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Deep Learning

Deep learning has achieved great success in many computer vision tasks, e.g.,
image classification, object detection, semantic segmentation
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Demands for abundant training data

Deep neural networks (DNNs) have massive model parameters

Hence, they require a large number of annotated data for training

Year Model #Layers #Parameter FLOPs
ImageNet

Top-5 Error

2012 AlexNet 5+3 60M 725M 16.4%
2013 Clarifai 5+3 60M – 11.7%
2014 MSRA 5+3 200M – 8.06%
2014 VGG-19 16+3 143M 20G 7.32%
2014 GooLeNet 22 6.8M 2G 6.67%
2015 ResNet 152 60.2M 11G 5.79%
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Why self-supervision?

However, supervised learning with large-scale labeled data is impractical

1 Annotating large-scale data for each new task is very expensive

2 Some areas are data-starved, e.g., in the medical area

Some areas have a vast number of unlabeled image/video/graph data
(e.g., Facebook: 1 billion images uploaded per day)

Self-supervised learning is an alternatives to supervised learning
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Self-supervised learning

Self-supervised learning is based on a pre-training and fine-tuning scheme

1 Pre-train DNNs based on some specific self-supervised pretext tasks
by using unlabeled data as self-supervision

2 Transfer the pre-trained DNNs to solve downstream tasks

Contrastive self-supervised learning has become the most popular one

1 Pre-train DNNs based on an instance discrimination contrastive task1

2 Transfer the contrastive pre-trained DNNs to solve downstream tasks

1Wu, Z., et al. Unsupervised featurelearning via non-parametric instance discrimination. In CVPR, 2018
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Research issue

Despite substantial studies on pre-training, few have explored fine-tuning

The common practice is to directly fine-tune the pre-trained model with the
cross-entropy loss on downstream tasks

Fine-tuning with only cross-entropy may not be an optimal strategy

1 Cross-entropy has limited ability to reduce intra-class feature variations

2 Fine-tuning DNNs with cross-entropy may suffer from overfitting when
the data number of downstream task is limited

Our goal is to investigate how to better fine-tune contrastive self-supervised
visual models on downstream tasks
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Contrastive Learning

Learning from paired data instead of single data

Pull positive (similar) pairs closer and push negative (dissimilar) pairs apart

Positive pairs: two transformations of an image or two images from a class
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Contrastive self-supervised learning

Formulate the contrastive learning as a multi-class classification problem

Contrastive loss (InfoNCE loss2):

L = − log
exp(f>f+)

exp(f>f+) +
∑n−1
i=1 exp(f>f−i )

,

where f, f+, f− denote the features of the anchor image, the positive pair
and negative pairs of the anchor

2Oord, A. V. D., et al. Representation learning with contrastive predictive coding, arxiv, 2018.
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What contrastive self-supervised learning learns?

There are two findings in existing work3:

1 Instance alignment: similar samples have similar features
2 Instance uniformity: different data are pushed away

Understanding Contrastive Representation Learning through
Alignment and Uniformity on the Hypersphere

Tongzhou Wang 1 Phillip Isola 1

Abstract
Contrastive representation learning has been out-
standingly successful in practice. In this work,
we identify two key properties related to the con-
trastive loss: (1) alignment (closeness) of features
from positive pairs, and (2) uniformity of the in-
duced distribution of the (normalized) features on
the hypersphere. We prove that, asymptotically,
the contrastive loss optimizes these properties,
and analyze their positive effects on downstream
tasks. Empirically, we introduce an optimizable
metric to quantify each property. Extensive exper-
iments on standard vision and language datasets
confirm the strong agreement between both met-
rics and downstream task performance. Directly
optimizing for these two metrics leads to repre-
sentations with comparable or better performance
at downstream tasks than contrastive learning.
Project Page: ssnl.github.io/hypersphere.
Code: github.com/SsnL/align uniform.

github.com/SsnL/moco align uniform.

1. Introduction
A vast number of recent empirical works learn representa-
tions with a unit `2 norm constraint, effectively restricting
the output space to the unit hypersphere (Parkhi et al., 2015;
Schroff et al., 2015; Liu et al., 2017; Hasnat et al., 2017;
Wang et al., 2017; Bojanowski & Joulin, 2017; Mettes et al.,
2019; Hou et al., 2019; Davidson et al., 2018; Xu & Durrett,
2018), including many unsupervised contrastive represen-
tation learning methods (Wu et al., 2018; Bachman et al.,
2019; Tian et al., 2019; He et al., 2019; Chen et al., 2020a).

Intuitively, having the features live on the unit hypersphere
leads to several desirable traits. Fixed-norm vectors are
known to improve training stability in modern machine
learning where dot products are ubiquitous (Xu & Durrett,

1MIT Computer Science & Artificial Intelligence Lab (CSAIL).
Correspondence to: Tongzhou Wang <tongzhou@mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Alignment: Similar samples have similar featuresAlignment: Similar samples have similar features.
(Figure inspired by Tian et al. (2019).)

Feature Density

Uniformity: Preserve maximal informationUniformity: Preserve maximal information.

Figure 1: Illustration of alignment and uniformity of fea-
ture distributions on the output unit hypersphere. STL-10
(Coates et al., 2011) images are used for demonstration.

2018; Wang et al., 2017). Moreover, if features of a class are
sufficiently well clustered, they are linearly separable with
the rest of feature space (see Figure 2), a common criterion
used to evaluate representation quality.

While the unit hypersphere is a popular choice of feature
space, not all encoders that map onto it are created equal.
Recent works argue that representations should addition-
ally be invariant to unnecessary details, and preserve as
much information as possible (Oord et al., 2018; Tian et al.,
2019; Hjelm et al., 2018; Bachman et al., 2019). Let us
call these two properties alignment and uniformity (see
Figure 1). Alignment favors encoders that assign similar
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3Wang., et al. Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere, In
ICML, 2020.
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What contrastive self-supervised learning learns?

The learned features are uniformly distributed in the feature space4

Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere
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(a) Random Initialization. Linear classification validation accuracy: 12.71%.
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(b) Supervised Predictive Learning. Linear classification validation accuracy: 57.19%.
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(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.

