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Abstract—Unsupervised domain adaptation (UDA) aims to transfer knowledge from a related but different well-labeled source domain
to a new unlabeled target domain. Most existing UDA methods require access to the source data, and thus are not applicable when the
data are confidential and not shareable due to privacy concerns. This paper aims to tackle a realistic setting with only a classification
model available trained over, instead of accessing to, the source data. To effectively utilize the source model for adaptation, we propose
a novel approach called Source HypOthesis Transfer (SHOT), which learns the feature extraction module for the target domain by fitting
the target data features to the frozen source classification module (representing classification hypothesis). Specifically, SHOT exploits
both information maximization and self-supervised learning for the feature extraction module learning to ensure the target features are
implicitly aligned with the features of unseen source data via the same hypothesis. Furthermore, we propose a new labeling transfer
strategy, which separates the target data into two splits based on the confidence of predictions (labeling information), and then employ
semi-supervised learning to improve the accuracy of less-confident predictions in the target domain. We denote labeling transfer as
SHOT++ if the predictions are obtained by SHOT. Extensive experiments on both digit classification and object recognition tasks show
that SHOT and SHOT++ achieve results surpassing or comparable to the state-of-the-arts, demonstrating the effectiveness of our
approaches for various visual domain adaptation problems. Code is available at https://github.com/tim-learn/SHOT-plus.

Index Terms—Unsupervised domain adaptation, transfer learning, self-supervised learning, semi-supervised learning, model reuse.
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1 INTRODUCTION

D EEP neural networks have achieved remarkable suc-
cess in a variety of applications across different fields

but at the expense of laborious large-scale training data
annotation. To avoid expensive data labeling, transfer learn-
ing [1], [2], [3] is developed to extract the knowledge from
one or more source tasks which is then applied to a target
task. As a typical example, unsupervised domain adaptation
(UDA) tackles the problem setting where the learning task in
the source domain is sufficiently similar or the same as that
in the target domain but labeled data are only available in
the source domain during training. Recently, UDA methods
have been widely applied to boost performance of many
tasks like object recognition [2], [4], [5], [6], semantic seg-
mentation [3], [7], [8], [9], sentiment classification [10], [11],
object detection [12], [13], and person re-identification [14],
[15]. Existing UDA methods mainly follow two paradigms
to mitigate the gap between source and target domains. The
first paradigm matches the statistical moments of different
feature distributions at different orders to minimize the
distributional divergence between domains [16], [17], [18].
For example, the widely used Maximum Mean Discrep-
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ancy (MMD) [19] measure minimizes the distance between
weighted sums of all moments from the source and target
domains. The second paradigm applies adversarial learn-
ing [20] with an additional domain classifier to minimize
the Proxy A-distance [21] between the domains. All these
methods require to access the source data during learning
to adapt the model to the target domain.

However, nowadays the data often involves user private
information, e.g., those on personal phones or from hospital
records. Recently, several data protection frameworks have
been proclaimed by the European Union (EU) and some
governments, among which the General Data Protection
Regulation (GDPR), as a typical example, highlights the
safety issue of data transfer. Accordingly, it may violate the
data privacy policy for previous UDA methods to access the
source data during learning to adapt. To alleviate this issue
in the transfer learning field, Hypothesis Transfer Learning
(HTL) [22] explore to retain prior knowledge in a form of
hypotheses instead of training data inherited from previous
tasks. Likewise, in this paper, we introduce a realistic but
challenging source data-absent UDA setting [23] with only
a well-trained source model provided as supervision. Dif-
ferent from HTL, here we do not have any labeled data in
the target domain for the UDA problem. Our introduced
setting also differs from vanilla UDA in that the source
model instead of the source data is provided to the target
domain for adaptation, making the cross-domain feature-
level distribution matching challenging.

To address this UDA setting, we propose a novel ap-
proach called Source HypOthesis Transfer (SHOT). SHOT
follows common deep UDA methods [4], [24] to utilize
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an identical network architecture for different domains,
consisting of a feature encoding module and a classification
module (hypothesis). Like [5], [25], SHOT aims to learn a
target-specific feature encoding module to generate target
data representations that are well aligned with source data
representations, but without accessing the source data or
the target data labels. Intuitively, if the learned target data
representations are aligned with the source ones, their clas-
sification results from the fixed source classifier (hypothesis)
would be highly confident for a certain class, i.e., the classi-
fication outputs being close to one-hot vectors. We are then
motivated to make SHOT adapt the feature encoding mod-
ule by fine-tuning the source feature encoding module while
freezing the source hypothesis, to maximize the mutual
information between intermediate feature representations
and outputs of the classifier, since information maximization
[26], [27] can encourage the classifier to assign disparate
one-hot outputs to different target feature representations.

Though target feature representations are encouraged
to fit the source hypothesis via information maximization,
some semantically wrong matching between target feature
representations and source hypothesis may still occur, lead-
ing to wrong labels assigned to the target data. To alleviate
this, we propose to fully exploit the knowledge in the unla-
beled target domain by developing two new self-supervised
learning schemes. First, considering pseudo labels gener-
ated by the source classifier for the target data may be noisy,
we propose to attain per-class prototype representations for
the target domain itself and apply the nearest prototype
classifier to obtain more accurate pseudo labels as direct
supervision. Secondly, inspired by RotNet [28] that predicts
the absolute rotation of a rotated image, we come up with
a relative rotation prediction task to capture the image-
specific self-supervision more precisely, i.e. requiring the
model to estimate the relative rotation between one original
image and its rotated version. The two self-supervisions
are used to help discard irrelevant semantic information
by exploiting the data distribution of the target domain,
thus helping learn feature representations that better fit the
source hypothesis. In this way, we obtain a target-specific
feature encoding module with the source hypothesis as the
shared classifier module across domains.

Since some low-confident predictions generated with the
proposed hypothesis transfer strategy are possibly inaccurate,
we further put forward a labeling transfer strategy as a
following step, forming a complete two-stage framework
called SHOT++ for UDA problems. Particularly, we sort
the the confidence of the adapted predictions after SHOT
and discover an adaptive threshold to automatically di-
vide the whole target data into two splits, i.e., ‘easy’ split
with high confidence and ‘hard’ split with low confidence.
Empirically, these predictions of samples in the ‘easy’ split
are reliable. Thus, we employ a popular semi-supervised
learning algorithm, MixMatch [29], to enable the reliable
labeling information from the ‘easy’ split to flow to the
‘hard’ split in the target domain itself. It is worth noting
that such a labeling transfer strategy can also be applied
to the original source model, or even a black-box predictor
without knowing the network architecture.

Experimental results on multiple benchmark datasets
clearly demonstrate the proposed SHOT and SHOT++ ob-

tain competitive results with the state-of-the-art, or outper-
form the state-of-the-art for three different UDA cases, i.e.,
closed-set [30], partial-set [31], multi-source [18] problems.
The superior results over prior arts in a semi-supervised
domain adaptation (SSDA) scenario [32] further verify the
versatility of the proposed methods. The main contributions
of this work are summarized as follows.

• We propose a novel framework, Source HypOthesis
Transfer (SHOT), for unsupervised domain adapta-
tion with only the source model provided, which is
appealing for privacy protection without access to
the source data.

• SHOT exploits information maximization to learn a
target-specific feature encoding module, which pro-
vides an implicit perspective on feature alignment.

• SHOT further exploits the knowledge in the unla-
beled target domain by developing two new kinds
of self-supervisions as auxiliary tasks, which further
improves the adaptation performance.

• We further propose a new labeling transfer strategy
by exploiting the confidence of predictions and en-
forcing the labeling information to flow from ‘easy’
samples to ‘hard’ samples, even allowing adaptation
with a black-box source model.

• Experiments on several benchmarks demonstrate our
methods yield results comparable to or outperform-
ing the state-of-the-arts for three unsupervised do-
main adaptation scenarios and even semi-supervised
domain adaptation.

This paper extends our earlier work [23] in the fol-
lowing aspects. Within the hypothesis transfer framework
developed in [23], we additionally propose one more self-
supervision objective to predict the relative rotation, which
facilitates learning semantically meaningful representations
in the target domain. We also propose a new strategy named
labeling transfer that only requires the labeling predictions
in the target domain. Different from [23], it even allows
adaptation with a black-box source model. Besides, it can
be incorporated with the hypothesis transfer framework,
yielding better adaptation results. We also expand the ex-
perimental evaluation by adding more datasets for each
UDA scenario (e.g., PACS [33] for multi-source UDA) and
extending our methods further to semi-supervised domain
adaptation. Finally, we provide a more detailed model anal-
ysis to evaluate the proposed approaches, including training
stability, parameter sensitivity and qualitative study.

