15].

One key issue in SPL is to obtain better weighting strategy that is determined by the minimizer
functions, and existing methods usually pursue this by artificially designing the explicit form of SPL
regularizers [29, 32, 11, 12]. Some examples are listed in the appendix. Specifically, a definition of
self-paced regularizer is given in [11]. Though shown to be effective in many applications exper-
imentally, the underlying working mechanism of SPL is stillunclear and is heavily desired for its
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future development. One attempt in this aspect is [19], theyshow that the ASS method used for SPL
accords with themajorization minimization[26] algorithm implemented on a latent SPL objective,
and deduce the latent objective of hard, linear and mixture regulraizers.

Considering the crucial role of minimizer function in SPL, we focus on it and study a group of
new regularizer (named self-paced implicit regularizer) for SPL based on the convex conjugacy the-
ory. Comparing with existing SPL regularizers, the self-paced implicit regularizer is deduced from
robust loss function and its analytic form can be even unknown. Its properties and corresponding
minimizer function can be learned from the latent loss function directly. Besides, the proposed
self-paced implicit regularizer is independent of the learning objective and thus leads to a general
framework (named SPL-IR) for SPL. SPL-IR can be optimized via ASS algorithm. More impor-
tantly, we demonstrate that the learning procedure of SPL-IR is indeed associated with latent robust
loss functions, thus may provide some theoretical inspirations for its working mechanism (e.g. its
robustness to outliers and heavy noise).We further analyze the relations between SPL-IR and half-
quadratic (HQ) optimization and provide a group of self-paced implicit regularizer accordingly.
Such relations can be beneficial to both SPL and HQ optimization. Finally, we implement SPL-IR
to three classical tasks (i.e. matrix factorization, clustering and classification). Experimental results
corroborate our ideas and demonstrate the correctness and effectiveness of SPL-IR.

Our work has three main contributions: (1) We propose self-paced implicit regularizer for SPL,
and develop a general implicit regularization framework (named SPL-IR) based on it. The self-
paced implicit regularizers not only enrich the family of regularizers for SPL but also can provide
some inspirations on the working mechanism of SPL. (2)We analyze the connections between SPL-
IR and HQ optimization, and provide a group of robust loss function induced self-paced implicit
regularizers for SPL-IR accordingly. (3) Experimental results on both supervised and unsupervised
tasks corroborate our ideas and demonstrate the correctness and effectiveness of SPL-IR.

2 Preliminaries

2.1 Self-Paced Learning via Explicit Regularizers

Given training datasetD = {(xi, yi)}ni=1 with n samples, wherexi ∈ Rd is the i-th sample,
yi is the optional information according to the learning objective (e.g. yi can be the label ofxi

in classification model). Letf(. ,w) denote the learned model andw be the model parameter.
L(yi, f(xi,w)) is the loss function ofi-th sample.

Mimicking the cognitive mechanism of humans and animals, SPL aims to optimize the model from
easy to hard samples gradually.The objective of SPL is to jointly optimize model parameterw and
latent sample weightsv = [v1, v2, . . . , vn] via the following minimization problem:

min
w,v

E(w,v;λ) =

n
∑

i=1

viL(yi, f(xi,w)) + g(λ, vi), (1)

whereg(λ, v) is called self-paced regularizer andλ is a penalty parameter that controls the learning
pace. ASS algorithm is generally used for (1), which alternatively optimizesw andv while keeping
the other fixed. Specifically, given sample weightsv, the minimization overw is a weighted loss
minimization problem that is independent of regularizerg(λ, v); given model parameterw, the
optimal weight ofi-th sample is determined by

min
vi

viL(yi, f(xi,w)) + g(λ, vi). (2)

Sinceℓi = L(yi, f(xi,w) is constant oncew is given, the optimal value ofvi is uniquely determined
by the corresponding minimizer functionσ(λ, ℓi) that satisfies

σ(λ, ℓi)ℓi + g(λ, σ(λ, ℓi)) ≤ viℓi + g(λ, vi), ∀vi ∈ [0, 1]. (3)
For example, ifg(λ, vi) = −λvi [14], the optimalv∗i is calculated by

v∗i = σ(λ, ℓi) =

{

1, if ℓi ≤ λ
0, otherwise

(4)

By gradually increasing the value ofλ, more and more hard samples are included into the training
process. Many efforts have been put into the learning of minimizer functions [29, 32, 11, 12, 25],
and we name them as SPL with explicit regularizers as they usually require the explicit form of
regularizerg(λ, v) . σ(λ, ℓ) is then derived from the form ofg(λ, v).

2



Table 1: Loss functionφ(λ, t) and the corresponding minimizer functionσ(λ, t), λ is a hyper-parameter.
Huber Cauchy L1-L2 Welsch

Loss functionφ(λ, t)

{

t2/2, |t| ≤ λ

λ|t| − λ2

2
, |t| > λ

λ2 log(1 + (t/λ)2)
√
λ+ t2 − 1 λ2(1− exp(− t2

λ2 ))

Minimizer functionσ(λ, t)

{

1 |t| ≤ λ
λ/|t|, |t| > λ

2/(1 + (t/λ)2) 1/
√
λ+ t2 2 exp(− t2

λ2 )

2.2 Half-Quadratic Optimization

Half-quadratic optimization [21, 5, 4] is a commonly used optimization method that based on the
convex conjugacy theory. It tries to solve a nonlinear objective function via optimizing a series of
half-quadratic reformulation problems iteratively [7, 9,8, 6, 30].

