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A. UPPER BOUND OF SHOT (W/ SOURCE DATA)

To turn the proposed source data-absent method into a source data-dependent method, we keep the first stage (source model
generation) of SHOT unchanged, then directly incorporate the source classification loss in Eq. (2) into the overall loss in
Eq. (10). Note that, in the target adaptation stage, the source hypothesis (classifier layer) is no longer fixed, instead, data from
both domains are used to learn the domain-shared classifier at the same time.

In this manner, we exploit the source data when training SHOT-IM, SHOT, SHOT-IM++, and SHOT++, respectively, and
show the final results for closed-set UDA on Office-Home in Table I. It is easy to discover that with the involvement of source
data, all the methods obtain boosted performance in terms of the average accuracy. Besides, the improvement (about 1.1) over
SHOT-IM and SHOT-IM++ is larger than that (about 0.5) over SHOT and SHOT++, which indicates that using the proposed
self-supervised techniques like pseudo-labeling in the target domain itself plays a similar role as source data.

TABLE I
CLASSIFICATION ACCURACIES (%) ON OFFICE-HOME FOR vanilla closed-set UDA.
Methods Ar—Cl Ar—Pr Ar—Re Cl—Ar Cl—Pr Cl—-Re Pr—Ar Pr—Cl Pr—+Re Re—Ar Re—Cl Re—Pr Avg.
SHOT-IM 55.9 76.8 80.6 66.7 73.7 75.4 65.4 54.9 80.9 73.2 58.5 83.5 705

57.5 77.5 81.2 67.4 75.8 77.0 67.0 55.9 82.1 73.5 58.9 84.1 715
+1.6 +0.7 +0.6 +0.7 +2.1 +1.6 +1.6 +1.0 +1.2 +0.3 +0.4 +0.6 +1.0

SHOT-IM++ 56.9 1.7 81.5 67.6 74.9 76.9 66.1 55.9 81.7 73.8 59.3 844 714
58.6 78.7 82.1 68.6 77.4 78.7 67.9 57.0 83.2 74.0 59.8 849 72.6

w/ source data

w/ source data

+1.7 +1.0 +0.6 +1.0 +2.5 +1.8 +1.8 +1.1 +1.5 +0.2 +0.5 +0.5 +1.2

SHOT 577 791 815 676 779 718 681 558 8.0 728 597 844 720
/ource data 377 792 822 680 794 783 678 567 826 732 60.1 849 725
Wi sour - +0.1  +07 404  +15 405  -03  +09 +0.6 +04  +04  +05 +05
SHOT++ 579 797 825 685 796 793 685 570 830 737 607 849 730
| ource data O36 800 832 692 807 799 684 575 8%6 737 612 854 735
Wi sou +0.7 403 407 407  +1.1 406  -0.1  +05  +0.6 — +05 405 405

B. SENSITIVITY OF THE IM LOSS

To investigate the sensitivity of the diversity term L4;,, within the IM loss in Eq.(3), we conduct an experimental study and
show the results in Fig. 1 and Table II. As shown in Fig. 1, we rank 12 classes based on the number of training samples
in the target domain (i.e. validation set of the VISDA-C dataset), denoted as ‘sO’. To vary the degree of class imbalance in
the training target domain, we first drop half of the samples in the largest 6 classes, denoted as ‘s1’. Then we drop half of
the samples in the smallest 6 classes, denoted as ‘s2’. Besides, we make the number of training samples of each class as the
smallest class ‘knife’, forming ‘s3’. Generally, ‘s2’ has the largest class imbalance, and ‘s3’ has the smallest class imbalance,
and the class imbalance degree of ‘sl’ is smaller than that of ‘sO’. For all four settings, we use the whole real-world dataset
(i.e., the original validation set of VISDA-C) as the target test set.

To verify the effectiveness and sensitivity of the diversity term within the IM loss, we conduct comparison between SHOT-
IM (8 = 0) and SHOT-IM on four aforementioned settings and show the results in Table II. It is easy to find that SHOT-IM
outperforms SHOT-IM (5 = 0) in terms of the per-class accuracy for all four settings. Besides, with the increasing degree of
class imbalance (s3—s1—s0—s2), the per-class accuracies of SHOT-IM and SHOT-IM (5 = 0) decrease, and the accuracy of
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Fig. 1. The number of training samples from each class in different settings on VISDA-C. ‘setting-0 (s0)’ also depicts the label distribution during the testing
stage for all the settings.