Figure 3: Representations of CIFAR-10 validation set on S1. Alignment analysis: We show distribution of distance
between features of positive pairs (two random augmentations). Uniformity analysis: We plot feature distributions with
Gaussian kernel density estimation (KDE) in R2 and von Mises-Fisher (vMF) KDE on angles (i.e., arctan2(y, x) for each
point (x, y) ∈ S1). Four rightmost plots visualize feature distributions of selected specific classes. Representation from
contrastive learning is both aligned (having low positive pair feature distances) and uniform (evenly distributed on S1).

of p, we can derive

Lcontrastive(f ; τ,M) = E
(x,y)∼ppos

[
−f(x)Tf(y)/τ

]

+ E
(x,y)∼ppos

{x−
i }Mi=1

i.i.d.∼ pdata

[
log

(
ef(x)

Tf(y)/τ +
∑

i

ef(x
−
i )Tf(x)/τ

)]
.

Because the
∑
i e
f(x−

i )Tf(x)/τ term is always positive and
bounded below, the loss favors smaller E

[
−f(x)Tf(y)/τ

]
,

i.e., having more aligned positive pair features. Suppose the
encoder is perfectly aligned, i.e., P [f(x) = f(y)] = 1, then
minimizing the loss is equivalent to optimizing

E
x∼pdata

{x−
i }Mi=1

i.i.d.∼ pdata

[
log

(
e1/τ +

∑

i

ef(x
−
i )Tf(x)/τ

)]
,

which is akin to maximizing pairwise distances with a
LogSumExp transformation. Intuitively, pushing all fea-
tures away from each other should indeed cause them to be
roughly uniformly distributed.

4.1. Quantifying Alignment and Uniformity

For further analysis, we need a way to measure alignment
and uniformity. We propose the following two metrics
(losses).

4.1.1. ALIGNMENT

The alignment loss is straightforwardly defined with the
expected distance between positive pairs:

Lalign(f ;α) , − E
(x,y)∼ppos

[‖f(x)− f(y)‖α2 ] , α > 0.

4Wang., et al. Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere, In
ICML, 2020.
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Why not fine-tune with only cross-entropy?

Although cross-entropy tends to separate inter-class features, the resulted
models still have limited capability of reducing intra-class feature variations

Figure: fine-tuning with only cross-entropy

How to better fine-tune contrastive self-supervised visual models on
downstream tasks?
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Motivations

Contrastive self-supervised learning: optimizing unsupervised contrastive
loss during pre-training yields models with instance alignment property

Whether applying contrastive learning to fine-tuning would bring benefits?

To answer this, we begin by analyzing supervised contrastive loss:

Lcon= −
1

n|Pi|
n∑

i=1

∑

zj∈Pi

log
e(z

>
i zj/τ)

∑
zk∈Ai

e(z
>
i zk/τ)

,

where features z are `2-normalized, and τ is a temperature factor, while Pi
and Ai denote the positive pair set and full pair set of the anchor zi
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Regularization effectiveness on representation learning

Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning

As an effective data augmentation method, mixup (Zhang
et al., 2021b) has recently been applied to instance augmen-
tation for CSL (Kalantidis et al., 2020; Kim et al., 2020;
Shen et al., 2020; Lee et al., 2021). Among these methods,
(Kalantidis et al., 2020) uses feature mixup for generating
hard negative pairs. However, all these methods focus on un-
supervised pre-training and cannot accurately generate hard
pairs regarding classes. Comparatively, Core-tuning focuses
on the fine-tuning of contrastive self-supervised models and
can generate accurate hard positive/negative pairs for each
class. Note that the hard pair generation strategy in Core-
tuning is different from manifold mixup (Verma et al., 2019),
which cannot be directly used to generate hard pairs.

Pre-training and Fine-tuning. In deep learning, it is a
popular scheme to first pre-train a deep neural network on
a large database (e.g., ImageNet) and then fine-tune it on
downstream tasks (Li et al., 2018; 2020). Supervised learn-
ing is the mainstream method for pre-training (Kornblith
et al., 2019), whereas self-supervised learning is attracting
increasing attention since it does not rely on rich annota-
tions (Chen et al., 2020a;b). Most existing methods for fine-
tuning, like L2-SP (Li et al., 2018) and DELTA (Li et al.,
2019), are devised for supervised pre-trained models and
tend to enforce some regularizer to prevent the fine-tuned
models changing too much from the pre-trained ones. How-
ever, they may be unsuitable for contrastive self-supervised
models, since downstream tasks are often different from the
contrastive pre-training task, which may lead to negative
transfer (Chen et al., 2019). Very recently, contrastive losses
are used to fine-tune models (Gunel et al., 2021; Zhong et al.,
2021). However, these studies mainly add the contrastive
loss to the objective of fine-tuning and cannot theoretically
explain why it boosts fine-tuning. Meanwhile, they also
ignore the two challenges in contrastive fine-tuning (see
Figure 2), leading to inadequate fine-tuning performance.

3. Effects of Contrastive Loss
This section analyzes the benefits of the contrastive loss
during fine-tuning, which will motivate our new method.
Before that, we first define the problem and notations.

Problem Definition and Notation. This paper studies the
fine-tuning of contrastive self-supervised visual models,
which are pre-trained on a large-scale unlabeled database.
During fine-tuning, let {(xi, yi)}ni=1 denote the target task
dataset with n samples, where xi is an instance with the
one-hot label yi⊂RK and K denotes the number of classes.
We use a neural network model G to perform classifica-
tion, which consists of a pre-trained feature encoder Ge and
a new classifier Gy specific to the target task. Based on
the network, we denote the learned features by zi=Ge(xi)
and the prediction by ŷi=Gy(zi). The model is generally
fine-tuned with the cross-entropy loss.