Given a differentiable functionφ(t) : R → R, if φ(t) further satisfies the conditions of the multi-
plicative form of HQ optimization in [20], the following equation holds for any fixedt,

φ(t) = inf
p∈R+

{

1

2
pt2 + ψ(p)

}

, (5)

whereψ(p) is the dual potential function ofφ(t) andR+ = {t|t ≥ 0}. ψ(p) is convex and reads

ψ(p) = sup
t∈R+

{

−1

2
pt2 + φ(t)

}

, (6)

More analysis aboutφ(t) andψ(p) refers to [21]. The optimalp∗ that minimize (5) is uniquely
determined by the corresponding minimizer functionδ(t) , which is derived from convex conjugacy
and is only relative to functionφ(t). For eacht, δ(t) is such that

1

2
δ(t)t2 + ψ(δ(t)) ≤ 1

2
pt2 + ψ(p), ∀p ∈ R+. (7)

The optimization ofφ(t) can be done via iteratively minimizingt andp in (5). One only needs to
focus onφ(t) and its corresponding minimizer functionδ(t) in HQ optimization, and the analytical
form of the dual potential functionψ(p) can be even unknown.

3 The Proposed Method

In this section, we first give the definition of the proposed self-paced implicit regularizer and derive
its minimizer function based on convex conjugacy. Then we develop a general self-paced learn-
ing framework, named SPL-IR, based on implicit regularization. Finally, we analyze the relations
between SPL-IR and HQ optimization.

3.1 Self-Paced Implicit Regularizer

Based on our above analysis of SPL, we define the self-paced implicit regularizer as follows,

Definition 1. Self-Paced Implicit Regularizer. A self-paced implicit regularizerψ(λ, v) is defined
as the dual potential function of a robust loss functionφ(λ, t), and satisfies

1. φ(λ, t) = minv≥0 vt+ ψ(λ, v);

2. σ(λ, t) is the minimizer function ofφ(λ, t) that satisfiesσ(λ, t)t+ ψ(λ, σ(λ, t)) ≤ vt+ ψ(λ, v),
∀ v ∈ R+;

3. σ(λ, t) is non-negative and up-bounded,∀ t ∈ R+;

4. σ(λ, t) is monotonically decreasing w.r.t.t, ∀ t ∈ R+;

5. σ(λ, t) is monotonous w.r.t.λ ∈ R+;
whereλ is a hyper-parameter and it is the same inφ(λ, t), ψ(λ, v) andσ(λ, t). λ is considered to
be fixed in the first four conditions.

3
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Figure 1:Example of latent loss function and its corresponding minimizer function in Definition 1. The x-axis
refers to original lossℓ. The solid lines are given for comparison, it isy = x in left figure, andy = 1 in right
one.

Proposition 1 For any fixedλ, if φ(λ, t) in Definition 1 further satisfies the conditions referred in
[20], its minimizer functionσ(λ, t) is uniquely determined byφ(λ, t) and the analytic form of the
dual potential functionψ(λ, v) can be even unknown during the optimization.

The proof of Proposition 1 is given in the appendix. According to Definition 1, the self-paced im-
plicit regularizer is derived from robust loss function. Its properties can be learned from bothψ(λ, v)
and the latent loss functionφ(λ, t). The corresponding minimizer functionσ(λ, t) can be learned
fromφ(λ, t) directly. During the optimization, the optimalv∗ is determined byσ(λ, t) and the ana-
lytic form of ψ(λ, v) can be even unknown, henceψ(λ, v) is named self-paced implicit regularizer.
Besides, the last three conditions in Definition 1 are required for SPL regimes. Specifically, lett
denote the sample loss, condition 4 indicates that the modelis likely to select easy samples (with
smaller losses) in favor of hard samples (with larger losses) for a fixedλ, and condition 5 makes
sure that we can incorporate more and more samples through turning parameterλ.

Besides, Jianget al. have given a definition of self-paced regularizer and derived necessary condi-
tions of the regularizer and the corresponding minimizer function for SPL in [11]. However, it is still
nontrivial to design self-paced regularizers or analyze their properties accordingly. The self-paced
implicit regularizerψ(λ, v) defined here is derived from robust loss functionφ(λ, t). By establish-
ing the relations betweenφ(λ, t) andψ(λ, v), we can analyze their working mechanisms as well
as develop new SPL regularizers based on the development of robust loss functions. Moreover, the
properties ofψ(λ, v) and its corresponding minimizer functionσ(λ, t) can be learned fromφ(λ, t).