2 RELATED WORK

2.1 Unsupervised Domain Adaptation
As a typical example of transfer learning [1], unsupervised
domain adaptation (UDA) aims to exploit the knowledge
in a different but related labeled dataset to help learn
a discriminative model for the unlabeled dataset. Early
UDA methods [34], [35] assume the covariate shift with
the identical conditional distributions across domains and
approximate the target empirical risk by estimating the
weight of each source instance and re-weighting the source
empirical risk. Later, most UDA methods resort to domain-
invariant feature transformation [36], [37], [38] or feature
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space alignment [16], [39], [40] to pursue distribution align-
ment. However, the transferability of these shallow methods
is restricted by task-specific structures [41].

Recently, deep neural networks are well explored to
learn transferable representations for domain adaptation,
in various visual applications like object recognition [2],
[39], [42] and semantic segmentation [3], [8], [9], [43].
Based on the relationship of label spaces between source
and target domains, UDA scenarios can be categorized
into four cases, i.e., closed-set [30], partial-set [31], open-
set [44], and universal [45]. Among them, the closed-set
UDA has received the most research attention, where the
source and target label spaces are assumed to be identical.
Existing deep closed-set UDA methods can be roughly
divided into three distinct categories: discrepancy-based,
reconstruction-based, and adversarial-based. Discrepancy-
based approaches minimize a divergence criterion that mea-
sures the distance between the source and target data distri-
butions, and some favoring choices include maximum mean
discrepancy (MMD) [4], high-order central moment discrep-
ancy [17], contrastive domain discrepancy [46], and the
Wasserstein metric [47]. Reconstruction-based approaches
like [48] utilize reconstruction as an auxiliary task to pur-
sue shared representations for both domains. In addition,
some other reconstruction-based methods [49], [50] further
seek domain-specific reconstruction and cycle consistency
to improve the adaptation performance. Inspired by gen-
erative adversarial nets [20], adversarial-based approaches
determine the distance between different data distributions
based on binary classification performance, which in effect
corresponds to the Proxy A-distance orH-divergence in the
seminal theoretical framework [21]. Different from marginal
distribution alignment using one binary domain classifier in
[24], following methods encourage joint distribution align-
ment by considering multiple class-wise domain classifiers
[51] or a semantic multi-output classifier [52], [53] instead
of a feature-conditional domain discriminator [42], respec-
tively. There are also some other studies investigating batch
normalization [54], [55] and adversarial dropout [56], [57]
within the network architecture to ensure feature invariance.
Despite their efficacy, all these methods assume the target
user’s access to the source domain, which is not unpractical
since the source data may be private and confidential.

2.2 Hypothesis Transfer Learning

The concept of hypothesis transfer learning (HTL) is first
presented by Kuzborskij and Orabona [22], also with a
formal theory. Before it, there are a number of transfer
learning works [58], [59], [60] that assume no explicit access
to the source data and are empirically successful. Generally,
HTL is an attractive and efficient framework that assumes
access to a given number of source hypotheses and a small
set of training samples from the target domain. However,
like the famous fine-tuning strategy [61], HTL always re-
quires at least a small set of labeled data in the target
domain, limiting its applicability to the semi-supervised DA
scenario. Inspired by HTL, several recent works [62], [63]
assume absence of the source data and utilize the encoded
information as source supervision for the UDA problem. In
particular, besides target features, [62] requires predictions

of target data, and [63] requires the mean and variance per-
class calculated on source features. Both methods adopt
a shallow framework like HTL, which are restricted to
the original feature structure. By contrast, our work fully
exploits the end-to-end feature learning module, allowing
more flexibility during adaptation. There are also two con-
current deep UDA methods [64], [65] that attempt not to
access the source data during the adaptation process. Our
approach differs from [64] as we do not need any additional
components like a data generator or classifier within the
training algorithm; [65] introduces the first federated DA
setting where knowledge is transferred from the decentral-
ized nodes to a new node without any supervision itself
and proposes an adversarial-based solution to protect user
privacy, but it may fail to tackle the vanilla UDA setting
with only one source domain available.

2.3 Self-supervised Learning
Self-supervised learning [66] offers great feasibility for ef-
fectively utilizing unlabeled data by generating and pre-
dicting labels from these data. The self-supervised task is
also known as pretext task. A typical workflow1 is to train
a model on one or multiple pretext tasks with unlabeled
images and then fine-tune the trained model on a variety of
practical downstream tasks. In addition, pretext tasks can
also be jointly trained with supervised learning tasks on
labeled data with shared weights like in [67], [68]. Gener-
ally, self-supervised methods involve two aspects: pretext
task and loss function. Some popular image-specific self-
supervision tasks include example colorization [69], relative
position prediction [70], rotation prediction [28], solving jig-
saw puzzles [71]; on the other hand, contrastive losses [72],
[73] and clustering losses [74], [75] focus on the similarity
of sample pairs in the representation space, which always
provide better performance. Some recent studies [76], [77],
[78] explore self-supervision for UDA problems and find it
beneficial to accomplishing domain alignment. By contrast,
this paper elegantly designs two different kinds of self-
supervisions for UDA problems.

2.4 Semi-supervised Learning
When the domain shift does not exist, the UDA problem
naturally becomes a well-studied semi-supervised learn-
ing problem. Many ideas originally proposed for semi-
supervised learning thus can also be employed to achieve
or compensate domain alignment within UDA methods.
Pseudo-labeling [79] is a simple heuristic widely used in
practice, which produces ‘pseudo-labels’ for unlabeled data
using the prediction function itself during the course of
training. Among UDA methods, [80] directly incorporates
pseudo-labeling as a regularization term, and [42] leverages
pseudo labels in the adaptation module to achieve multi-
modal distribution alignment. Entropy minimization [81] is
a popular strategy that encourages the network to make
‘confident’ (low-entropy) predictions for all unlabeled data,
which has been exploited in many previous UDA methods
[41], [82]. Other favored semi-supervised techniques like tri-
training and virtual adversarial training have been used in

1. https://cutt.ly/DfN3rFU
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frameworks [83], [84], respectively. Recently, [85] directly
employs MixMatch [29] and obtains promising results in
the VisDA-2019 challenge. Different from prior works that
treat the whole target domain as an unlabeled dataset, we
focus on intra-domain semi-supervised learning where the
labeled dataset consists of confident target data samples and
the unlabeled dataset consists of remaining samples.

3 METHOD

We aim to address the UDA problem with only a pre-trained
source model, not requiring to access the source data. In
particular, we consider the K-way visual classification task.
For a vanilla UDA task, we are given ns labeled samples
{xis, yis}

ns
i=1 from the source domain Ds where xis ∈ Xs, yis ∈

Ys, and also nt unlabeled samples {xit}
nt
i=1 from the target

domain Dt where xit ∈ Xt. The goal of UDA is to predict
the labels {yit}

nt
i=1 in the target domain, where yit ∈ Yt, and

the source task Xs → Ys is assumed to be the same with the
target task Xt → Yt. In this work, we aim to learn a target
function ft : Xt → Yt and infer {yit}

nt
i=1, with only {xit}

nt
i=1

and the source function fs : Xs → Ys available.
We address the above source data-absent UDA problem

through the following steps. First, we train the classification
model, consisting of a feature encoding module and a hy-
pothesis module, from the source data and then transfer the
source model to the target domain without accessing the
source data. Then, we present a novel framework, Source
HypOthesis Transfer (SHOT), to learn the target-specific
feature encoding module using self-supervised learning and
semi-supervised learning, with the source hypothesis fixed.
Finally, using the predictions for the target domain, we
further employ a semi-supervised learning algorithm to
enforce labeling information propagation from confidently
labeled target samples to the remaining target samples with
low confidences. Applying such a labeling transfer strategy
to SHOT yields SHOT++. Likewise, applying the label-
ing transfer strategy to ‘Source-model-only’ yields ‘Source-
model-only++’, which can even deal with a black-box source
model. In the following, we elaborate on each step in details.

3.1 Source Model Generation
We consider learning a deep source classification model fs :
Xs → Ys by minimizing the following cross-entropy loss,

Lsrc(fs;Xs,Ys) =

E(xs,ys)∈Xs×Ys

∑K

k=1
−qk log δk(fs(xs)),

(1)

where δk(a) = exp(ak)∑
i exp(ai)

denotes the k-th element in the
soft-max output of a K-dimensional vector a, and q denotes
a one-hot encoding of ys where qk is ‘1’ for the correct class
and ‘0’ for the rest. To further lift the discriminability of the
source model and facilitate the following target data align-
ment, we adopt the label smoothing technique for model
training as it encourages learned feature representations to
form tight and evenly separated clusters [86], which is use-
ful for adaptation. Therefore, the source objective function
is changed to

Llssrc(fs;Xs,Ys) =

E(xs,ys)∈Xs×Ys

∑K

k=1
−qlsk log δk(fs(xs)),

(2)

Fig. 1. The pipeline of hypothesis transfer with information maximization.
The source model consists of a feature encoding module and a classifier
module (hypothesis). SHOT keeps the hypothesis frozen and utilizes the
feature encoding module as initialization for target domain learning.

where qlsk = (1 − α)qk + α/K is the smoothed label and α
is the smoothing parameter which is empirically set to 0.1.