Following (Boudiaf et al., 2020), we define the ran-
dom variables of samples and labels as X and Y , and
those of embeddings and predictions as Z|X∼Ge(X)
and Ŷ |Z∼Gy(Z), respectively. Moreover, let pY be
the distribution of Y , p(Y,Z) be the joint distribution
of Y and Z, and pY |Z be the conditional distribu-
tion of Y given Z. We define the entropy of Y as
H(Y ):=EpY [− log pY (Y )] and the conditional entropy of
Y given Z as H(Y |Z):=Ep(Y,Z)

[− log pY |Z(Y |Z)]. Be-
sides, we define the cross-entropy (CE) between Y and Ŷ
by H(Y ; Ŷ ):=EpY [− log pŶ (Y )] and the conditional CE
given Z by H(Y ; Ŷ |Z):=Ep(Y,Z)

[− log pŶ |Z(Y |Z)]. Be-
fore our analysis, we first revisit the contrastive loss.

Contrastive loss. We use the supervised contrastive
loss (Khosla et al., 2020) for fine-tuning, which is a variant
of InfoNCE (Oord et al., 2018). Specifically, given a sample
feature zi as anchor, the contrastive loss takes the features
from the same class to the anchor as positive pairs and those
from diverse classes as negative pairs. Assuming features
are `2-normalized, the contrastive loss is computed by:

Lcon= −
1

n|Pi|
n∑

i=1

∑

zj∈Pi

log
e(z
>
i zj/τ)

∑
zk∈Ai

e(z
>
i zk/τ)

, (1)

where τ is a temperature factor, while Pi and Ai denote
the positive pair set and the full pair set of the anchor zi,
respectively. We next analyze the contrastive loss and find
it has two effects during fine-tuning as follows.

3.1. Regularization Effect of Contrastive Loss

We first show the contrastive loss has regularization effec-
tiveness on representation learning based on Theorem 1.

Theorem 1 Assuming the features are `2-normalized and
the classes are balanced with equal data number, minimizing
the contrastive loss is equivalent to minimizing the class-
conditional entropy H(Z|Y ) and maximizing the feature
entropyH(Z):

Lcon ∝ H(Z|Y ) − H(Z)

Please see the supplementary for the proof. This Theorem
shows that Lcon explicitly regularizes the representation
learning. On one hand, minimizing Lcon will minimize
H(Z|Y ), which encourages to learn a low-entropy cluster
for each class (i.e., high intra-class compactness). On the
other hand, minimizingLcon will maximizeH(Z) and tends
to learn a high-entropy feature space (i.e., large inter-class
separation degree). Such an effect can provide an additional
regularization effect on features during fine-tuning, and it
can be observed by the feature visualization in Figure 1.
Note that this analysis is different from the analysis of unsu-
pervised contrastive learning (Wang & Isola, 2020), which
is specific to the instance level rather than the class level.

This theorem shows that Lcon explicitly regularizes representation learning

1 Minimizing Lcon will minimize H(Z|Y ), which encourages to learn a
low-entropy cluster for each class (i.e., high intra-class compactness)

2 Minimizing Lcon will maximize H(Z) and tends to learn a high-entropy
feature space (i.e., large inter-class separation degree)
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Regularization effectiveness on representation learning

(a) Training with Lce (b) Training with Lce+Lcon

Based on the results, we confirm:

1 Minimizing Lcon encourages to learn high intra-class compactness

2 Minimizing Lcon tends to learn a feature space with large inter-class
separation degree
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Optimization effectiveness on model training

Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning

3.2. Optimization Effect of Contrastive Loss

We then show the contrastive loss has optimization effec-
tiveness on model training based on Theorem 2.

Theorem 2 Assuming the features are `2-normalized and
the classes are balanced, the contrastive loss is positive
proportional to the infimum of conditional cross-entropy
H(Y ; Ŷ |Z), where the infimum is taken over classifiers:

Lcon ∝ infH(Y ; Ŷ |Z)︸ ︷︷ ︸
Conditional CE

− H(Y )

Please see the supplementary for the proof. This theorem
shows that Lcon boosts the model optimization. Concretely,
the label Y is given by datasets, so its entropyH(Y ) is a con-
stant and can be ignored. Hence, minimizing Lcon will min-
imize the infimum of conditional cross-entropyH(Y ; Ŷ |Z),
which can provide an additional optimization effect as com-
pared to the fine-tuning with only cross-entropy.

4. Contrast-Regularized Tuning
4.1. Overall Scheme

Motivated by the above analysis, we propose a new contrast-
regularized tuning (Core-tuning) method1 for better fine-
tuning contrastive self-supervised models. Rather than sim-
ply adding the contrastive loss to the objective, Core-tuning
further addresses two challenges in contrastive fine-tuning.
First, hard sample pairs are informative for contrastive learn-
ing but the majority of training samples are easy to con-
trast (Wu et al., 2017), so it is important to mine hard pairs
for more effective fine-tuning. Second, the classifier trained
with cross-entropy is often sharp and may generalize poorly
to the test data that is slightly different from the training
data (Verma et al., 2019). Hence, it is important to explore
how to improve the generalizability of the model.

To handle these challenges, Core-tuning applies two novel
designs. First, Core-tuning generates both hard positive
and hard negative pairs for more effective contrastive fine-
tuning via a simple yet effective feature mixup strategy
(see Section 4.2). Meanwhile, Core-tuning assigns higher
importance weights to hard positive samples via a new focal
contrastive lossLfcon (see Section 4.3). Second, Core-tuning
further uses the mixed features for classifier training w.r.t.
cross-entropy Lmce, so that the learned decision boundary is
smoother (see Section 4.4). The overall training procedure
of Core-tuning is to minimize the following objective:

min Lmce︸︷︷︸
cross-entropy loss

+ ηLfcon︸ ︷︷ ︸
focal contrastive loss

,

where η is a hyper-parameter to balance two losses.

1Pseudo-code of Core-tuning is provided in the supplementary.

4.2. Hard Sample Pair Generation

As shown in Figure 2 (b-c), given features and labels
{(zi, yi)}ni , we generate hard positive and hard negative
pairs via a new feature mixup strategy, termed mixup-hard.