3.2 Self-Paced Learning via Implicit Regularizers

We can develop an implicit regularization framework for SPLbased on the proposed self-paced
implicit regularizer. By substituting the regularizationtermg(λ, v) in (1) with a self-paced implicit
regularizerψ(λ, v) given in Definition 1, we obtain the following SPL-IR problem,

min
w,v

E(w,v;λ) =

n
∑

i=1

viL(yi, f(xi,w)) + ψ(λ, vi). (8)

It can be solved via ASS algorithm, which alternatively optimizesw andv while keeping the other
fixed. However, different from existing SPL regularizers, the analytic form ofψ(λ, v) in (8) can
be unknown and the optimalv∗ is determined by the corresponding minimizer function given in
Definition 1. The optimization procedure of (8) is describedin Algorithm 1. Model (8) is called an
implicit regularization framework since it does not require the explicit form ofψ(λ, v). The benefit
of implicit regularization has been analyzed in [18, 22].

An insightful phenomenon is that the learning procedure of SPL-IR is actually associated with cer-
tain latent loss functions. For example, for a certain implicit regularizer and its corresponding min-
imizer functionv∗i = σ(λ, ℓi) = 1/(1 + ℓi/λ

2) in Algorithm 1 (whereℓi = L(yi, f(xi,w
∗))),

one is actually minimizing a latent robust function
∑n

i=1 λ
2 log(1 + ℓi/λ

2) during each round. Fig-
ure 1 gives a graphical illustration. The latent loss functionφ(λ, ℓ) can be considered to carry out
a meaningful transformation on original lossℓ. Whenℓ is larger than a certain threshold,φ(λ, ℓ)
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(a) Toy Example (b) HQ and SPL-IR

Figure 2: In (a), training samples are roughly divided into three types: easy samplesN, hard samples� and
outliers⋆. λ is usually fixed in HQ methods (e.g.λ = 0.5), hence some samples may be discarded incorrectly.
In contrast, SPL-IR can gradually incorporate more samplesfrom easy to hard (i.e.λ grows iteratively). (b)
demonstrates the performances of HQ and SPL-IR methods on a synthetic matrix factorization dataset, Welsch
minimizer function is adopted for both methods. For HQ-welsch, standard HQ algorithm [21] is implemented
with eachλ independently. More details refer to Section 3.3 and 4.1.

becomes a constant and its corresponding minimizer function σ(λ, ℓ) becomes zero, hence the re-
lated sample is not considered for optimization. Through this, it can suppress the influence of hard
samples (refer to largerℓ) while retaining that of easy samples (refer to smallerℓ). This may also
provide some inspirations on the robustness of SPL-IR to outliers and heavy noise as they can usu-
ally cause larger losses. More specifically, starting with asmallλ (e.g. 0.3), only a small part of
samples with very small losses will be involved (they are considered to contain reliable information).
As λ increases, the suppressing effect ofφ(λ, ℓ) on larger losses becomes weaker and their corre-
sponding weights increase, consequently more and more hardsamples with larger losses (may also
contain more knowledge) are involved into training process. While gradually incorporating these
knowledge, the model becomes stronger and stronger. The learning procedure of some existing
regularizers like hard and linear [19] can also be explainedunder the framework of SPL-IR.

SPL-IR in (8) is considered as a general SPL framework from two aspects: firstly,ψ(λ, v) represents
a spectrum of self-paced implicit regularizer that is developed based on robust loss function and con-
vex conjugacy theory; secondly,ψ(λ, v) is independent of specific model objectiveL(yi, f(xi,w))
and thus can be used in various applications. Besides, standard ASS strategy is used for both SPL
with explicit regularizer (model (1)) and SPL-IR (model (8)). It includes a weighted loss minimiza-
tion step and a weight updating step at each iteration, and the time overhead is mainly in the former
step. Hence for a specific loss functionL(yi, f(xi,w)) and a fixed number of iteration, the time
complexities of SPL with explicit regularizer and SPL-IR isin the same order of magnitude.

3.3 SPL-IR and Half-Quadratic Optimization

We can develop new self-paced implicit regularizers based on the development of robust loss func-
tions. Specifically, we analyze the relations between SPL-IR and HQ optmization and provide sev-
eral self-paced implicit regularizers accordingly. For better demonstration, we first give an equiva-
lent quadratic form definition of self-paced implicit regularizer,

Definition 2 (Quadratic Form). Self-Paced Implicit Regularizer. A self-paced implicit regularizer
ψ(λ, v) is defined as the dual potential function of a robust loss functionφ(λ, t), and satisfies

1. φ(λ, t) = minv≥0
1
2 vt

2 + ψ(λ, v);

2. σ(λ, t) is the minimizer function ofφ(λ, t) and satisfies12σ(λ, t)t
2 + ψ(λ, σ(λ, t)) ≤ 1

2vt
2 +

ψ(λ, v), ∀ v ∈ R+.