3.2 Hypothesis Transfer with Information Maximization

As shown in Fig. 1, the source model parameterized by a
deep neural network consists of two modules: the feature
encoding module gs : Xs → Rd and the classifier module
hs : Rd → RK , i.e., fs(x) = hs (gs(x)), where d is the di-
mension of the input feature. Most previous UDA methods
align different domains by matching the data distributions
in the feature space Rd using MMD [4] or domain adver-
sarial alignment [24]. However, both strategies assume the
source and target domains share the same feature encoder
and need to access the source data during adaptation. This is
not applicable in the tackled UDA setting here. By contrast,
Adversarial Discriminative Domain Adaptation (ADDA) [5]
relaxes the parameter-sharing constraint and is a new ad-
versarial framework, which learns different mapping func-
tions for the two domains. Also, Decision-boundary Itera-
tive Refinement Training with a Teacher (DIRT-T) [84] first
trains a parameter-sharing UDA framework as initializa-
tion and then fine-tunes the whole network by minimizing
the cluster assumption violation via entropy minimization
and virtual adversarial training. Both methods suggest that
learning a domain-specific feature encoding module for Dt
is practicable and even works better than the parameter-
sharing mechanism, which has also been proven effective in
Domain-Specific Batch Normalization (DSBN) [25].

We therefore develop a new framework termed Source
HypOthesis Transfer (SHOT) by learning the domain-
specific feature encoding module for the target data while
fixing the source classifier module (hypothesis), as the
source hypothesis encodes the distribution information of
the unseen source data. Namely, SHOT utilizes the same
classifier module ht = hs for different domain-specific
feature encoding modules. It aims to learn the optimal target
feature encoding module gt : Xt → Rd such that the output
target features can fit the source feature distribution well
and can be accurately classified by the source hypothesis
directly. Note that SHOT merely utilizes the source data
for just once to generate the source hypothesis, and does
not need to access the source data any more, unlike prior
methods (e.g., ADDA, DIRT-T, and DSBN).
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(a) Source model only (b) SHOT-IM

Fig. 2. The t-SNE visualizations for a 5-way classification task. Solid ‘◦’
denotes unseen source data and ‘?’ denotes target data. Different colors
represent different classes. Best viewed in colors.

Essentially, we expect to learn the optimal target feature
encoder gt so that the target data distribution p (gt(xt))
matches the source data distribution p (gs(xs)) well. How-
ever, feature-level alignment does not work at all since it is
impossible to estimate the distribution of p (gs(xs)) without
access to the source data. We view the challenging problem
from another perspective: if there is no domain gap, what kind
of outputs should be generated over the unlabeled target data? We
argue the ideal outputs of target features should be similar
to those of source features with the classifier shared for both
domains. Since we train the source feature encoding module
gs and classifier module hs via a supervised learning loss,
the output of each source feature is fairly similar to one of
the one-hot encodings. Therefore, we expect that the output
of each target feature through ht = hs is also similar to
one of the one-hot encodings. Such an output alignment
requirement is a necessary condition for feature alignment.

For this purpose, we adopt the information maximiza-
tion (IM) loss [26], [27], [87] to make the classification
outputs of target features individually certain and globally
diverse. In practice, we minimize the following Lent and
Ldiv that together constitute the IM loss (β = 1):

Lim(ft;Xt) = Lent(ft;Xt) + βLdiv(ft;Xt)

Lent(ft;Xt) = −Ex∈Xt

∑K

k=1
δk(ft(x)) log δk(ft(x)),

Ldiv(ft;Xt) =
∑K

k=1
p̂k log p̂k

= DKL(p̂,
1

K
1K)− logK,

(3)

where ft(x) = ht(gt(x)) is the K-dimensional output of
each target sample, 1K is a K-dimensional vector with all
ones, and p̂ = Ex∈Xt

[δ(ft(x))] is the mean output embed-
ding of the whole target domain. The IM loss would work
better than conditional entropy minimization [81] widely
used in prior UDA methods [32], [88] since IM can cir-
cumvent the trivial solution where all unlabeled data have
the same one-hot encoding via the fair diversity-promoting
objective Ldiv . For convenience, we denote SHOT with the
information maximization loss as SHOT-IM.

3.3 Hypothesis Transfer with Self-supervised Learning

Fig. 2 shows the t-SNE visualizations of features for a 5-
way classification task learned by SHOT-IM and the ‘source
model only’ method. Intuitively, the target feature repre-
sentations are distributed in a mess for the ‘source model

Fig. 3. The pipeline of hypothesis transfer with self-supervised learning.
Besides the common target model, we impose a rotation classifier hc
after the feature encoding module gt. hc is parameterized by a linear
classifier, which aims to predict the relative rotation of a target sample.

only’ method in Fig. 2(a), and using the IM loss indeed
helps align the target data with the unseen source data well.
However, the target data may be matched to the wrong
source hypothesis to some extent in Fig. 2(b).

We argue that the harmful effects result from the in-
accurate original network outputs. For instance, a target
sample from the second class with the normalized network
output [0.4, 0.3, 0.1, 0.1, 0.1] may be forced to have an
expected output [1.0, 0.0, 0.0, 0.0, 0.0]. Motivated by [74],
[89], self-supervised learning helps focus on semantically
meaningful features, which is in line with domain invariant
learning. Therefore, we try to learn structure-aware and
semantic representations in the unlabeled target domain to
alleviate such effects. Specifically, we develop two new self-
supervision objectives to be jointly trained with the main
unsupervised task in Eq. (3) in a similar manner to prior
methods [68], [77]. We first exploit self-supervision from
the perspective of the loss function and design a novel self-
supervised pseudo-labeling strategy. Different from pseudo-
labeling [79] where pseudo labels conventionally generated
by source hypotheses are still noisy due to domain shift,
our self-supervised version considers the structure of the
target domain (i.e. the target-specific prototypes) and is able
to provide accurate pseudo labels. The detailed learning
procedure is provided in the following.

• We first attain prototype representation (centriods)
for each class in the target domain, similar to
weighted k-means clustering,

c
(0)
k =

∑
x∈Xt

δk(f̂t(x)) ĝt(x)∑
x∈Xt

δk(f̂t(x))
, (4)

where δk(·) denotes the k-th element in the soft-
max output and f̂t = ĝt ◦ ht denotes the previously
learned target hypothesis. These centroids can ro-
bustly and more reliably characterize the distribution
of different categories within the target domain.

• We then obtain new pseudo labels via the nearest
centroid classifier:

ŷt = arg min
k
Df (ĝt(x), c

(0)
k ), (5)

where Df (a, b) measures the distance between a and
b. We use the cosine distance by default.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, DOI: NO. 10.1109/TPAMI.2021.3103390 6

• Finally, we compute the target centroids based on the
new pseudo labels:

c
(1)
k =

∑
x∈Xt

1(ŷt = k) ĝt(x)∑
x∈Xt

1(ŷt = k)
,

ŷt = arg min
k
Df (ĝt(x), c

(1)
k ).

(6)

We term ŷt as self-supervised pseudo labels since they
are generated by the centroids obtained in an unsupervised
manner. Actually, this solution to pseudo labels behaves like
that in Minimum Centroid Shift (MCS) [63] where target-
specific centroids and pseudo labels are alternately updated
via optimizing the intra-class divergence minimization loss.
In contrast, we employ the cross-entropy loss and just
update the centroids and labels in Eq. (6) for one round
since updating once gives sufficiently good pseudo labels
according to our observation in the experiment. We provide
the cross-entropy loss of self-supervised pseudo-labeling
below,

L1
ssl(ft;Xt, Ŷt) =

−γ1 E(x,ŷt)∈Xt×Ŷt

∑K

k=1
1[k=ŷt] log δk(ft(x)),

(7)

where γ1 > 0 is a regularization parameter for the trade-off
between L1

ssl and the main task in Eq. (3).
Also, we investigate the image-specific self-supervision

in the unlabeled target domain. Rotation prediction in Rot-
Net [28] aims to recognize one of four different 2d rotation
(i.e., 0◦, 90◦, 180◦, and 270◦) that is applied to the image
that it gets as input, which is a simple yet effective criterion
in the self-supervised learning field. It is further verified
by several recent studies [89], [90] to learn semantically
meaningful representations quite well, which is also desir-
able for domain adaptation problems. However, absolute
rotation prediction is sensitive to some classification tasks.
For example, in a main task aiming to distinguish digit ‘6’
from digit ‘9’, it is hard to determine which rotation category
‘9’ belongs to, since ‘9’ could also be a rotated ‘6’ with
180 degrees or a rotated ‘9’ with 0 degrees. To resolve this
dilemma, we propose a new self-supervised learning task by
predicting the relative rotation of each image pair. As shown
in Fig. 3, the relative rotation predictor is represented by
hc : R2d → {1, 2, 3, 4} that takes the concatenated features
of an image pair as input and maps them to one of four
different rotation degrees.