Mixing hard positive pairs. Given a feature anchor zi,
we first find out its hardest positive data zhpi and hardest
negative data zhni based on the cosine similarity. That is,
zhpi is the positive data with the lowest cosine similarity to
the anchor and zhni is the negative data most similar to the
anchor. We then generate the hard positive pair as a convex
combination of zhpi and zhni :

z+i = λzhpi + (1− λ)zhni ,

where λ ∼ Beta(α, α) ∈ [0, 1] (Zhang et al., 2018), and
α ∈ (0,∞) is a hyper-parameter to decide the distribution
Beta(α, α). To make the generated positive closer to posi-
tive pairs, we clip λ by λ ≥ λp, where λp is a threshold and
we set it to 0.8 by default. The generated pair is located be-
tween positives and negatives and thus is harder to contrast.
We denote the generated hard positive set by B+={z+i }ni=1.

Mixing hard negative pairs. Given a feature anchor zi, we
randomly select a negative sample (zni , y

n
i ) to synthesize

the hard negative pair and its corresponding soft label:

z−i = (1− λ)zi + λzni ; y−i = (1− λ)yi + λyni .

We clip λ∼Beta(α, α) by λ≥λn to make the generated nega-
tive closer to negative pairs, where λn is a threshold and also
set to 0.8. The reason why we select a random negative sam-
ple instead of the hardest negative is that generating too hard
negatives may result in false negatives and degrade perfor-
mance. Note that semi-hard negatives may even yield better
performance in metric learning (Wu et al., 2021). We denote
the generated hard negative set by B−={(z−i , y−i )}ni=1.

4.3. Hard Positive Reweighting

Since a nonlinear projection improves contrastive learn-
ing (Chen et al., 2020b;c), we first use a two-layer
MLP head Gc to obtain `2-normalized contrastive features
vi=Gc(zi)/‖Gc(zi)‖2. Based on these features, one may
directly use Lcon in Eq. (1) for fine-tuning. However, since
hard positives are more informative for contrastive learning,
we propose to assign higher importance weights to them.
Inspired by the focal loss (Lin et al., 2017), we find the hard
positive pairs generally lead to a low prediction probabil-
ity pij=

exp(v>i vj/τ)∑
vk∈Ai

exp(v>i vk/τ)
. Thus, we reweight Lcon with

(1−pij) and develop a focal contrastive loss:

Lfcon=−
1

n|Pi|
n∑

i=1

∑

vj∈Pi

(1−pij) log
e(v
>
i vj/τ)

∑
vk∈Ai

e(v
>
i vk/τ)

,

where Pi and Ai denote the anchor’s positive pair set and
full pair set, both of which contain the generated hard pairs.

This theorem shows that Lcon boosts the model optimization

The label Y is given by datasets, so its entropy H(Y ) is a constant

Minimizing Lcon minimizes the infimum of conditional cross-entropy
H(Y ; Ŷ |Z)
Pulling positives together and pushing negatives further apart makes
the predicted label distribution closer to the ground truth distribution
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Challenges

Based on the above theoretical analysis, we propose to use contrastive
learning to enhance the fine-tuning of contrastive pre-trained models

Instead of simply adding contrastive loss to the objective function, we
further consider two practical challenges:

1 How to mine hard sample pairs for better contrastive fine-tuning

2 How to improve the generalizability of the model
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Challenges I

(a) Sample features (b) Hard positive mixup (c) Hard negative mixup

The majority of sample are easy-to-contrast in training5, and may produce
negligible contrastive loss gradients without performance contributions

Our solution: to generate both hard positive and hard negative sample pairs
based on feature mixup

5Hardwood, etc. Smart mining for deep metric learning. In ICCV, 2017.
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Challenges II

(b) Sharp classifier (c) Smooth classifier learning(a) Sample features

The decision boundary trained with cross-entropy is often sharp and close to
training data6, especially when the data number is limited

This may lead to incorrect yet confident predictions when evaluated on
slightly different test samples

Our solution: to smooth classifiers by using the mixed features

6Bengio, Y., etc. Manifold mixup: Better rep-resentations by interpolating hidden states. In ICML, 2019.
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Overall scheme
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We propose a contrast-regularized tuning (Core-tuning) method

Core-tuning consists of two main components:

1 Hard sample pair mining

2 Smooth classifier learning
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Hard positive sample pair generation

(a) Sample features (b) Hard positive mixup (c) Hard negative mixup

Given a feature anchor zi, we first find out its hardest positive sample zhpi
and hardest negative sample zhni based on cosine similarity

We generate hard positive pair as a convex combination of zhpi and zhni :

z+i = λzhpi + (1− λ)zhni

λ ∼ Beta(α, α) ∈ [0, 1], and α is a parameter to decide the beta distribution

Yifan Zhang (NUS) Core-tuning (NeurIPS 2021) October 16, 2021 24 / 37



Hard negative sample pair generation

(a) Sample features (b) Hard positive mixup (c) Hard negative mixup

Given a feature anchor zi, we randomly select a negative sample (zni , y
n
i ) to

synthesize the hard negative pair:

z−i = (1− λ)zi + λzni ; y−i = (1− λ)yi + λyni

We clip λ≥0.8 to make the generated negative closer to negatives

Hardness: the generated pairs are located between positives/negatives
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Hard pair reweighting

We first use a two-layer MLP head Gc to obtain `2-normalized contrastive
features vi=Gc(zi)/‖Gc(zi)‖2

Since hard positives are more informative for contrastive learning, we
propose to assign higher importance weights to them

Inspired by the focal loss7, we find hard positive pairs generally lead to a low

prediction probability: pij=
exp(v>i vj/τ)∑

vk∈Ai
exp(v>i vk/τ)

Focal contrastive loss:

Lfcon=−
1

n|Pi|
n∑

i=1

∑

vj∈Pi

(1−pij) log
e(v

>
i vj/τ)

∑
vk∈Ai

e(v
>
i vk/τ)

,

where Pi and Ai denote the anchor’s positive pair set and full pair set, both
of which contain the generated hard pairs

7Lin, T-T, etc. Focal loss for dense object detection. In ICCV, 2017
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Smooth classifier learning

The classifier trained with cross-entropy is often sharp and close to data,
leading to limited generalization performance

Inspired by that mixup helps learn a smoother classifier8, we further use the
mixed data from the generated hard pair set B for training