3. σ(λ, t) is non-negative and up-bounded,∀ t ∈ R+;

4. σ(λ, t) is monotonically decreasing w.r.t.t, ∀ t ∈ R+;

5. σ(λ, t) is monotonous w.r.t.λ ∈ R+;
whereλ is a hyper-parameter and it is the same inφ(λ, t), ψ(λ, v) andσ(λ, t). λ is considered to
be fixed in the first four conditions.
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Algorithm 1 : Self-Paced Learning via Implicit Regularizers

Input: Input datasetD = {xi, yi}ni=1, step sizeµ > 1.
Output: Model parameterw.
1: Initialize sample weightsv∗ and parameterλ;
2: repeat
3: Update(w∗,v∗) = argminw,v E(w,v;λ) by using ASS algorithms,v is iteratively opti-

mized by the corresponding minimizer functionσ;
4: Monotone increase (or decrease)λ by step-sizeµ;
5: until convergence.
6: return w∗

Table 2: Numerical results ofL1-norm MF problem withL2-norm regularization. The best results are
highlighted in bold.
Method PRMF SPL-hard SPL-mixture SPL-IR-huber SPL-IR-L1-L2 SPL-IR-cauchy SPL-IR-welsch
RMSE 0.1528 0.0949 0.0625 0.0627 0.0650 0.0620 0.0596
MAE 0.0994 0.0672 0.0475 0.0476 0.0493 0.0472 0.0455

The equivalency of Definition 1 and Definition 2 is shown in theappendix. Seen from Definition 2,
there is a close relationship between self-paced implicit regularizer and the dual potential function
defined in HQ reformulation (5). Apparently, the dual potential function in (5) and the minimizer
function in (7) satisfy the first two conditions in Definition2, and self-paced implicit regularizer
imposes further constraints on the minimizer functionσ(λ, t) for the regimes of SPL.Many loss
functions and their corresponding minimizer functions in multiplicative form of HQ have been de-
veloped (some of them are tabulated in Table 1). It is easy to verify that the functions in Table 1
satisfy all the conditions in Definition 2, hence they can be adjusted for self-paced implicit regular-
izers. The loss functions in Table 1 are well defined and have proven to be effective in many areas
[9]. Meanwhile, though self-paced implicit regularizer can be developed from HQ optimization,
their optimization procedures are quite different. In HQ, one mainly focuses on the minimization
of loss functionφ(λ, t) and hyper-parameterλ is predetermined and fixed during the optimization.
While aiming to gradually optimize from easy to hard samples, SPL-IR uses the right-hand side
vt2/2 + ψ(λ, v) to model problems and one key concern is the weighting strategy that determined
by the minimizer functionσ(λ, t). Besides, in order to gradually increase samples,λ is updated
stage by stage in SPL-IR.

Figure 2 gives an intuitive interpretation. If we setti =
√

L(yi, f(xi,w∗)) and use the minimizer
function of Welsch given in Table 1 for weight updating in Algorithm 1, model (8) can be con-
sidered to sequential optimize a group of Welsch loss functions with monotonically increasingλ.
Hence SPL-IR is able to gradually optimize from easy to hard samples while incorporating the good
properties of robust Welsch functions. On the other hand, for HQ optimization,λ is predefined and
fixed during the whole optimization. Hence its performance may be largely influenced by the selec-
tion of λ. For example, whenλ is somehow small (e.g.λ < 1 in Figure 2(b)), some hard samples
will be simply considered as outliers and discarded. From the comparisons in Figure 2(b), we can
find that SPL-IR can always outperform HQ for everyλ.

4 Experiments

To illustrate the correctness and effectiveness of the developed SPL-IR model, we apply it to three
classical tasks: matrix factorization, clustering and classification. Experimental results demonstrate
that the proposed self-paced implicit regularizers outperform baseline algorithms and achieve com-
parable or even better performance comparing to the artificially designed SPL regularizers.

There are two hyper-parameter(λ, µ) that need to be tuned in Algorithm 1. We follow a standard
setting in SPL [14] for all our experiments. That is,λ is initialized to obtain about half samples,
then it is iteratively updated to involve more and more samples gradually. The practical updating
direction depends on the specific minimizer function. For functions given in Table 1,λT+1 = λT /µ
for L1-L2 while λT+1 = λT ∗ µ for Huber, Cauchy and Welsch, whereµ > 1 is a step factor andT
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Figure 3:Tendency curves of RMSE and MAE w.r.t. the iterations.

Table 3: Clustering performance on the Handwritten Digit dataset. The best results are highlighted in bold.
Method ACC NMI AR F-score Purity

FOU 0.612(0.066) 0.628(0.029) 0.484(0.049) 0.539(0.043) 0.645(0.051)
FAC 0.588(0.044) 0.597(0.017) 0.453(0.031) 0.512(0.027) 0.631(0.032)
KAR 0.734(0.062) 0.730(0.030) 0.634(0.055) 0.672(0.049) 0.767(0.048)
MOR 0.415(0.014) 0.500(0.003) 0.295(0.004) 0.374(0.003) 0.475(0.004)
PIX 0.677(0.059) 0.701(0.031) 0.585(0.050) 0.629(0.045) 0.711(0.047)
ZER 0.524(0.033) 0.504(0.016) 0.369(0.024) 0.434(0.021) 0.551(0.022)

Con-MC 0.775(0.078) 0.773(0.037) 0.690(0.066) 0.722(0.058) 0.802(0.059)
SPL-hard 0.821(0.059) 0.758(0.029) 0.709(0.050) 0.739(0.044) 0.834(0.045)

