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Adversarial Domain Adaptation With
Prototype-Based Normalized Output Conditioner

Dapeng Hu , Jian Liang , Qibin Hou , Hanshu Yan , Graduate Student Member, IEEE, and Yunpeng Chen

Abstract— Domain adversarial training has become a prevail-
ing and effective paradigm for unsupervised domain adaptation
(UDA). To successfully align the multi-modal data structures
across domains, the following works exploit discriminative infor-
mation in the adversarial training process, e.g., using multiple
class-wise discriminators and involving conditional information
in the input or output of the domain discriminator. How-
ever, these methods either require non-trivial model designs
or are inefficient for UDA tasks. In this work, we attempt
to address this dilemma by devising simple and compact con-
ditional domain adversarial training methods. We first revisit
the simple concatenation conditioning strategy where features
are concatenated with output predictions as the input of the
discriminator. We find the concatenation strategy suffers from
the weak conditioning strength. We further demonstrate that
enlarging the norm of concatenated predictions can effectively
energize the conditional domain alignment. Thus we improve
concatenation conditioning by normalizing the output predictions
to have the same norm of features, and term the derived
method as Normalized OutpUt coNditioner (NOUN). However,
conditioning on raw output predictions for domain alignment,
NOUN suffers from inaccurate predictions of the target domain.
To this end, we propose to condition the cross-domain feature
alignment in the prototype space rather than in the output
space. Combining the novel prototype-based conditioning with
NOUN, we term the enhanced method as PROtotype-based
Normalized OutpUt coNditioner (PRONOUN). Experiments on
both object recognition and semantic segmentation show that
NOUN can effectively align the multi-modal structures across
domains and even outperform state-of-the-art domain adversarial
training methods. Together with prototype-based conditioning,
PRONOUN further improves the adaptation performance over
NOUN on multiple object recognition benchmarks for UDA. Code
is available at https://github.com/tim-learn/NOUN.

Index Terms— Domain adaptation, adversarial learning, pro-
totype, semantic structures, pseudo-labels.

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved impressive
success in many fields, relying on large-scale labeled

datasets. However, DNNs models have difficulty generalizing
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to new data with a large distribution shift. As a result, given an
unlabeled dataset, the typical learning paradigm of DNNs is
to perform laborious manual labeling work for the supervised
training. In contrast, unsupervised domain adaptation (UDA)
provides an efficient and effective approach to improving
the performance of DNNs on unlabeled target data. UDA
aims to leverage the knowledge of a labeled dataset (source
domain) to help train a predictive model for another unla-
beled dataset (target domain). Recently, deep UDA meth-
ods have significantly improved the performance of many
tasks, including image classification [1], [2] and semantic
segmentation [3]–[7], by exploiting supervisions from hetero-
geneous sources.

The closed-set UDA problem discussed in this paper
assumes the shared label space but different data distributions
across two domains. Previous methods exploit maximum mean
discrepancy (MMD) [1], [8] or other distribution statistics like
central moments [9]–[11] for domain adaptation. Recently,
adversarial learning [12] provides a promising alternative
solution by introducing an extra binary domain discriminator.
The task model in domain adversarial training aims to learn
domain-invariant features through promoting domain confu-
sion. However, the confusion of the discriminator does not
always guarantee the discriminative alignment of multi-class
distributions between domains. The probable case is that the
multi-modal structures are misaligned between the source and
target domains.

Following adversarial methods [13]–[17] are proposed to
pursue discriminative domain alignment. However, concern-
ing these methods, [13], [15]–[17] require complex designs
on either model architecture or objective function, and [14]
involves the inefficient Cartesian product between features
and predictions. In contrast, in this work, we pursue simple
and compact conditional domain adversarial training methods.
We first revisit a simple conditional domain adversarial train-
ing strategy, i.e., the concatenation conditioning strategy [14],
where cross-domain feature alignment is conditioned on output
predictions by concatenating features with the output of the
model. As demonstrated in [14], the concatenation condition-
ing strategy is heavily inferior to the informative multi-linear
conditioning strategy. Similarly, we also have such a consistent
observation across various object recognition UDA tasks.

[14] ascribes the failure of the naive concatenation condi-
tioning to the independence between the concatenated features
and predictions. Instead, we argue that the failure is because
the weak conditioning strength renders conditional domain
alignment ineffective. We observe that the Euclidean norm of
the feature is usually tens of times that of the concatenated
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output prediction. The effect is that the contribution of con-
catenated predictions to the domain confusion objective is
heavily ignored. Thus the discriminator would be dominantly
optimized with the domain confusion loss between marginal
features of two domains, making the conditional domain
adversarial training ineffective. As expected, we observe obvi-
ous performance improvement over the naive concatenation
conditioning by enlarging the norm of concatenated output
predictions. Though effective, there is no guarantee to find
a suitable range for the norm of conditioned output. Instead
of directly tuning the norm of output, we first normalize the
output predictions to have the same norm of features. We then
tune the norm of the normalized output with a norm control
factor if necessary. This method is called Normalized OutpUt
coNditioner (NOUN).

Similar to previous conditional methods [13], [14], [16],
[18], NOUN applies raw output predictions for the condi-
tional feature alignment across domains. However, due to the
domain shift, target predictions generated by the source-trained
classifier may be inaccurate, leading to possible misalignment
between multi-modal structures across domains. We thus pro-
pose to condition the domain alignment in the prototype space
rather than in the prediction space. Specifically, we leverage
accurate source prototypes to project predictions into the
same prototype space. The projected outputs are discrimi-
native, simultaneously considering network predictions and
semantic structures shared across domains. Incorporating the
structure-aware conditioning into NOUN, we derive a simple
yet strong UDA method called PROtotype-based Normalized
OutpUt coNditioner (PRONOUN).