Lmce=−
1

n

n∑

i=1

yi log(ŷi)−
1

|B|
∑

(zj ,yj)∈B
yj log(Gy(zj))

8Bengio, Y., etc. Manifold mixup: Better representations by interpolating hidden states. In ICML, 2019.
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Experiment objectives

1 Verify Core-tuning on image classification and semantic segmentation

2 Evaluate how Core-tuning affects model generalization to new domains and
model robustness to adversarial examples
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Ablation studies on Image Classification

1 Each component in Core-tuning improves the performance

2 Mixup (row 3) is expected to outperform mixup-hard w.r.t. classification,
but Core-tuning still shows obvious improvement via contrast regularizer

Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning

Table 2. Ablation studies of Core-tuning (Row 5) for fine-tuning MoCo-v2 pre-trained ResNet-50 on 9 natural image datasets in terms
of top-1 accuracy. Here, Lcon is the original contrastive loss, while Lf

con is our focal contrastive loss. Moreover, “mixup” denotes the
manifold mixup, while “mixup-hard” indicates the proposed feature mixup strategy in our method.

Lce Lcon Lfcon mixup mixup-hard ImageNet-20 CIFAR10 CIFAR100 Caltech101 DTD Aircraft Cars Pets Flowers Avg.√
88.28 94.70 80.27 91.87 71.68 86.87 88.61 89.05 98.49 87.76√ √
89.29 95.33 81.49 92.84 72.73 87.44 89.37 89.71 98.65 88.54√ √
90.67 95.43 81.03 92.68 73.31 88.37 89.06 91.37 98.74 88.96√ √ √
92.20 97.01 83.89 93.22 74.78 88.88 89.79 91.95 98.94 90.07√ √ √
92.59 97.31 84.13 93.46 75.37 89.48 90.17 92.36 99.18 90.45

Table 3. Fine-tuning performance of ResNet-50, pre-trained by
diverse CSL methods. CE indicates cross-entropy.

Pre-training Caltech101 DTD Pets

CE ours CE ours CE ours

InsDis 82.30 88.60 69.81 70.94 87.57 89.59
PIRL 84.23 89.29 68.95 71.72 86.87 89.52
MoCo-v2 91.87 93.46 71.68 75.37 89.05 92.36
SimCLR-v2 92.44 93.37 71.63 74.75 88.28 90.64
InfoMin 92.73 94.01 72.59 74.89 90.00 92.34

Table 4. Fine-tuning performance of diverse network architectures,
pre-trained by InfoMin. CE indicates cross-entropy.

Architecture Caltech101 DTD Pets

CE ours CE ours CE ours

ResNet-50 92.73 94.01 72.59 74.89 90.00 92.34
ResNet-101 93.06 94.33 73.38 75.09 90.84 92.91
ResNet-152 93.39 94.66 73.74 75.42 91.08 92.97
ResNext-101 93.71 95.12 74.43 75.97 91.97 94.04
ResNext-152 93.92 95.19 74.76 76.22 92.70 94.49

Ablation studies of Core-tuning. We conduct ablation
studies for Core-tuning regarding the focal contrastive loss
and the mixup-hard strategy. As shown in Table 2, each
component improves the performance. Note that the mixup
in Row 3 is the manifold mixup (Verma et al., 2019), which
is essentially designed for classification and is expected to
outperform our mixup-hard strategy regarding classification
performance. However, our proposed Core-tuning (Row
5) still shows obvious improvement on all datasets, which
strongly verifies the value of contrastive fine-tuning.

Results on different CSL methods. In previous experi-
ments, we fine-tune the ResNet-50 model pre-trained by
MoCo-v2, but it is unclear whether Core-tuning can be ap-
plied to fine-tune models pre-trained by other CSL methods.
Hence, we further use Core-tuning to fine-tune ResNet-50,
pre-trained by InsDis (Wu et al., 2018), PIRL (Misra &
Maaten, 2020), SimCLR-v2 (Chen et al., 2020b) and In-
foMin (Tian et al., 2020). As shown in Table 3, Core-tuning
fine-tunes all pre-trained models consistently better than
CE-tuning on 3 image classification datasets.

Results on different network architectures. Previous
experiments are based on ResNet-50, while it is unclear
whether Core-tuning can be applied to fine-tune other net-
work architectures. Hence, we further apply Core-tuning
to fine-tune diverse architectures, i.e., ResNet-101, ResNet-
152, ResNext-101 and ResNext-152 (Xie et al., 2017). All

Table 5. Fine-tuning performance of the MoCo-v2 pre-trained
ResNet-50 with diverse numbers of labeled data.

Method Sampling Rates on ImageNet-20

10% 25% 50% 75%

CE-tuning 52.97+/-3.96 63.17+/-3.94 81.78+/-1.37 85.85+/-0.11
Bi-tuning 60.50+/-1.11 75.86+/-0.74 83.18+/-0.27 87.19+/-0.19
Core-tuning 78.64+/-0.58 84.48+/-0.34 89.09+/-0.40 90.93+/-0.24

0.1 0.5 1.0 5.0 10.0

91.75

92.00

92.25

92.50

92.75

To
p-

1 
ac

c.

0.1 0.5 1.0 5.0 10.0

91.75

92.00

92.25

92.50

92.75

To
p-

1 
ac

c.

Figure 3. Sensitivity analysis of η and α in Core-tuning on
ImageNet-20 based on MoCo-v2 pre-trained ResNet-50. Each
run tests one factor and fixes others. Best viewed in color.

these networks are pre-trained by InfoMin (Tian et al., 2020).
As shown in Table 4, Core-tuning fine-tunes all network ar-
chitectures well on 3 image classification datasets.

Results on different data sizes. The labeled data may be
scarce in downstream tasks. Hence, we further evaluate
Core-tuning on Imagenet-20 with different sampling rates
of data. We report the results in Table 5, while the results
on the full ImageNet-20 have been listed in Table 1. Specif-
ically, Core-tuning outperforms baselines in all cases. Note
that when the data is very scarce (e.g., 10%), the fine-tuning
performance of CE-tuning degrades and fluctuates signifi-
cantly, in which case Core-tuning obtains more significant
improvement and achieves more stable performance.