SPL-mixture 0.845(0.068) 0.812(0.030) 0.763(0.057) 0.787(0.051) 0.861(0.050)
MSPL 0.840(0.070) 0.806(0.035) 0.751(0.064) 0.776(0.057) 0.854(0.054)

SPL-IR-huber 0.843(0.070) 0.810(0.035) 0.756(0.064) 0.781(0.057) 0.858(0.053)
SPL-IR-L1-L2 0.835(0.068) 0.801(0.034) 0.743(0.061) 0.769(0.054) 0.849(0.052)
SPL-IR-cauchy 0.845(0.071) 0.814(0.035) 0.762(0.064) 0.786(0.057) 0.861(0.053)
SPL-IR-welsch 0.862(0.071) 0.833(0.035) 0.790(0.064) 0.812(0.057) 0.878(0.053)

is an iteration number.µ is empirically set to 1.05 in our experiments. Similar settings are adjusted
for the competing SPL regularizers, including SPL-hard [14] and SPL-mixture [32].

4.1 Matrix Factorization

Matrix factorization (MF) is one of the fundamental problems in machine learning and data mining.
It aims to factorize anm × n data matrixY into two smaller factorsU ∈ Rm×r andV ∈ Rn×r,
wherer ≪ min(m,n), such thatUV

T is possibly close toY. MF has been successfully imple-
mented in many applications, such as collaborative filtering [24].

Here we consider the MF problem on synthetic dataset. Specifically, the data used here is generated
as follows: two matricesU andV, both of which are of size100× 4, are first randomly generated
with each entry drawn from the Gaussian distributionN (0, 1), leading to a ground truth rank-4
matrixY0 = UV

T . Then we randomly choose40% of the entries and treat them as missing data.
Another 20% of the entries are randomly selected and added touniform noise on[−20, 20], and
the rest are perturbed with Gaussian noise drawn fromN (0, 0.12). Similar to [32], we consider
L1-norm MF problem withL2-norm regularization, and the baseline algorithm is PRMF [27]. We
modify it with different SPL regularizers for comparison. Two commonly used metrics are adopted
here: (1)root mean square error(RMSE): 1√

mn
||Y0 − ÛV̂

T ||F , and (2)mean absolute error

(MAE): 1
mn

||Y0−ÛV̂
T ||1, whereÛ andV̂ denote the outputs of MF algorithms. All the algorithms

are implemented with 50 realizations and their mean values are reported.

Table 2 tabulates their numerical results. All SPL-IR algorithms obtain performance improvements
over baseline algorithm PRMF, which shows the benefits of SPLregimes. Comparing among dif-
ferent SPL regularizers, the results of proposed self-paced implicit regularizers are comparable to or
even better than that of mixture and hard schemes, especially for SPL-IR with welsch regularizer.
These demonstrate the correctness and effectiveness of theproposed self-paced implicit regularizer.
Figure 3 further plots the tendency curves of RMSE and MAE with different self-paced implicit reg-
ularizers and mixture regularizer for better understanding, the results of PRMF are also reported as
a baseline. The performances of all implicit regularizers improve rapidly for the first few iterations
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Table 4:Statistical Information of Databases.

Dataset #.Category #.Instance #.Feature
Breast 2 569 30

Spambase 2 4601 57
Svmguide1 2 7089 4

Table 5:Classification accuracy (%).
Without Label Noise

Method LR SPL-
hard

SPL-
mixture

SPL-IR-
huber

SPL-IR-
L1-L2

SPL-IR-
cauchy

SPL-IR-
welsch

Breast 97.36(2.22) 97.54(2.22) 98.25(1.65)98.77(1.19) 97.90(1.79) 98.42(1.54) 98.25(1.65)
Spambase 92.35(1.47) 92.63(1.08) 92.83(1.44) 93.05(1.25) 93.00(1.36) 93.09(1.41) 93.13(1.34)
Svmguide1 95.39(0.95) 95.39(0.95) 95.51(1.04) 95.57(0.95) 95.57(1.10) 95.65(1.01) 95.68(0.90)

With 20% Random Label Noise

Method LR
SPL-
hard

SPL-
mixture

SPL-IR-
huber

SPL-IR-
L1-L2

SPL-IR-
cauchy

SPL-IR-
welsch

Breast 92.08(2.96) 96.13(2.15) 96.66(2.12) 96.84(2.33) 94.72(2.89) 97.54(1.90) 97.89(1.63)
Spambase 89.28(1.66) 89.81(1.61) 90.76(1.82) 90.92(1.65) 90.09(1.65) 90.85(1.55) 91.37(1.37)
Svmguide1 91.52(0.65) 92.72(1.12) 93.81(0.79) 93.54(0.75) 92.83(0.71) 93.88(1.05) 94.37(0.90)

as more and more easy samples are likely to be involved in these phases. With the increasing of the
iterations, the improvements become steady as some hard instances or outliers are included.