For an image in the target domain xi ∈ Xt, we first ran-
domly sample an integral number zi from [1, 2, 3, 4] which
corresponds to the rotation degree pool [0◦, 90◦, 180◦, 270◦].
Then we obtain the transformed image xzii = Rot(xi, zi) by
rotating xt with the associated degree zi. Finally, the proba-
bility score of the k-th relative rotation degree predicted by
hc is given by

δk(hc([gt(xi), gt(x
zi
i )])), (8)

where δk(·) denotes the k-th element in the soft-max out-
put vector, and [·, ·] denotes the feature-level concatenation
function. Therefore, the self-supervised rotation prediction
loss is defined as

L2
ssl(gt, hc;Xt,Zt) =

−γ2 E(xi,ẑi)∈Xt×Zt

∑4

k=1
1[k=zi] log δk(hc([gt(xi), gt(x

zi
i )])),

(9)

Fig. 4. The pipeline of the labeling transfer strategy with semi-supervised
learning. Both the feature encoding module gt and the classification
module ht are learned via the MixMatch [29] algorithm.

where γ2 > 0 is a regularization parameter for the trade-off
between L2

ssl and the main loss, i.e. Eq. (3).
We provide an illustrative example of the complete

hypothesis transfer framework in Fig. 3. To summarize,
given the source model fs = gs ◦ hs and pseudo labels Ŷt
generated in Eq. (6) and randomly generated rotation labels
Zt as above, SHOT freezes the hypothesis from the source
via ht ≡ hs and learns the feature encoding module gt with
the full optimization objective as

L(gt, hc) = Lent(ht ◦ gt;Xt) + βLdiv(ht ◦ gt;Xt) −

γ1 E(x,ŷt)∈Xt×Ŷt

∑K

k=1
1[k=ŷt] log δk(ft(x)) −

γ2 E(xi,ẑi)∈Xt×Zt

∑4

k=1
1[k=zi] log δk(hc([gt(xi), gt(x

zi
i )])).

(10)

3.4 Labeling Transfer with Semi-supervised Learning
After we obtain the predictions for all the samples in the
target domain via SHOT in Eq. (10), we can measure the con-
fidence scores of these predictions via the entropy function
H(p) =

∑
i pi log pi, where p is a probability prediction vec-

tor. Observing the distribution of confidence scores, we find
that there always exist some less confident (high-entropy)
predictions that are possibly inaccurate. Fortunately, we can
utilize the reliable labeling information from high confident
predictions to improve the accuracy of these less confident
ones. To this end, we propose a two-step method to enforce
the information propagation from low-entropy predictions
to high-entropy ones. In the first step, we divide the target
domain into two splits according to the confidence scores
and treat these two splits as a labeled subset and an un-
labeled subset, respectively. In the second step, we readily
employ a semi-supervised learning algorithm to learn the
enhanced predictions for the unlabeled set here.

Regarding the choice of a semi-supervised learning al-
gorithm in the second step, we simply adopt a popular and
well-performing approach, MixMatch [29], which unifies
consistency regularization, entropy minimization, and the
MixUp regularization into one framework. Then the key
point lies in how to divide the target domain into two splits.
With average entropy, we first obtain the proportion of the
labeled subset in the entire target domain by automatically
computing

a =

∑
i 1(ξi <

∑
j ξj
nt

)

nt
, (11)

where ξ ∈ Rnt denotes the entropy values of all the pre-
dictions in the target domain, where ξi = H(δ(ft(xi))), i ∈
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[1, · · · , nt]. Then for each class k ∈ [0,K], we put the index
with entropy values among the top tk smallest into the index
pool of labeled split, where

tk = ba
∑

i
1(ȳi = k)c, k ∈ [1, · · · ,K], (12)

and ȳi ∈ [1,K]nt is the predicted label by SHOT in Eq. (10).
In this manner, we get the labeled split, and the remaining
samples constitute the unlabeled split. We call this strategy
in Fig. 4 as labeling transfer since in this stage we only need
the labeling information (predictions) while the feature en-
coding module gt is initialized with that learned in Eq. (10).
Besides, the classification module ht is newly initialized
from scratch and not frozen any more. So far, we develop a
two-stage approach, called SHOT++, in which the first stage
is SHOT in Eq. (10) and the second stage is the proposed
labeling transfer strategy in Fig. 4.

3.5 Extension to Multi-source Domain Adaptation
We also provide an extension of the proposed SHOT ap-
proach for multi-source domain adaptation (MSDA) [18].
Different from vanilla UDA (one source and one target),
there are multiple sources in the MSDA task. For simplicity,
we run SHOT and SHOT-IM on each source-target pair and
then sum up the probabilistic scores obtained from each
pair. Finally, we get the predictions of samples in the target
domain via the argmax operation. As for labeling transfer,
we split the target domain into two pieces for each pair, and
learn the independent prediction scores.

3.6 Extension to Partial-set Domain Adaptation
We also provide an extension of the proposed SHOT ap-
proach for partial-set domain adaptation (PDA) [91]. PDA
differs from vanilla UDA in that the target label space is
a subset of that of the source label space. Looking at the
diversity-promoting term Ldiv in Eq. (10), it encourages the
target domain to own a uniform label distribution. Though
seemingly reasonable for solving closed-set UDA, it is not
suitable for PDA. In reality, the target domain only contains
some classes of all the classes in the source domain, making
the label distribution sparse. Hence, we drop the second
term Ldiv for PDA by letting β = 0.

Besides, within the self-supervised pseudo-labeling
strategy, we usually need to obtain K centroids in the target
domain. However, for the PDA task, there are some tiny
centroids which should be considered as empty like in k-
means clustering. Therefore, SHOT discards tiny centroids
with size smaller than Tc in Eq. (6) for PDA problems.

3.7 Extension to Semi-supervised Domain Adaptation
We further extend the proposed SHOT approach for semi-
supervised domain adaptation (SSDA) [32]. SSDA differs
from UDA in that some labeled data exist in the target
domain. Therefore, we adopt the supervised training loss
in Eq. (2) for labeled target data and the complete loss in
Eq. (10) for unlabeled target data. Besides, we also consider
the labeled target data when computing the target-specific
centriods. As for labeling transfer, we split the unlabeled
target domain into two pieces and then add the labeled data
into the labeled split.

3.8 Network Architecture

Here we discuss some architecture choices for the neural
network model to parameterize both the feature encod-
ing module and the hypothesis. First, we need to look
back at the expected network outputs for cross-entropy
loss in Eq. (1). If ys = k, then maximizing f

(k)
s (xs) =

exp(w>
k gs(xs))∑

i exp(w
>
i gs(xs))

means minimizing the distance between
gs(xs) and wk, where wk is the k-th weight vector in the
last FC layer. Ideally, all the samples from the k-th class
would have a feature embedding near to wk. If unlabeled
target samples are given the correct pseudo labels, it is easily
understandable that source feature embeddings are similar
to target ones via the pseudo-labeling term in Eq. (7). The
intuition behind is quite similar to previous studies [37],
[92] where a simplified MMD is exploited for multi-modal
domain confusion. Since the weight norm matters in the
inner distance within the soft-max output, we adopt weight
normalization (WN) [93] to keep the norm of each weight
vector wi the same in the FC classifier layer. Besides, as
indicated in prior studies, batch normalization (BN) [94]
can reduce the internal dataset shift since different domains
share the same mean (zero) and variance which can be
considered as first-order and second-order moments. Based
on these considerations, we form the frameworks of SHOT
and SHOT++ as shown in Figs. 1∼4.

4 EXPERIMENTS

4.1 Setup

To testify their versatility, we evaluate our methods in
three unsupervised DA scenarios (i.e. closed-set, partial-set,
multi-source), and one semi-supervised DA scenario over
several popular visual benchmarks as introduced below.

Digits is a widely used DA benchmark that focuses on
digit recognition. We follow the protocol of [42] and utilize
three representative subsets: SVHN (S), MNIST (M), and
USPS (U). We train our model using the training sets of each
domain and report the recognition results on the standard
test set of the target domain.