TABLE I
CLASSIFICATION ACCURACIES (%) OF SHOT-IM (8 = 0) AND SHOT-IM WITH VARYING DIFFERENT DEGREES OF TRAINING CLASS IMBALANCE ON
VISDA-C (RESNET-50).

Settings VISDA-C car mcycl truck horse bus plant train person plane bcycl sktbrd knife Per-class
Source-only 534 769 69 446 489 50.7 89.7 13.1 594 106 221 1.6 39.8
3 SHOT-IM (3 =0) 71.7 925 0.0 91.7 91.7 900 823 822 93.6 0.0 91.7 23 65.8
SHOT-IM 69.0 893 489 915 79.1 90.2 83.7 81.0 933 757 776 537 7117
ol SHOT-IM (8 =0) 68.8 90.6 00 860 899 779 803 785 939 0.0 855 214 644
SHOT-IM 59.5 88.8 524 89.8 80.3 87.6 78.1 769 935 748 82.6 304 746
<0 SHOT-IM (8 =0) 68.0 872 0.0 862 89.2 79.7 774 695 902 00 00 994 622
SHOT-IM 532 814 536 89.7 782 859 864 758 93.8 80.7 84.8 225 738
0 SHOT-IM (3 =0) 63.8 89.5 00 862 89.7 81.8 70.8 662 865 00 00 99.1 611
SHOT-IM 438 719 482 874 70.6 82.6 87.0 786 932 820 766 21.6 703

the ‘sktbrd’ class after SHOT-IM (8 = 0) becomes 0. When carefully looking at the accuracies of classes ‘truck’ and ‘beycl’,
we find that SHOT-IM (5 = 0) classifies images of ‘beycl’ to the ‘mcycl’ class and ‘truck’ to the ‘bus’ class, but SHOT-IM
achieves higher accuracies for all four classes under different settings. We can conclude that the diversity term within the
IM loss is always effective when varying different degrees of class imbalance. Besides, the closer to a uniform vector the
ground-truth label distribution of the training target domain is, the better performance the IM loss obtains.

C. INCORPORATION WITH OTHER UDA METHODS

To study the effectiveness of the proposed structure-aware techniques (i.e., self-supervised pseudo-labeling (SPL) and
information maximization loss (IM)), we consider two traditional UDA methods (i.e., DANN [1] and CDAN [2]) as baseline
methods, and incorporate SPL and IM into them, and report the results on 6 vanilla closed-set UDA tasks in Table III.

As shown in Table III, both SPL and IM greatly improve the adaptation performance of DANN for these UDA tasks. CDAN
exploits the semantic information within the adversarial learning strategy, which works much better than DANN. Even though,
SPL and IM still boost the performance of CDAN.

To measure the domain difference, we additionally show the t-SNE feature visualization results of different methods for Pr
— Re (closed-set) on Office-Home. In Fig. 2(c-f), it is easy to find that, with the help of the proposed SPL & IM, the target
features are well separated and the target features are well aligned with source features, which is in line with the recognition
accuracy shown in these sub-captions. Besides, as can be seen from Fig. 2, SHOT can well align the target features with the
source features for each class, and features from different classes are clearly separated, which reduces the domain difference
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better than DANN and CDAN. Different from traditional UDA methods where features from two domains are aligned at the
same time, SHOT first learns discriminative source features first, then aligns the target features to the source features, making
the optimization objective more clear. Besides, SHOT exploits many target-structure-aware strategies during adaptation, which
are also beneficial for domain difference minimization.