4.2 Multi-view Clustering

Multi-view clustering aims to group data with multiple views into their underlying classes [28].
Most existing multi-view clustering algorithms fit a non-convex model and may be stuck in bad lo-
cal minima. To alleviate this, Xuet al. propose a multi-view self-paced learning algorithm (MSPL)
that considers the learnability of both samples and views and achieves promising results in [29].
Here we simply modified their MSPL model with different SPL regularizers for comparison. The
UCI Handwritten Digit dataset1 is used in this experiment. It consists of 2,000 handwrittendig-
its classified into ten categories (0-9). Each instance is represented in terms of the following six
kinds of features (or views): Fourier coefficients of the character shapes (FOU), profile correlations
(FAC), Karhunen-Love coefficients (KAR), pixel averages in2 x 3 windows (PIX), Zernike mo-
ments (ZER), and morphological features (MOR). Here we makeuse of all the six views for all the
comparing algorithms. The baseline algorithms are standard k-means on each single view’s repre-
sentation and Con-MC (the features are concatenated on all views firstly, and then standard k-means
is applied).

Five commonly used metrics are adopted to measure the clustering performances: clustering accu-
racy (ACC), normalized mutual information (NMI), F-score,Purity, and adjusted rand index (AR)
[10]. Higher value indicates better performance for all themetrics. All algorithms are implemented
20 times and both mean values and standard derivations are reported. Table 3 tabulates their nu-
merical results. It can be seen that all the multi-view algorithms obtain significant improvements
over single-view ones, which demonstrates the benefits of integrating information from different
views. More importantly, comparing to Con-MC, the SPL-IR algorithms can further improve the
performance by gradually optimizing from easy to hard samples and avoiding bad local minima.
The proposed self-paced implicit regularizers are comparable to or even better than the compared
SPL regularizers.

4.3 Classification

The proposed self-paced implicit regularizers can be flexible implemented to supervised tasks. Here
we conduct a binary classification task. Specifically, we utilize the L2-regularized Logistic Regres-
sion (LR) model as our baseline, and incorporate it with different SPL regularizers for comparison.
Liblinear [3] is used as the solver of LR. Three real-world databases are considered: Breast1, Spam-
base1 and Svmguide1 [2]. Their statistical information is summarized in Table 4. For each dataset,

1https://archive.ics.uci.edu/ml/datasets
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we consider it without additional noise and with 20% random label noise, respectively. The 20%
random label noise means we randomly select 20% samples fromtraining data and reversal their
labels (change positive to negative, and vice-versa). We use 10-fold cross validation for all the
databases, and report both their mean values and their standard derivations.

Classification accuracy is used for performance measure. Table 5 reports their numerical results.
For both situations, SPL-IR algorithms can get performanceimprovements over original LR method
to some extent. Moreover, when adding random label noise, the performance of original LR de-
generates a lot, while the SPL algorithms can still obtain relatively high performance, especially for
SPL-IR with welsch regularizer. This corroborates our analysis about the robustness of SPL-IR to
outliers and heavy noise.

5 Conclusions

In this paper, we study a group of new regularizer, named self-paced implicit regularizer for SPL
based on the convex conjugate theory. The self-paced implicit regularizer is derived from robust
loss function and its analytic form can be even unknown. Its properties and the corresponding mini-
mizer function can be learned from the latent loss function directly. We then develop a general SPL
framework (SPL-IR) based on it. We further demonstrate thatthe learning procedure of SPL-IR is
actually associated with certain latent robust loss functions, thus may provide some theoretical in-
spirations on the working mechanisms of SPL-IR (such as the robustness to outliers or heavy noise).
We later analyze the relations between SPL-IR and HQ optimization and develop a group of self-
paced implicit regularizer accordingly. Experimental results on both supervised and unsupervised
tasks demonstrate the correctness and effectiveness the proposed self-paced implicit regularizer.

6 Appendix

6.1 Proof of Proposition 1

Proof. The proof sketch is similar to that in [20]. For ease of representation, we omitλ and use
φ(t), ψ(v) andσ(t) for short. Some fundamental assumptions aboutφ(t) are:H1: φ : R+ → R is
increasing withφ 6≡ 0 andφ(0) = 0; H2: φ(t) isC1 and concave;H3: limt→∞ φ(t)/t = 0.

Putθ(t) = −φ(t), thenθ is convex by H2. Its convex conjugate isθ∗(v) = supt≥0 {vt − θ(t)}.
By the Fenchel-Moreau theorem [23], the convex conjugate ofθ∗ is θ, that isθ(t) = (θ∗)∗(t) =
supv≤0 {vt− θ∗(v)} = − infv≥0 {vt+ θ∗(−v)}. Thus we have

ψ(v) = θ∗(−v) = sup
t≥0

{−vt− θ(t)} = sup
t≥0

{−vt+ φ(t)}. (9)

φ(t) = −θ(t) = inf
v≥0

{vt+ θ∗(−v)} = inf
v≥0

{vt+ ψ(v)}. (10)

Then the problem becomes how to achieve the supremum in (9) jointly with the infimum in (10).
For anyv̂ > 0, definefv̂ : R+ → R by fv̂(t) = v̂t + θ(t), then we haveψ(v̂) = − inft≥0 fv̂(t)
from (9). According to H1-H3,fv̂ is convex withfv̂(0) = 0 andlimt→+∞ fv̂(t) = +∞. Thusfv̂
can reach its unique minimum at at̂ ≥ 0, andψ(v̂) = −v̂t̂+ φ(t̂) from (9). Hence equivalently the
infimum in (10) is reached at̂v asφ(t̂) = v̂t̂ + ψ(v̂). Then we havêv = σ(t) = −θ′(t) = φ′(t).
Thus the optimalv is uniquely determined by the minimizer functionσ(t) that is derived fromφ(t).
The analytic form of the dual potential functionψ(v) could be unknown during the optimization.
The proof is then completed.