Office [30] is a standard DA benchmark which contains
three domains, i.e., Amazon (A), DSLR (D), and Webcam
(W), and each domain includes 31 object classes in the
office environment. Gong et al. [95] further extract 10 shared
categories between Office and Caltech-256 (C) to form a new
benchmark named Office-Caltech. Both Office and Office-
Caltech are considered small-sized.

Office-Home [96] is a challenging medium-sized bench-
mark, which consists of four distinct domains, i.e., Artistic
images (Ar), Clip Art (Cl), Product images (Pr), and Real-
World images (Rw). There are totally 65 everyday object
categories in each domain.

VisDA-C [97] is a challenging large-scale benchmark
that mainly focuses on the 12-class synthesis-to-real object
recognition task. The source domain contains 152 thousand
synthetic (S) images generated by rendering 3D models
while the target domain has 55 thousand real (R) object
images sampled from Microsoft COCO.

PACS [33] is a popular benchmark for multi-source
domain adaptation. It contains four different domains, i.e.,
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Art painting (A), Cartoon (C), Photo (P), and Sketch (S).
There are totally 7 common categories in each domain.

Baseline methods. For vanilla unsupervised DA in
digit recognition, we compare SHOT with ADDA [5],
ADR [56], CDAN [42], CyCADA [8], CAT [98], SWD [99]
and STAR [100]; for object recognition, we compare
ours with DANN [24], DAN [4], SAFN [82], BSP [101],
MDD [102], TransNorm [55], DSBN [25], BNM [103] and
GVB-GD [104]. For partial-set DA tasks, we compare ours
with IWAN [105], SAN [91], ETN [106], DRCN [107],
RTNetadv [108], BA3US [109], and TSCDA [110]. For multi-
source UDA, we compare ours with DCTN [111], MCD [6],
WBN [112], M3SDA-β [18], Meta-MCD [113], SImAl [114],
and CMSS [115]. For SSDA, we mainly compare our meth-
ods with MME [32] and UODA [116]. Note that results are
directly cited from published papers if we follow the same
setting. ‘Source-model-only’ (also called ‘src-only’) denotes
using the entire model learned from the source domain
for target label prediction. ‘labeled-data-only’ denotes using
labeled target data only when learning the feature extractor
gt. ‘Target-supervised’ denotes training with the target data
itself. For datasets without train-validation splits, we divide
the target domain into three parts (0.6/0.2/0.2) as training,
validation, and testing sets. Then we train the network via
the training set and the validation set and finally report
the accuracy on the testing set. SHOT-IM is a special case
of SHOT, where both self-supervised losses are ignored by
letting γ1 = γ2 = 0 in Eq. (10).

4.2 Implementation Details

Network architecture. For the digit recognition task, we use
the same architectures with CDAN [42], namely, the classical
LeNet-5 [117] network for USPS↔MNIST and a variant of
LeNet for SVHN→MNIST. More network details can be
found in Appendix A of [23]. For the object recognition task,
we employ the pre-trained ResNet-50 or ResNet-101 [118]
models as the backbone, like [18], [42], [82], [98]. Following
[24], we replace the original FC layer with a bottleneck layer
(256 units) and a task-specific FC classifier layer in Fig. 1.
Precisely, a BN layer is put after FC inside the bottleneck
layer and a weight normalization layer is utilized in the
task-specific FC layer.

Network hyper-parameters. We train the whole network
through back-propagation, and the newly added layers
are trained with a learning rate 10 times that of the pre-
trained layers (backbone shown in Fig. 1). Concretely, we
adopt mini-batch SGD with momentum 0.9, weight decay
1e−3 and learning rate η0 = 1e−2 for the new layers
and those layers learned from scratch for all experiments
except η0 = 1e−3 for VisDA-C. We further adopt the
same learning rate scheduler η = η0 · (1 + 10 · p)−0.75 as
[24], [42], where p is the training progress changing from
0 to 1. Besides, we set the batch size to 64 for all the
tasks. We utilize γ1 = 0.3, γ2 = 0.6 for all experiments
except γ1 = 0.1, γ2 = 0.2 for Digits in Table 1 and SSDA
in Table 7. Concerning the labeling transfer strategy, only
‘source-model-only++’ for object recognition does not use
the learned source model as initialization.

For Digits, we train the best source hypothesis using the
test set of the source dataset as validation. For other datasets

TABLE 1
Classification accuracies (%) on Digits dataset for vanilla closed-set

UDA. S: SVHN, M:MNIST, U: USPS. (Best value is in red color)

Method (Source→ Target) S→M U→M M→ U Avg.

Source only [8] 67.1±0.6 69.6±3.8 82.2±0.8 73.0
ADDA [5] 76.0±1.8 90.1±0.8 89.4±0.2 85.2
ADR [56] 95.0±1.9 93.1±1.3 93.2±2.5 93.8
CyCADA [8] 90.4±0.4 96.5±0.1 95.6±0.4 94.2
CDAN [42] 89.2 98.0 95.6 94.3
rRevGrad+CAT [98] 98.8±0.0 96.0±0.9 94.0±0.7 96.3
SWD [99] 98.9±0.1 97.1±0.1 98.1±0.1 98.0
STAR [100] 98.8±0.1 97.7±0.1 97.8±0.1 98.1

Source-model-only 71.2±0.7 88.0±2.5 78.4±2.3 79.2
SHOT-IM 98.5±0.8 97.6±0.1 97.8±0.4 97.9
SHOT 99.0±0.1 97.6±0.2 97.8±0.3 98.1

Source-model-only++ 88.7±3.0 94.5±0.9 89.8±2.0 91.0
SHOT-IM++ 98.5±0.8 97.7±0.1 98.4±0.4 98.2
SHOT++ 98.9±0.1 97.8±0.1 98.4±0.1 98.4

Target-supervised 99.2±0.1 99.2±0.1 96.8±0.2 98.4

TABLE 2
Classification accuracies (%) on small-sized Office dataset for vanilla

closed-set UDA (ResNet-50).

Method (Source→Target) A→D A→W D→A D→W W→A W→D Avg.

ResNet-50 [118] 68.9 68.4 62.5 96.7 60.7 99.3 76.1
DAN [4] 78.6 80.5 63.6 97.1 62.8 99.6 80.4
DANN [24] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
SAFN+ENT [82] 90.7 90.1 73.0 98.6 70.2 99.8 87.1
rRevGrad+CAT [98] 90.8 94.4 72.2 98.0 70.2 100. 87.6
CDAN [42] 92.9 94.1 71.0 98.6 69.3 100. 87.7
DSBN+MSTN [25] 92.2 92.7 71.7 99.0 74.4 100. 88.3
CDAN+BSP [101] 93.0 93.3 73.6 98.2 72.6 100. 88.5
CDAN+BNM [103] 92.9 92.8 73.5 98.8 73.8 100. 88.6
MDD [102] 93.5 94.5 74.6 98.4 72.2 100. 88.9
CDAN+TransNorm [55] 94.0 95.7 73.4 98.7 74.2 100. 89.3
GVB-GD [104] 95.0 94.8 73.4 98.7 73.7 100. 89.3

Source-model-only 80.2 76.9 60.3 95.4 63.6 98.9 79.2
SHOT-IM 90.2 91.1 72.4 98.3 71.8 99.9 87.3
SHOT 93.9 90.1 75.3 98.7 75.0 99.9 88.8

Source-model-only++ 88.5 87.3 69.0 97.7 70.8 99.0 85.4
SHOT-IM++ 90.9 91.9 73.5 98.6 72.5 99.7 87.8
SHOT++ 94.3 90.4 76.2 98.7 75.8 99.9 89.2

Target-supervised 98.0 98.7 86.0 98.7 86.0 98.0 94.3

without train-validation splits, we randomly specify a 0.9/
0.1 split in the source dataset and generate the best source
hypothesis based on the validation split. The maximum
number of epochs for Digits, Office, Office-Home, VisDA-
C and Office-Caltech is empirically set as 30, 100, 50, 10,
and 100, respectively. For learning in the target domain, we
update the pseudo-labels epoch by epoch, and the maxi-
mum number of epochs is empirically set as 15. Regarding
the second step in Section 3.4, we adopt the same learning
setting as that of training SHOT and the default parameters
α = 0.75 within MixMatch [29]. We utilize α = 0.1 only
for Digits. Besides, we randomly run our methods for three
times with different random seeds {2019, 2020, 2021} via
PyTorch, and report the mean accuracy. Note that we do not
use any target augmentation such as the ten-crop ensemble
[42] for evaluation.
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TABLE 3
Classification accuracies (%) on medium-sized Office-Home dataset for vanilla closed-set UDA (ResNet-50).