TABLE III
CLASSIFICATION ACCURACIES (%) OF TWO CLASSIC DATA-DEPENDENT UDA METHODS INTEGRATED WITH OUR PROPOSED TECHNIQUES ON SIX vanilla
closed-set UDA TASKS. [SPL: SELF-SUPERVISED PSEUDO-LABELING IN EQ. (7), IM: INFORMATION MAXIMIZATION LOSS IN EQ. (3)]

Office Office-Home
Methods ASD DDA AW WA  ArsCl ProRe V& A
DANN [1] 784 608 749 620 466 731 660 -
w/ SPL 929 710 912 722 52.9 804 768 +10.8
w/ IM 904 746 929 756 56.5 81.5 786 +126
w/ SPL & IM 944 754 922 730 55.8 821 788 +I28
CDAN+E [2] 926 718 921 703 54.4 786 766 -
w/ SPL 945 744 915 749 55.5 808  78.6  +2.0
w/ IM 922 747 926 747 575 816 789 +23
w/ SPL & IM 951 750 926 754 57.1 821 796 +3.0
Source-model-only  80.2  60.3 769  63.6 445 733 665 -
SHOT-IM 902 724 911 718 559 809 770 +10.5
SHOT 939 753  90.1 750 577 820 790 +125
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Fig. 2. The t-SNE feature visualizations of different methods for Pr — Re (closed-set) on Office-Home. Circles in red denote source data and circles in
olive denote target data.

D. HOW DOES THE SELF-SUPERVISED LOSSES WORK

To further explain the contribution of these techniques, we show in Fig. 3 the features learned by different methods. In
particular, we select data from the first 5 classes (in alphabetical order) from the source domain and data from the second
class in the target domain of the closed-set UDA task Ar—Cl on Office-Home and adjust the bottleneck size to 2 for direct
feature visualization.

In Fig. 3(a), stars in blue are correctly classified and stars not in blue are mis-classified. Many samples are wrongly classified
due to the low-quality representations. Among them, we mainly focus on 6 samples (3 with the green border and 3 with the
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red border). With the help of IM loss, the target features could be aligned with source features in Fig. 3(b), however, 4 out
of 6 samples are still wrongly classified. Incorporated with the self-supervised pseudo-labeling technique, only 3 out of 6
samples are wrongly classified in Fig. 3(c), indicating that the target-specific prototype could provide better pseudo labels
to help learn better representations. Taking into consideration the self-supervised rotation prediction objective, all 6 samples
could be correctly classified in Fig. 3(d). This may be because self-supervised objective helps focus on semantically meaningful
features, which is in line with previous studies [3], [4].
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Fig. 3. Feature visualizations of different methods for a 5-way classification task. Solid circles denote source features and solid stars denote the target features
from the second class. Different colors denote different classes. stars in blue are correctly classified and stars in other colors are wrongly classified.

E. DIFFERENT CONFIDENCE MEASURES WITHIN SHOT++

On top of the entropy function (used in SHOT++(ENT)), we have ever tried other choices like the maximum probability
(used in SHOT++(MAXP)) and the margin between the largest and the second-largest probability (used in SHOT++(MARP))
to rank the samples. We show the performance for several closed-set UDA tasks with different ranking metrics in Table IV.
Besides, SHOT++(RAND) denotes a simple baseline in which we randomly rank the samples.

In terms of the average accuracy in Table IV, SHOT++(MAXP) obtains the best result and SHOT++(ENT) obtains the
second-best result. The improvements of SHOT++(RAND) and SHOT++(MARP) over SHOT are quite marginal. Besides,
SHOT++(ENT) outperforms SHOT on 6 out of 6 tasks and SHOT++(MAXP) outperforms SHOT on 5 out of 6 tasks. Generally,
SHOT++(ENT) and SHOT++(MAXP) achieve similar results, clearly outperforming other counterparts (i.e., SHOT++(MARP)
and SHOT++(RAND)).
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TABLE IV

CLASSIFICATION ACCURACIES (%) OF SHOT++ WITH DIFFERENT CONFIDENCE METRICS ON SIX vanilla closed-set UDA TASKS.

Office

Office-Home

Ranking Metrics Methods ASD DoA AW WoA  ArsCl ProRe Avg. A

- SHOT 93.9 753 90.1 75.0 57.7 82.0 79.0 -

& ~ rand(0,1) SHOT++ (RAND) 94.1 1 7541 90.1 7521 574 8241 791 +0.1

pr — max;jxi pj (k = argmax; p;) SHOT++ (MARP) 9441 75571 90.1 7521 574 82.4 1 79.2  +0.2

pr (k = argmax; p;) SHOT++ (MAXP) 9451 7621 9061 7551 57.7 83.01T 796 +0.6

> pilogp; SHOT++ (ENT) 9421 7621 9031 7571 5781 8301 795 +0.5
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