6.2 Definition 1 and Definition 2

To show the equivalency of Definition 1 and Definition 2 in the main body, we first give the following
proposition about Definition 2.

Proposition 2 For any fixedλ, if φ(λ, t) in Definition 2 further satisfies the conditions referred
in [20], its minimizer functionσ(λ, t) is uniquely determined byφ(λ, t) and the analytic form of
ψ(λ, v) can be even unknown during the optimization.
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Proof. The proof sketch is similar to that in [20]. For ease ofrepresentation, we omitλ and use
φ(t), ψ(v) andσ(t) for short. Some fundamental assumptions aboutφ(t) are: H1: φ : R+ → R
is increasing withφ 6≡ 0 andφ(0) = 0; H2: t → φ(

√
t) is concave;H3: φ(t) is C1; H4:

limt→∞ φ(t)/t2 = 0.

Putθ(t) = −φ(
√
t), thenθ is convex by H2. Its convex conjugate isθ∗(v) = supt≥0 {vt− θ(t)}.

By the Fenchel-Moreau theorem [23], the convex conjugate ofθ∗ is θ, that isθ(t) = (θ∗)∗(t) =
supv≤0 {vt− θ∗(v)} = − infv≥0 {vt+ θ∗(−v)}. Defineψ(v) = θ∗(− 1

2v), we have

ψ(v) = sup
t≥0

{−1

2
vt− θ(t)} = sup

t≥0
{−1

2
vt2 + φ(t)}. (11)

φ(t) = −θ(t2) = inf
v≥0

{vt2 + θ∗(−v)} = inf
v≥0

{1
2
vt2 + ψ(v)}. (12)

Then the problem becomes how to achieve the supremum in (11) jointly with the infimum in (12).
For anyv̂ > 0, definefv̂ : R+ → R by fv̂(t) = 1

2 v̂t + θ(t), then we haveψ(v̂) = − inft≥0 fv̂(t)
from (11). According to H1-H4,fv̂ is convex withfv̂(0) = 0 andlimt→+∞ fv̂(t) = +∞. Thusfv̂
can reach its unique minimum at at̂ ≥ 0, andψ(v̂) = − 1

2 v̂t̂
2 + φ(t̂) from (11). Hence equivalently

the infimum in (12) is reached atv̂ asφ(t̂) = 1
2 v̂t̂

2 + ψ(v̂). Then we havêv = σ(t) = −2θ′(t2) =
φ′(t)/t. Thus the optimalv is uniquely determined by the minimizer functionσ(t) that is only
related toφ(t). The analytic form of the dual potential functionψ(v) could be unknown during the
optimization. The proof is then completed.

Denoteℓi = L(yi, f(xi,w)) and rewrite model (8) in the main body as

min
w,v

E(w,v;λ) =

n
∑

i=1

vi(
√

ℓi)
2 + ψ(λ, vi). (13)

If we adoptψ(λ, vi) with an implicit regularizer given in Definition 2 and usev∗i = 1
2σ(λ,

√
ℓi),

whereσ(λ,
√
ℓi) is the minimizer function in Definition 2, model (13) is optimizing a latent loss

function
∑n

i=1 φ(λ,
√
ℓi) equivalently.

Now we demonstrate the equivalency of Definition 1 and Definition 2 in the main body. For easy
of representation, we omitλ, and use{φ1(t), ψ1(v), σ1(t)} and{φ2(t), ψ2(v), σ2(t)} to refer to the
functions in Definition 1 and Definition 2, respectively. Considering a simplified model

min
w,v

vL(y, f(x,w)) + ψ(v). (14)

Denoteℓ = L(y, f(x,w)). We show that for a same implicit regularizerψ(v) = ψ1(v) = ψ2(v),
the optimalv∗ and the latent loss function of model (14) derived from Definition 1 and Definition
2 are the same. Specifically, letψ1(v) = ψ2(v) = supt≥0 {−vt + φ1(t)} (whereφ1(t) satisfies
conditions H1-H3 of Proposition 1 in the main body), it is easy to verify that its corresponding latent
loss function isφ1(ℓ) and optimalv∗ = σ1(ℓ) = φ′1(ℓ) according to Definition 1 and Proposition 1.
Meanwhile, we haveψ2(v) = supt≥0 {−vt + φ1(t)} = supt≥0 {−vt2 + φ2(t)}, whereφ2(t) =

φ1(t
2). Then model (14) can be considered to optimize a latent loss functionφ2(

√
ℓ) = φ1(ℓ) and

the optimalv∗ = 1
2σ2(

√
ℓ) = φ′1(ℓ) according to Definition 2 and Proposition 2. Thus we show the

equivalency of Definition 1 and Definition 2.