Method (Source→Target) Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

ResNet-50 [118] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [24] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
DAN [4] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
CDAN [42] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+BSP [101] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
SAFN [82] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3
CDAN+TransNorm [55] 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
MDD [102] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
CDAN+BNM [103] 56.2 73.7 79.0 63.1 73.6 74.0 62.4 54.8 80.7 72.4 58.9 83.5 69.4
GVB-GD [104] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

Source-model-only 44.5 67.6 74.7 52.5 62.8 64.9 53.1 40.5 73.3 65.3 45.1 77.9 60.2
SHOT-IM 55.9 76.8 80.6 66.7 73.7 75.4 65.4 54.9 80.9 73.2 58.5 83.5 70.5
SHOT 57.7 79.1 81.5 67.6 77.9 77.8 68.1 55.8 82.0 72.8 59.7 84.4 72.0

Source-model-only++ 50.2 75.9 79.7 62.6 74.3 74.8 59.5 44.4 79.9 69.4 45.4 83.1 66.6
SHOT-IM++ 56.9 77.7 81.5 67.6 74.9 76.9 66.1 55.9 81.7 73.8 59.3 84.4 71.4
SHOT++ 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0

Target-supervised 77.9 91.4 84.4 74.5 91.4 84.4 74.5 77.9 84.4 74.5 77.9 91.4 82.0

TABLE 4
Classification accuracies (%) on large-scale VisDA-C dataset for vanilla closed-set UDA (ResNet-101).

Method (Synthesis→ Real) plane bcycl bus car horse knife mcycl person plant sktbrd train truck Per-class

ResNet-101 [118] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN [24] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
DAN [4] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
ADR [56] 94.2 48.5 84.0 72.9 90.1 74.2 92.6 72.5 80.8 61.8 82.2 28.8 73.5
CDAN+BSP [101] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
SAFN [82] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD [99] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
DSBN+MSTN [25] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2
DTA [57] 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5
STAR [100] 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7
CAN [46] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2

Source-model-only 64.1 24.9 53.0 66.5 67.9 9.1 84.5 21.1 62.8 29.8 83.5 9.3 48.0
SHOT-IM 93.7 86.4 78.7 50.6 91.0 93.6 79.0 78.3 89.3 85.4 88.0 51.1 80.4
SHOT 95.8 88.2 87.2 73.7 95.2 96.4 87.9 84.5 92.5 89.3 85.7 49.1 85.5

Source-model-only++ 73.0 12.9 76.1 90.3 93.7 1.5 94.9 40.9 84.6 75.1 91.2 4.9 61.6
SHOT-IM++ 96.7 87.6 89.2 71.4 96.3 98.5 91.9 79.9 95.5 86.4 93.5 32.9 85.0
SHOT++ 97.7 88.4 90.2 86.3 97.9 98.6 92.9 84.1 97.1 92.2 93.6 28.8 87.3

Target-supervised 97.0 86.6 84.3 88.7 96.3 94.4 92.0 89.4 95.5 91.8 90.7 68.7 89.6

4.3 Results of Digit Recognition (Vanilla Closed-set)

For digit recognition, we evaluate our methods on three
popular closed-set unsupervised domain adaptation tasks,
i.e., SVHN→MNIST, USPS→MNIST, and MNIST→USPS.
The classification accuracies of our methods and prior work
are reported in Table 1. Obviously, SHOT obtains the best
mean accuracy for each task and also outperforms prior
work in terms of the average accuracy. Compared with
the baseline method source-model-only, SHOT-IM always
achieves better results, and SHOT performs better than
SHOT-IM due to the contribution of self-supervised learning
in the target domain. Taking into consideration the label-
ing transfer strategy, all three methods are able to obtain
enhanced classification results, indicating the effectiveness
of intra-domain semi-supervised learning. It is also worth
noting that SHOT++ even offers superior performance to
the target-supervised result in MNIST→USPS. This may be
because MNIST is much larger than USPS, which alleviates
the domain shift well.

4.4 Results of Object Recognition (Vanilla Closed-set)

Next, we evaluate our methods on object recognition bench-
marks including Office, Office-Home and VisDA-C under
the vanilla closed-set DA setting. As shown in Table 2,
SHOT performs the best for two challenging tasks, D→A
and W→A, and obtains an average accuracy 88.8% that
is competitive to two state-of-the-art methods, MDD [102]
and BNM [103]. Similar to the observations in Table 1,
the labeling transfer strategy is beneficial to cross-domain
object recognition, and SHOT++ obtains the same mean ac-
curacy as previous state-of-the-art methods, TransNorm [55]
and GVB-GD [104]. This may be because SHOT needs a
relatively large target domain to learn the target-specific
module gt while D and W as the target domain are not big
enough. Generally, SHOT obtains competitive performance
even with no direct access to the source domain data.

As expected, on the medium-sized Office-Home dataset,
our method SHOT++ significantly outperforms previously
published state-of-the-art approaches, advancing the aver-
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TABLE 5
Classification accuracies (%) on Office-Caltech (ResNet-101) and Office-Home (ResNet-50) and PACS (ResNet-18) for multi-source UDA.

(Office-Caltech) →A →C →D →W Avg. (Office-Home) →Ar →Cl →Pr →Re Avg. (PACS) →A →C →P →S Avg.

ResNet-101 [118] 88.7 85.4 98.2 99.1 92.9 ResNet-50 [118] 65.3 49.6 79.7 75.4 67.5 ResNet-18 [118] 74.9 72.1 94.5 64.7 76.6
DAN [4] 91.6 89.2 99.1 99.5 94.8 M3SDA-β [18] 67.2 58.6 79.1 81.2 71.5 DANN [24] 81.9 77.5 91.8 74.6 81.5
DCTN [111] 92.7 90.2 99.0 99.4 95.3 Meta-DANN [113] 70.6 59.1 80.2 82.8 73.2 Meta-DANN [113] 87.3 84.9 96.9 73.2 85.6
MCD [6] 92.1 91.5 99.1 99.5 95.6 MCD [6] 69.8 59.8 80.9 82.7 73.3 Meta-MCD [113] 87.4 86.2 97.1 78.3 87.2
M3SDA-β [18] 94.5 92.2 99.2 99.5 96.4 Meta-MCD [113] 70.2 60.5 81.2 83.4 73.8 M3SDA-β [18] 89.3 89.9 97.3 76.7 88.3
CMSS [115] 96.0 93.7 99.3 99.6 97.2 SImpAl [114] 72.1 62.0 80.3 81.8 74.1 CMSS [115] 88.6 90.4 96.9 82.0 89.5

Source-model-only 95.4 93.6 98.9 98.4 96.6 Source-model-only 67.3 51.2 78.7 81.4 69.6 Source-model-only 63.6 51.7 94.4 47.4 64.3
SHOT-IM 96.3 95.5 99.6 99.8 97.8 SHOT-IM 72.1 60.3 82.4 82.9 74.4 SHOT-IM 89.6 87.9 98.6 62.5 84.7
SHOT 96.2 96.2 98.5 99.8 97.7 SHOT 73.0 60.4 83.9 83.3 75.2 SHOT 90.7 88.1 98.5 75.4 88.2

Source-only++ 96.3 95.5 99.6 99.8 97.8 Source-only++ 70.3 51.6 83.0 83.5 72.1 Source-only++ 72.1 44.1 98.1 41.5 63.9
SHOT-IM++ 96.5 96.5 99.2 99.9 98.0 SHOT-IM++ 72.3 60.4 82.5 83.2 74.6 SHOT-IM++ 91.5 89.8 98.9 64.0 86.0
SHOT++ 96.2 96.5 99.4 100. 98.0 SHOT++ 73.1 61.3 84.3 84.0 75.7 SHOT++ 92.3 89.7 98.8 75.5 89.1

Target-supervised 96.7 95.3 99.0 98.9 97.5 Target-supervised 74.5 77.9 91.4 84.4 82.0 Target-supervised 92.7 92.9 98.4 93.8 94.5

TABLE 6
Classification accuracies (%) on Office-Home and VisDA-C for partial-set UDA (ResNet-50).

Methods Office-Home (65→25) VisDA-C (12→6)

Source→Target Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg. R→S S→R Avg.