Parameter sensitivity. We next analyze the parameter sen-
sitivity in Core-tuning. We first discuss the influence of the
loss trade-off parameter η and the mixup sampling factor α
based on ImageNet-20. Each run tests one parameter and
fixes others. As shown in Figure 3, when η=0.5 and α=5,
Core-tuning performs slightly better on ImageNet-20. Note
that the best η and α can be different on diverse datasets.

We then analyze the negative/positive pair thresholds
(λn, λp) in the devised mixup-hard strategy. The results
on ImageNet-20 are reported in Table 6. On the one hand,
λn satisfies our expectation that the generated hard negative
pairs should be closer to negatives, i.e., a larger λn can lead
to better performance. On the other hand, we find when no
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Results on Image Classification

1 MoCo-v2 pre-trained models perform worse than supervised ones

2 Fine-tuning methods for supervised pre-trained models cannot perform well

3 Using contrastive loss for fine-tuning may also performs unsatisfactory

4 Core-tuning achieves state-of-the-art fine-tuning performance

Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning

Table 1. Comparisons of diverse methods for MoCo-v2 pre-trained ResNet-50 model fine-tuning on image classification in terms of top-1
accuracy. SL-CE-tuning denotes supervised pre-training on ImageNet and then fine-tuning with cross-entropy.

Method ImageNet-20 CIFAR10 CIFAR100 Caltech101 DTD Aircraft Cars Pets Flowers Avg.

SL-CE-tuning 91.01 94.23 83.40 93.39 74.40 87.03 89.77 92.17 98.78 89.35

CE-tuning 88.28 94.70 80.27 91.87 71.68 86.87 88.61 89.05 98.49 87.76
L2SP (Li et al., 2018) 88.49 95.14 81.43 91.98 72.18 86.55 89.00 89.43 98.66 88.10
M&M (Zhan et al., 2018) 88.53 95.02 80.58 92.91 72.43 87.45 88.90 89.60 98.57 88.22
DELTA (Li et al., 2019) 88.35 94.76 80.39 92.19 72.23 87.05 88.73 89.54 98.65 87.99
BSS (Chen et al., 2019) 88.34 94.84 80.40 91.95 72.22 87.18 88.50 89.50 98.57 87.94
RIFLE (Li et al., 2020) 89.06 94.71 80.36 91.94 72.45 87.60 89.72 90.05 98.70 88.29
SCL (Gunel et al., 2021) 89.29 95.33 81.49 92.84 72.73 87.44 89.37 89.71 98.65 88.54
Bi-tuning (Zhong et al., 2021) 89.06 95.12 81.42 92.83 73.53 87.39 89.41 89.90 98.57 88.58
Core-tuning (ours) 92.59 97.31 84.13 93.46 75.37 89.48 90.17 92.36 99.18 90.45

4.4. Smooth Classifier Learning

No matter whether the feature space is discriminative, the
classifier trained with cross-entropy is often sharp and
close to data, which leads to limited generalization perfor-
mance (Verma et al., 2019). To address this, inspired by the
effectiveness of mixup for helping learn a smoother decision
boundary (Verma et al., 2019), we further use the mixed
data from the hard negative set B− for classifier training:

Lmce=−
1

n

n∑

i=1

yi log(ŷi)−
1

|B−|
∑

(zj ,yj)∈B−
yj log(Gy(zj)),

One may also consider using the hard positive set B+. Nev-
ertheless, the mixed positives are located in the borderline
area between positives and negatives, which has already
been covered by the mixed negatives. Further using B+ will
not bring extra performance improvement.

5. Experiments
We first test the effectiveness of Core-tuning on image clas-
sification and then apply it to image segmentation. Next,
since Core-tuning potentially improves model generalizabil-
ity, we further study how it affects model generalization to
new domains and model robustness to adversarial samples.

5.1. Results on Image Classification

Settings. As there is no fine-tuning method devoted to con-
trastive self-supervised models, we compare Core-tuning
with advanced fine-tuning methods for general models
(e.g., supervised pre-trained models): L2SP (Li et al.,
2018), M&M (Zhan et al., 2018), DELTA (Li et al.,
2019), BSS (Chen et al., 2019), RIFLE (Li et al., 2020),
SCL (Gunel et al., 2021) and Bi-tuning (Zhong et al., 2021).
We denote the fine-tuning with cross-entropy by CE-tuning.

Following (Kornblith et al., 2019), we test on 9 image
datasets, i.e., ImageNet-20, CIFAR10, CIFAR100, Caltech-
101, DTD, FGVC Aircraft, Standard Cars, Oxford-IIIT Pets
and Oxford Flowers. Here, ImageNet-20 is an ImageNet
subset with 20 classes, by combining the ImageNette and

ImageWoof datasets (Howard, 2020). These datasets cover
a wide range of fine/coarse-grained object recognition tasks.

We implement Core-tuning in PyTorch, where the source
codes will be available. Following (Ericsson et al., 2020),
we use ResNet-50 (1×), pre-trained by diverse CSL meth-
ods on ImageNet, as the network backbone. All checkpoints
of pre-trained models are provided by authors or by the
PyContrast repository2. Following (Chen et al., 2020a), we
perform parameter tuning for each dataset and select the
best ones on a validation set. Both η and α are selected from
{0.1, 1, 10}. Moreover, we set thresholds λp=λn=0.8 and
temperature τ=0.07 by default. All results are averaged
over 3 runs in terms of the top-1 accuracy. More details of
datasets and implementation are in our supplementary.

Comparisons with previous methods. We report the fine-
tuning performance of the MoCo-v2 pre-trained model in
Table 1. When using the standard CE-tuning, the MoCo-
v2 pre-trained model performs worse than the supervised
pre-trained model. This is because the self-supervised pre-
trained model is less class-discriminative than the super-
vised pre-trained model due to the lack of annotations dur-
ing pre-training. Moreover, the classic fine-tuning methods
designed for supervised pre-trained models (e.g., L2SP and
DELTA) cannot fine-tune the contrastive self-supervised
model very well. One reason is that the contrastive pre-
training task is essentially different from the downstream
classification task, so strictly regularizing the difference
between the contrastive self-supervised model and the fine-
tuned model may lead to negative/poor transfer.