6.3 Self-Paced Regularizer

Similar definitions of self-paced regularizer (or self-paced function) have been proposed in [13, 32,
11]. The definition in [32] is shown below.

Definition 3 (Self-Paced Regularizer) [32]: Suppose thatv is a weight variable,ℓ is the loss, and
λ is the learning pace parameter.g(λ, v) is called self-paced rgularizer, if

1. g(λ, v) is convex with respect tov ∈ [0, 1];

2. v∗(λ, ℓ) is monotonically decreasing w.r.t. ℓ, and it holds that limℓ→0 v
∗(λ, ℓ) = 1,

limℓ→∞ v∗(λ, ℓ) = 0 ;
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3. v∗(λ, ℓ) is monotonically increasing w.r.t. λ, and it holds thatlimλ→0 v
∗(λ, ℓ) = 0,

limλ→∞ v∗(λ, ℓ) ≤ 1 ;

wherev∗(λ, ℓ) = argminv∈[0,1] vℓ+ g(λ, v).

Table 6:Recently proposed self-paced regularizersg(λ, v) and their correspondingv∗(λ, ℓ)
g(λ, v) v∗(λ, ℓ)

Kumaret al. [14] −λ
∑n

i=1 vi, λ > 0

{

1, ℓi < λ
0, otherwise

Jianget al. [11, 13] 1
2
λ
∑n

i=1(v
2
i − 2vi), λ > 0

{

1− 1
λ
ℓi, ℓi < λ

0, otherwise

Jianget al. [11, 13]

n
∑

i=1

(ζvi −
ζvi

log ζ
),

ζ = 1− λ, 0 < λ < 1

{

1
log ζ

log(ℓi + ζ), ℓi < λ
0, otherwise

Jianget al. [11, 13]
− ζ

n
∑

i=1

log(vi +
1

λ1
ζ),

ζ =
λ1λ2

λ1 − λ2
, λ1 > λ2 > 0







1, ℓi ≤ λ2
(λ1−ℓi)ζ

ℓiλ1
, λ2 < ℓi < λ1

0, ℓi ≥ λ1

Jianget al. [12] −λ
∑n

i=1 vi − γ||v||2,1, λ > 0, γ > 0

{

1, ℓi ≤ λ+ γ 1√
i−

√
i−1

0, otherwise

Xu et al. [29]

n
∑

i=1

ln(1 + e−λ − vi)
(1+e−λ−vi)

+ ln(vi)
vi − λvi, λ > 0

1+e−λ

1+eℓi−λ

Zhaoet al. [32]
∑n

i=1
λγ2

λvi+γ
, λ > 0, γ > 0











1, ℓi ≤ ( λγ

λ+γ
)2

0, ℓi ≥ λ2

γ( 1√
ℓi

− 1
λ
), otherwise

Zhanget al. [31]
− λ

K
∑

k=1

nk
∑

i=1

vki − γ
K
∑

k=1

√

√

√

√

nk
∑

i=1

vki ,

λ > 0, γ > 0







1, ℓki < λ+ γ

2
√

i
(( γ

2(ℓk
i
−λ)

)2−(i−1)

m
, otherwise

Table 6 tabulates some examples of self-paced regularizersg(λ, v) and their correspondingv∗(λ, ℓ).
We modify their original expressions for better comparison. It is still nontrivial to design self-paced
regularizers or analyze their properties according to Definition 3. Besides, though shown to be
effective in many applications experimentally, the underlying working mechanism of SPL is still
unclear.

One attempt about the underlying working mechanism of SPL is[19]. Starting from SPL regular-
izers and their minimizer functions, they show that the ASS method used for SPL accords with the
majorization minimization[26] algorithm implemented on a latent SPL objective, and deduced the
latent objective of hard, linear and mixture regulraizers.In contrast, we start from a latent loss func-
tion φ(λ, ℓ) directly and propose self-paced implicit regularizer based on the convex conjugacy the-
ory. We establish the relations between robust loss function φ(λ, ℓ), self-paced implicit regularizer
ψ(λ, v) and minimizer functionσ(λ, ℓ). According to Definition 1,ψ(λ, v) andσ(λ, ℓ) are derived
from latent loss functionφ(λ, ℓ), thus we can analyze their properties based on the development of
φ(λ, ℓ) (many loss functions have be widely studied in related areas). We further demonstrate that
for SPL with the proposed implicit regularizer, its learning procedure actually associates with cer-
tain latent robust loss functions. Thus we can provide some inspirations for the working mechanism
of SPL (e.g. its robustness to outliers and heavy noise). Moreover, by establishing the relations be-
tweenφ(λ, ℓ) andψ(λ, v), we can develop new SPL regularizers based on the development of robust
loss functions. Specifically, we analyze the relations between self-paced implicit regularizer and HQ
optimization. Many robust loss functions and their minimizer functions have been developed and
widely used in HQ optimization, and they can be adjusted for self-paced implicit regularizers (some
examples are given in Table 1 in main body).
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