ResNet-50 [118] 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.3 64.3 45.3 54.8
IWAN [105] 53.9 54.5 78.1 61.3 48.0 63.3 54.2 52.0 81.3 76.5 56.8 82.9 63.6 71.3 48.6 60.0
SAN [91] 44.4 68.7 74.6 67.5 65.0 77.8 59.8 44.7 80.1 72.2 50.2 78.7 65.3 69.7 49.9 59.8
DRCN [107] 54.0 76.4 83.0 62.1 64.5 71.0 70.8 49.8 80.5 77.5 59.1 79.9 69.0 73.2 58.2 65.7
ETN [106] 59.2 77.0 79.5 62.9 65.7 75.0 68.3 55.4 84.4 75.7 57.7 84.5 70.5 - - -
SAFN [82] 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8 - - -
RTNetadv [108] 63.2 80.1 80.7 66.7 69.3 77.2 71.6 53.9 84.6 77.4 57.9 85.5 72.3 - - -
BA3US [109] 60.6 83.2 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0 - - -
TSCDA [110] 63.6 82.5 89.6 73.7 73.9 81.4 75.4 61.6 87.9 83.6 67.2 88.8 77.4 - - -

Source-model-only 44.9 70.5 81.0 55.4 60.2 66.2 61.5 40.3 76.5 70.6 47.8 77.2 62.7 60.9 46.6 53.8
SHOT-IM 59.1 83.9 88.5 72.7 73.5 78.4 75.9 59.9 90.3 81.3 68.6 88.7 76.7 69.2 68.8 69.0
SHOT 64.6 85.1 92.9 78.4 76.8 86.9 79.0 65.7 89.0 81.1 67.7 86.4 79.5 73.1 74.2 73.6

Source-model-only++ 50.3 77.1 86.6 66.2 67.6 75.7 69.2 46.4 83.6 76.2 51.3 82.4 69.4 67.7 65.8 66.8
SHOT-IM++ 59.6 84.5 89.0 73.7 74.2 79.3 77.0 60.7 91.0 81.8 69.4 89.3 77.5 70.0 75.7 72.9
SHOT++ 65.0 85.8 93.4 78.8 77.4 87.3 79.3 66.0 89.6 81.3 68.1 86.8 79.9 75.3 78.6 77.0

Target-supervised 81.0 91.5 85.8 80.0 91.5 85.8 80.0 81.0 85.8 80.0 81.0 91.5 84.6 98.8 89.9 94.3

age accuracy from 70.4% in GVB-GD [104] to 73.0% in
Table 3. Besides, SHOT++ performs the best among 11 out of
12 separate tasks. For the transfer task Re→Ar, SHOT++ gets
the third-best result 73.7% that is slightly lower than the best
result 74.6% of GVB-GD. Generally, the hypothesis transfer
strategy works well enough, seen from the outperforming
results of SHOT over prior methods, and the labeling trans-
fer strategy further lifts the avg. accuracy by nearly 1 point.

For the large-scale synthesis-to-real VisDA-C dataset, we
follow the protocol in prior works [56], [82] and employ
the most favoring backbone ResNet-101 [118]. As shown in
Table 4, SHOT++ achieves the best per-class accuracy and
wins among 8 out of 12 tasks. Even when ignoring the sec-
ond stage, namely, labeling transfer, SHOT can still obtain a
promising per-class result 85.5%, higher than the prior state-
of-the-art 82.7% in STAR [100]. Carefully comparing SHOT
with prior work, we find that SHOT performs well even for
the most challenging class ‘truck’. Besides, using the intra-
domain semi-supervised learning stage via MixMatch, the
per-class results are improved but the accuracy of the hard
class ‘truck’ decreases. This may be because large error in
the labeled split affects the final results.

4.5 Results of Object Recognition beyond Vanilla UDA
Results of object recognition for MSDA. For the multi-
source UDA setting, we adopt the protocol in [115] on

Office-Caltech and PACS and the prototcol in [113] on
Office-Home. For the three datasets, we specify a target
subset and use other three subsets as three source domains,
forming a multi-source UDA task. Likewise, SHOT does
not access the source data but provided with multiple
source models instead. The results of ours and previously
published state-of-the-arts are shown in Table 5. It is clear
that SHOT achieves better results than CMSS [115] or SIm-
pAl [114] in 3 out of 4 tasks on Office-Caltech, 3 of the 4
tasks on PACS, and 2 of the 4 tasks on PACS, respectively.
With the incorporation of labeling transfer, SHOT++ wins
SHOT for all these transfer tasks on the three datasets.
Besides, the gap between SHOT and SHOT-IM is relatively
small on Office-Caltech since the predictions learned by
SHOT-IM are already good enough. On PACS, SHOT++
achieves competitive performance with that in CMSS [115].

Results of object recognition for PDA. For the partial-
set UDA setting, we follow the protocol in [107] on Office-
Home and VISDA-C. In particular, there are totally 25
classes (the first 25 in the alphabetical order) out of 65
classes in the target domain for Office-Home, while the
first 6 classes in the alphabetical order out of 12 classes are
included in the target domain for VISDA-C. Results of our
methods and previous state-of-the-art PDA methods [107],
[108], [109], [110] are shown in Table 6. As explained in
Section 3.6, β = 0 is utilized in all of our methods here.
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TABLE 7
Classification accuracies (%) on Office-Home dataset for semi-supervised DA (VGG16 on one-shot setting).

SSDA (Source→Target) Ar→Cl Ar→Pr Ar→Re Cl→Ar Cl→Pr Cl→Re Pr→Ar Pr→Cl Pr→Re Re→Ar Re→Cl Re→Pr Avg.

S+T [32] 37.5 63.6 69.5 51.4 65.9 64.5 52.0 37.0 71.6 61.2 39.5 75.3 57.4
DANN [24] 44.4 64.3 68.9 52.3 65.3 64.2 51.3 45.9 72.7 62.7 52.0 75.7 60.0
PAC [90] 43.5 69.8 69.5 45.3 69.6 65.3 55.3 54.7 73.1 64.6 56.4 78.8 62.2
MME [32] 45.8 68.6 72.2 57.5 71.3 68.0 56.0 46.2 74.4 65.1 49.1 78.7 62.7
ELP [119] 46.1 69.0 72.4 57.4 71.6 68.2 56.3 46.7 75.3 65.5 49.2 79.7 63.1
UODA [116] 43.3 72.5 73.3 59.3 72.1 70.5 58.8 45.5 75.4 66.1 49.6 79.8 63.9

labeled-data-only 40.7 66.7 69.2 52.9 67.6 65.1 52.4 38.1 70.7 61.4 42.9 75.5 58.6
SHOT-IM 47.5 72.4 74.1 59.4 73.3 71.2 57.9 45.2 76.5 64.5 49.6 80.6 64.4
SHOT 49.1 73.9 74.9 59.4 75.0 72.9 58.0 47.0 77.1 65.0 50.7 80.8 65.3

labeled-data-only++ 41.8 71.7 71.9 58.2 74.3 69.9 55.9 39.2 75.0 63.7 43.8 78.9 62.0
SHOT-IM++ 48.1 73.6 75.3 60.5 74.6 72.1 58.9 45.6 76.7 64.8 50.2 81.4 65.2
SHOT++ 49.7 75.0 76.0 60.4 76.1 73.6 59.8 47.5 77.6 65.4 51.1 81.7 66.1

Target-supervised 75.8 88.3 81.6 66.4 88.3 81.6 66.4 75.8 81.6 66.4 75.8 88.3 78.0

TABLE 8
Accuracies for ImageNet→Caltech. Methods † utilize the training set

of ImageNet besides pre-trained ResNet-50 model.

Methods† DRCN [107] SAN [91] IWAN [105] ETN [106]

Accuracy 75.3 77.8 78.1 83.2 ± 0.2

Methods Source-only SHOT-IM SHOT (γ2 = 0) SHOT

Accuracy 69.7 81.8 ± 0.4 83.1 ± 0.1 83.3 ± 0.3

Compared with previous methods, SHOT obtains the best
average accuracy for both datasets as before. Besides, SHOT
again outperforms SHOT-IM by 2.8% and 4.6% in terms of
the average accuracy on two datasets, and SHOT++ further
improves the average accuracy from 79.5% to 79.9% and
73.6% to 77.0%, respectively. Generally, both the hypothe-
sis transfer strategy and the labeling transfer strategy are
proven effective for the challenging PDA problem.

Results of object recognition for SSDA. For the semi-
supervised domain adaptation setting, we follow the proto-
col in [32] on Office-Home under the one-shot setting where
one labeled example per class is available in the target do-
main. As shown in Table 7, SHOT outperforms UODA [116]
and MME [32] in 10 out of 12 tasks and achieves the
best average accuracy. Besides, SHOT is always superior
to SHOT-IM, validating the effectiveness of self-supervision
over the unlabeled target data. SHOT++ further improves
the average accuracy from 65.3% to 66.1%, indicating the
effectiveness of the labeling transfer strategy.

Special case. One may wonder whether SHOT works if
we cannot train the source model by ourselves. To find the
answer, we utilize the most popular off-the-shelf pre-trained
ImageNet models ResNet-50 [118] and consider a special
PDA task (ImageNet→Caltech) to evaluate the effectiveness
of SHOT with the same basic setting as [106]. Obviously,
in Table 8, SHOT achieves a slightly higher mean accuracy
than prior state-of-the-art ETN [106] even without access
to the source data. It shows that the proposed hypothesis
transfer strategy is indeed effective even without the design
of model network architectures.