In addition, M&M, SCL and Bi-tuning use the triplet loss
or the contrastive loss during fine-tuning. However, they
ignore the two challenges in contrastive fine-tuning as men-
tioned in Figure 2, leading to limited model performance on
downstream tasks. In contrast, Core-tuning handles those
challenges well and improves the fine-tuning performance of
contrastive self-supervised models a lot. This result demon-
strates the superiority of Core-tuning. More results with the
standard error are put in the supplementary.

2https://github.com/HobbitLong/PyContrast.
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Results on semantic segmentation

Core-tuning contributes to fine-tuning performance of all pre-trained models

Self-supervised models have already outperformed supervised ones

This inspires us to explore unsupervised contrastive regularizers in the future

Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning

Table 6. Threshold analysis for hard pair generation in Core-tuning
on ImageNet-20 based on MoCo-v2 pre-trained ResNet-50. Each
run tests one parameter and fixes others.

Thresholds 0 0.2 0.4 0.6 0.8

Negative pair threshold λn 91.55 91.94 92.19 92.36 92.59
Positive pair threshold λp 92.73 92.68 92.64 92.60 92.59

crop is conducted for hard positive generation (i.e., λp=0),
the performance is slightly better. We conjecture that since
the generated hard positives are located in the borderline
area between positives and negatives, allowing the gener-
ated hard positives to close to negatives may have a margin
effect on contrastive learning and thus boosts performance.
Despite this, Core-tuning with a large λp, like 0.8, also per-
forms similarly well. Due to the page limitation, we put
more results of parameter sensitivity in the supplementary.

5.2. Results on Semantic Segmentation

We next apply Core-tuning to fine-tune contrastive self-
supervised models on semantic segmentation.

Implementation details. We adopt the DeepLab-V3 frame-
work (Chen et al., 2017) for PASCAL VOC semantic seg-
mentation and use the contrastive pre-trained ResNet-50
model as the backbone. In Core-tuning, we enforce the
contrastive regularizer after the penultimate layer of ResNet-
50 via an additional global average pooling. Due to the
characteristics of dense prediction, we only generate hard
positive pairs and do not use the mixed data for classifier
training. Following (Wang et al., 2020), the model is fine-
tuned on VOC train aug2012 set for 30k steps via stochastic
gradient descent and evaluated on val2012 set. The image is
rescaled to 513×513 with random crop and flips for training
and with center crop for evaluation. The batch size and the
output stride are 16. Besides, we set the initial learning
rate to 0.1 and adjust it via the poly learning rate schedule.
The momentum parameter is set to 0.9, and the factor of
weight decay is set to 10−4. Other parameters are the same
as image classification. We use three metrics: Mean Pixel
Accuracy (MPA), Frequency Weighted Intersection over
Union (FWIoU) and Mean Intersection over Union (MIoU).

Results. We report the results in Table 7, in which Core-
tuning contributes to the fine-tuning performance of all con-
trastive pre-trained models in terms of MPA, FWIoU and
MIoU. Such a promising result demonstrate the effective-
ness of Core-tuning on semantic segmentation. Interest-
ingly, we find that with standard fine-tuning, the models
pre-trained by MoCo-v2, SimCLR-v2 and InfoMin have al-
ready outperformed the supervised pre-trained model. One
explanation is that contrastive self-supervised pre-training
may keep more visual information, compared to supervised
pre-training that mainly extracts information specific to clas-
sification (Zhao et al., 2021). In other words, unsupervised

Table 7. Fine-tuning performance on PASCAL VOC semantic seg-
mentation based on DeepLab-V3 with ResNet-50, pre-trained by
diverse CSL methods. CE indicates cross-entropy.

Pre-training Fine-tuning MPA FWIoU MIoU

Supervised CE 87.10+/-0.20 89.12+/-0.17 76.52+/-0.34

InsDis CE 83.64+/-0.12 88.23+/-0.08 74.14+/-0.21
ours 84.53+/-0.31 88.67+/-0.07 74.81+/-0.13

PIRL CE 83.16+/-0.26 88.22+/-0.24 73.99+/-0.42
ours 85.30+/-0.24 88.95+/-0.08 75.49+/-0.36

MoCo-v2 CE 87.31+/-0.31 90.26+/-0.12 78.42+/-0.28
ours 88.76+/-0.34 90.75+/-0.04 79.62+/-0.12

SimCLR-v2 CE 87.37+/-0.48 90.27+/-0.12 78.16+/-0.19
ours 87.95+/-0.20 90.71+/-0.13 79.15+/-0.33

InfoMin CE 87.17+/-0.20 89.84+/-0.09 77.84+/-0.24
ours 88.92+/-0.36 90.65+/-0.09 79.48+/-0.30

contrastive learning may extract more beneficial information
for dense prediction, which inspires us to explore unsuper-
vised contrastive regularizers in the future.

5.3. Effectiveness on Cross-domain Generalization

The generalizability of deep networks to unseen domains is
important for their application to real-world scenarios (Dou
et al., 2019). We thus wonder whether Core-tuning also
benefits model generalization. Therefore, we apply Core-
tuning to the task of domain generalization (DG).

Implementation details. The task of DG aims to train a
model on multiple source domains and expect it to gen-
eralize well to an unseen target domain. Specifically,
we use MoCo-v2 pre-trained ResNet-50 as the backbone,
and evaluate Core-tuning on 3 benchmark datasets, i.e.,
PACS (Li et al., 2017), VLCS (Fang et al., 2013) and Office-
Home (Venkateswara et al., 2017). In the training process,
we use Adam optimizer with the batch size 32. The learning
rate is set to 5×10−5 and the training step is 20,000. More
implementation details are put in the supplementary.