4.6 Model Analysis and Discussions
Ablation study on different losses. Following previous
works [102], [104], we further adopt the ResNet-50 [118]

TABLE 9
Classification accuracies (%) on large-scale VisDA-C dataset for

vanilla closed-set UDA (ResNet-50).

Method Per-class Method Per-class

ResNet-50 [118] 52.4 CDAN [42] 70.0
DANN [24] 57.4 CDAN+TransNorm [55] 71.4
DAN [4] 61.6 MDD [102] 74.6
MCD [6] 69.2 GVB-GD [104] 75.3
Dis-tune [120] 70.4 DTA [57] 76.2

Source-model-only 43.5 Source-model-only++ 52.2
SHOT-IM (β = 0) 64.6 SHOT-IM++ (β = 0) 67.9
SHOT-IM 73.9 SHOT-IM++ 75.6
SHOT (γ1 = 0) 74.6 SHOT++ (γ1 = 0) 76.3
SHOT (γ2 = 0) 74.8 SHOT++ (γ2 = 0) 76.5
SHOT 76.7 SHOT++ 77.1

Target-supervised (Synthesis→ Real) 88.8

backbone to validate the effectiveness of our methods. Re-
sults are shown in Table 9. With the hypothesis transfer
strategy, SHOT beats the state-of-the-art method DTA [57]
by 0.5% in terms of per-class accuracy. Benefited from the
labeling transfer strategy, the per-class accuracy further
grows from 76.7% (SHOT) to 77.1% (SHOT++) and again
ranks the best for VisDA-C with the ResNet-50 backbone.

In Table 9, we further fix three balancing parameters (i.e.,
β, γ1, γ2) to zero in turn and investigate the effectiveness of
each component within SHOT in Eq. (10), including Ldiv ,
L1
ssl, and L2

ssl. Firstly, the advantages of SHOT-IM over
SHOT-IM (β = 0) validate the effectiveness of the diversity
term Ldiv . Incorporated with the labeling transfer strategy,
SHOT-IM++ also obtains a better per-class accuracy than
its variant SHOT-IM++ (β = 0). Secondly, SHOT (γ1 = 0)
performs worse than SHOT, indicating the effectiveness of
the self-supervised pseudo labeling term in Eq. (7). Thirdly,
SHOT (γ2 = 0) performs worse than SHOT, indicating the
effectiveness of the self-supervised rotation prediction term
in Eq. (9). Two latter conclusions can also be drawn by
comparing SHOT (γ1 = 0) and SHOT (γ2 = 0) with SHOT-
IM. Also, it seems L1

ssl contributes more than L2
ssl within

SHOT. Finally, the benefits of the labeling transfer strategy
are also easily validated by comparing the values in the
second column with those in the fourth column.
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Fig. 5. Ablation study of label smoothing (LS) and batch normaliza-
tion (BN) and weight normalization (WN) in the network for a 65-way
classification UDA task Ar→Cl on Office-Home. ‘src (val)’ denotes the
accuracy in the source validation test, and ‘src-only’ is short for source-
model-only. Best viewed in colors.

Ablation study on network components. As discussed
in Section 3.8, we utilize label smoothing (LS), batch nor-
malization (BN), and weight normalization (WN) during
training the source model and learning the target feature
encoder. We report the ablation study about network com-
ponents in Fig. 5 to validate their contribution. First, using
BN or using WN results in the decreasing accuracy over the
source training set, which may be useful for generalization
since we find in the second bin, high accuracy on the source
test set corresponds to low accuracy on the training set.
Second, LS improves accuracies of both the source training
set and the target set, which is desirable for source model
generation. Third, the higher accuracy the ‘src-only’ method
obtains, the better results SHOT and its variants achieve.
Generally, BN and WN are beneficial to domain adaptation.
The improvements brought by BN are larger than those
brought by WN.
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Fig. 6. Accuracies of different variants during training for a 65-way
classification UDA task Ar→Re on Office-Home (15 epochs).

Discussion on loss functions. To analyze the advantages
of our proposed self-supervised loss functions in Eq. (7) and
Eq. (9), we design one vanilla alternative for each function
on the transfer task Ar→Re. As shown in Fig. 6(a), the
proposed relative rotation prediction objective works better
than the vanilla variant in terms of the rotation prediction
accuracy. Besides, comparisons in terms of the semantic
accuracy in Fig. 6(b) indicate that the proposed relative
rotation prediction objective is also beneficial to UDA.
Compared with SHOT w/ vanilla pseudo-labeling, SHOT
always obtains better results along the training process,

implying the superiority of the proposed self-supervised
pseudo-labeling term.
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Fig. 7. Performance sensitivity of 3 parameters γ1, γ2, Tc within SHOT.

Parameter sensitivity. To better understand the effects of
γ1, γ2, we test their performance sensitivity in the UDA task
Ar→Cl on Office-Home and show the results in Fig. 7(a).
The accuracies around γ1 = 0.2, γ2 = 0.6 are not sensitive.
Besides, we study the sensitivity of the threshold parameter
Tc for the PDA task Ar→Cl on Office-Home in Fig. 7(b).
It shows that the accuracies around Tc = 10 are also not
sensitive. Generally, the parameters within the proposed
method i.e. SHOT are not sensitive.

Fig. 8. Images of the source domain, the low-entropy target split, and
the high-entropy target split for Ar→Cl on Office-Home (closed-set).

Qualitative Study. We randomly select some samples
in the source domain, the low-entropy target split, and the
high-entropy target split to provide some intuitive insights
about the labeling transfer strategy. Particularly, we pick
up two images from three representative classes, i.e., ‘back-
pack’, ‘bike’, and ‘bucket’, for the UDA task Ar→Cl on
Office-Home, and show them in Fig. 8. It can be seen that
the proposed strategy can well separate the easy samples
from the hard samples in the target domain. Besides, the
easy samples in the low-entropy target split are more trust-
worthy than the source samples for the hard samples in
the high-entropy target split, making the proposed labeling
transfer strategy understandable and effective.

Training stability. We investigate the accuracy and the
values of three different objective functions within the opti-
mization process in Fig. 9 on the UDA task Ar→Cl. It can be
easily seen that the values of Lim and L1

ssl quickly decrease
and converge after nearly 8 epochs. The value of rotation
prediction loss L2

ssl also keeps decreasing but at a slow
speed. As shown in Fig. 9(d), the accuracy varies following
a very similar trend, i.e. growing up quickly and starting to
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Fig. 9. Values of different loss functions and the accuracy during training for a 65-way classification UDA task Ar→Cl on Office-Home (15 epochs).

(a) Source-model-only (b) SHOT-IM (c) SHOT

Fig. 10. The t-SNE feature visualizations for a 65-way classification UDA task Ar→Cl on Office-Home. Circles in red denote unseen source data
and circles in olive denote target data. Best viewed in colors.

(a) Source-model-only (b) SHOT-IM (c) SHOT

Fig. 11. The t-SNE feature visualizations for a 65-way classification UDA task Ar→Cl on Office-Home. For a better illustration, we choose features
in the first 10 classes of each domain, and different color denotes different class. Best viewed in colors. [source in square, target in star]

converge after 6 epochs. Generally, the training procedure
of SHOT is stable and effective.

Feature visualization. We provide the t-SNE visualiza-
tions 2 of the features learned by Source-model-only, SHOT-
IM, and SHOT for the UDA task Ar→Cl on Office-Home in
Fig. 10 and Fig. 11, respectively. As expected, both SHOT-
IM and SHOT help align the target features with the source
features in Fig. 10. Carefully looking at the semantic labels
in Fig. 11, we find that SHOT outperforms SHOT-IM by
semantically aligning features from different domains.

5 CONCLUSION

In this paper, we have proposed a generic representa-
tion learning framework called source hypothesis transfer
(SHOT) for source data-absent unsupervised domain adap-
tation. SHOT merely needs the well-trained source model
and offers the feasibility of unsupervised domain adaptation
without access to the source data which may be private or

2. https://lvdmaaten.github.io/tsne/

decentralized. Specifically, SHOT learns the optimal target-
specific feature learning module to fit the source hypothesis
by exploiting information maximization and self-supervised
learning. We further present a labeling transfer strategy and
apply it to enhance SHOT to SHOT++, which exploits the
intra-domain information via a semi-supervised algorithm.
Experiments for both digit classification and object recog-
nition verify that SHOT and SHOT++ can achieve results
comparable to or even better than the state-of-the-art for
three different unsupervised domain adaptation scenarios
as well as the semi-supervised domain adaptation problem.
In the future, we plan to apply the proposed methods to
other visual tasks like semantic segmentation [43] and object
detection [12].
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