Results. We report results in Table 8 and draw several
observations as follows. First, when fine-tuning with cross-
entropy, the contrastive self-supervised model performs
worse than the supervised pre-trained model. This results
from the relatively worse discriminative abilities of the con-
trastive self-supervised model, which can also be found in
Table 1. Second, enforcing contrastive regularizer during
fine-tuning improves DG performance, since the contrastive
regularizer helps learn more discriminative features (refer
to Theorem 1) and also helps alleviate distribution shifts
among domains (Kang et al., 2019), hence leading to better
performance. Last, Core-tuning further improves the gen-
eralization performance of models on all datasets. This is
because hard pair generation further boosts contrastive learn-
ing, while smooth classifier learning also benefits model
generalizability. We thus conclude that Core-tuning is bene-
ficial to model generalization.

Yifan Zhang (NUS) Core-tuning (NeurIPS 2021) October 16, 2021 32 / 37



Effectiveness on cross-domain generalization

Enforcing contrastive regularizer improves generalization performance

Core-tuning further improves the generalization performance
Table 8: Domain generalization accuracies of various fine-tuning methods for MoCo-v2 pre-trained
ResNet-50. CE means cross-entropy; CE-Con enhances CE with the contrastive loss. Moreover,
A/C/P/S and C/L/V/S are different domains in PACS and VLCS datasets, respectively.

Pre-training Fine-tuning PACS VLCS

A C P S Avg. C L V S Avg.
Supervised CE 83.65 79.21 96.11 81.46 85.11 98.41 63.81 68.55 75.45 76.56

MoCo-v2
CE 78.71 76.92 90.87 75.67 80.54 94.96 66.87 68.96 64.98 73.94

CE-Con 85.11 81.77 95.58 80.12 85.65 95.94 67.76 69.31 73.57 77.67
ours 87.31 84.06 97.53 83.43 88.08 98.50 68.19 73.15 81.53 80.34

Table 9: Adversarial training performance of MoCo-v2 pre-trained ResNet-50 on CIFAR10 under the
attack of PGD-10 in terms of robust and clean accuracies. AT-CE indicates adversarial training (AT)
with CE; AT-CE-Con enhances AT-CE with the contrastive loss; AT-ours uses Core-tuning for AT.

Method
`2-attack `∞-attack

ε=0.5 ε=1.5 ε=2.5 ε= 2/255 ε= 4/255 ε= 8/255

Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean Robust Clean

CE 50.25 94.70 48.29 94.70 46.82 94.70 25.13 94.70 12.28 94.70 4.57 94.70
AT-CE 86.59 92.00 89.60 94.28 89.16 94.15 83.20 93.05 75.82 91.99 69.27 92.79
AT-CE-Con 90.74 94.71 90.29 94.80 89.70 94.27 85.07 94.56 79.75 93.79 70.70 93.38
AT-ours 92.97 96.82 92.32 96.90 92.05 96.87 86.92 96.29 82.01 95.95 74.83 95.90

5.4 Robustness to Adversarial Samples

As is known, deep networks are fragile to adversarial attack [48]. We next study whether Core-tuning
also benefits model robustness to adversarial samples in the setting of adversarial training (AT).

Implementation details. We use MoCo-v2 pre-trained ResNet-50 as the network backbone, and use
the Projected Gradient Descent (PGD) [40] to generate adversarial samples with `2 attack (strength
σ=0.5) and `∞ attack (strength σ=4/255). During AT, we use both original samples and adversarial
samples for fine-tuning. Moreover, we use the clean accuracy on original samples and the robust
accuracy on adversarial samples as metrics. More implementation details are put in Appendix C.

Results. We report the results on CIFAR10 in Table 9 and the results on Caltech-101, DTD and Pets
in Appendix D. First, despite good clean accuracy, fine-tuning with cross-entropy cannot defend
against adversarial attack, leading to poor robust accuracy. Second, AT with cross-entropy improves
the robust accuracy significantly, but it inevitably degrades the clean accuracy due to the well-known
accuracy-robustness trade-off [51]. In contrast, the contrastive regularizer improves both robust and
clean accuracies. This is because contrastive learning helps to improve robustness generalization
(i.e., alleviating the distribution shifts between clean and adversarial samples). Last, Core-tuning
further boosts AT and, surprisingly, even achieves better clean accuracy than the standard fine-tuning
with cross-entropy. To our knowledge, this is quite promising since even the most advanced AT
methods [65, 69] find it difficult to overcome the accuracy-robustness trade-off [67]. The improvement
is because both contrastive learning and smooth classifier learning boost robustness generalization.
We thus conclude that Core-tuning improves model robustness on downstream tasks.

6 Conclusions

This paper studies how to fine-tune contrastive self-supervised visual models. We theoretically
show that optimizing the contrastive loss during fine-tuning has regularization effectiveness on
representation learning as well as optimization effectiveness on classifier training, both of which
benefit model fine-tuning. We thus propose a novel contrast-regularized tuning (Core-tuning) method
to fine-tune CSL visual models. Promising results on image classification and semantic segmentation
verify the effectiveness of Core-tuning. Also, we empirically find that Core-tuning is beneficial to
model generalization and robustness on downstream tasks. We thus recommend using Core-tuning as
a standard baseline to fine-tune CSL visual models, and also call for more attention to the fine-tuning
of CSL visual models on understanding its underlying theories and better approaches in the future.

Limitation discussion. One potential limitation of Core-tuning is that it is specifically designed for
and also focuses on the fine-tuning of CSL visual models. Considering the universality of Core-tuning
(cf. Table 3), we will explore the extension of Core-tuning to better fine-tune supervised pre-trained
and other self-supervised visual models and even language models on more tasks.
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9Madry, A., et al.Towards deep learning models resistant to adversarial attacks. In ICLR, 2018
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Summary

This work studied how to fine-tune contrastive self-supervised visual models

There are three main contributions:

1 We propose a simple yet effective contrast-regularized tuning method

2 We analyze the benefits of supervised contrastive loss to fine-tuning

3 We empirically show that Core-tuning effectively improve the
fine-tuning performance of contrastive self-supervised models

We call for more attention to the fine-tuning of contrastive self-supervised
models on understanding its underlying theories and better approaches

Source code is available: https://github.com/Vanint/Core-tuning.
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Thanks!
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