Experimental results on both object recognition and seman-
tic segmentation tasks demonstrate the advantages of the
proposed methods over previous state-of-the-arts [5], [6], [13],
[14], [19] of domain adversarial training methods. The main
contributions of this work are summarized as follows:

• We revisit the concatenation conditioning strategy for
conditional domain alignment and provide a novel expla-
nation to its previous failure in [14], i.e., the smaller norm
of conditioned output predictions.

• We propose a novel and effective conditional domain
adversarial training method NOUN. NOUN enlarges the
norm of conditioned output by normalizing the output to
have the same norm with features and involving an extra
norm control factor for better flexibility.

• To deal with the possible misalignment due to inac-
curate pseudo-labels, we further propose a novel
prototype-based conditioning strategy and combine it
with NOUN to be a strong UDA method called PRO-
NOUN.

• Both NOUN and PRONOUN are simple and compact.
The effectiveness of our methods is further validated
on multiple cross-domain object recognition benchmarks.
In addition, NOUN is shown to be generic and competi-
tive for synthetic-to-real semantic segmentation tasks.

The rest of this paper is organized as follows. In Section II,
we review related domain adaptation works. In Section III,
we first introduce the settings of UDA and the vanilla

domain adversarial training solution [20]. Then we revisit the
naive concatenation conditioning strategy and explain why it
fails in conditional domain alignment. Finally, we introduce
NOUN and PRONOUN. In Section IV, we conduct extensive
experiments on cross-domain object recognition benchmarks
and synthetic-to-real semantic segmentation benchmarks to
evaluate NOUN and PRONOUN. Besides, we provide exten-
sive ablations and analyses on our methods. In Section V,
we briefly summarize our work and discuss the future work.

II. RELATED WORK

A. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) is first modeled as
the covariate shift problem [22] where different domains have
different marginal distributions but identical conditional distri-
butions. At early times, researchers address UDA by instance
re-weighting [23], [24], feature space alignment [25]–[27] or
domain-invariant feature transformation [28]–[31]. In the past
years, various deep UDA works [1], [4], [14], [20], [32],
[33] have been developed and have significantly boosted the
UDA performance in visual tasks. Generally, they can be
classified into discrepancy-based methods and adversary-based
methods. Discrepancy-based methods address the dataset shift
by mitigating specific discrepancies defined on different layers
of a shared model between domains, e.g., [1], [34], [35]
adopt MMD measure and [10], [11] leverage central moments.
Recently, adversarial learning [12] has become an increasingly
popular solution to domain adaptation problems. It aims to
learn domain-invariant features by introducing an extra domain
discriminator to promote domain confusion. [20] optimizes
a minimax objective via inserting a gradient reversal layer
between the classification network and the discriminator. Dif-
ferently, [32] adopts two independent optimization objectives
with inverted labels following GAN [12].

B. Pseudo-Labeling

UDA can be also regarded as a semi-supervised learn-
ing (SSL) problem where unlabeled data from the same
domain are replaced by data from another target domain. As a
simple yet effective technique for SSL, pseudo-labeling [36]
has been widely used in UDA methods. For example, [2], [37],
[38] exploit intermediate pseudo-labels with tri-training and
self-training, respectively. Recently, curriculum learning [39],
self-paced learning [40] and re-weighting schemes [14], [41]
are further leveraged to protect the domain adaptation from
inaccurate pseudo-labels.

C. Conditional Domain Adaptation

Apart from being explicitly used to re-train the clas-
sification network, pseudo-labels can also be exploited to
enhance the feature-level domain alignment. [29], [42] show
that pseudo-labels can help mitigate the joint distribution
discrepancy via minimizing multiple class-wise MMD mea-
sures. [35] proposes to align joint distributions of multiple
domain-specific layers across domains based on a joint MMD
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TABLE I

COMPARISON BETWEEN RELATED CONDITIONAL DOMAIN ADVERSARIAL TRAINING METHODS AND OUR METHODS, I.E., NOUN AND PRONOUN,
WHERE DANN [20], [21] IS AS A COMMON BASELINE. D MEANS THE DOMAIN CLASSIFIER, I.E., THE DISCRIMINATOR. WE DENOTE

THE FEATURE DIMENSION AS d AND THE CLASS NUMBER AS c. IN THE FIRST COLUMN, ‘INPUT DIMENSION OF D’: THE INPUT

FEATURE DIMENSION OF THE DISCRIMINATOR; ‘OUTPUT DIMENSION OF D’: THE OUTPUT PREDICTION DIMENSION OF THE

DISCRIMINATOR; ‘NUMBER OF D’: THE NUMBER OF DISCRIMINATORS INVOLVED IN THE METHOD; “SENSITIVITY TO
PSEUDO-LABELS”: THE SENSITIVITY OF THE METHOD TO PSEUDO-LABELS. WE CLASSIFY THIS SENSITIVITY INTO

THREE DEGREES: LOW, MEDIUM, AND HIGH. METHODS NOT USING PSEUDO LABELS ARE CLASSIFIED

AS THE ‘LOW’ SENSITIVITY. METHODS WITH ‘HIGH’ SENSITIVITY DIRECTLY RELY ON PSEUDO LABELS
TO PERFORM CLASS-WISE FEATURE ALIGNMENT ACROSS DOMAINS. METHODS WITH THE ‘MEDIUM’

SENSITIVITY IMPLICITLY LEVERAGE PSEUDO LABELS FOR CONDITIONAL DOMAIN ALIGNMENT

criterion. Recent methods resort to conditional domain adver-
sarial training for better alignment of multi-modal structures
across domains. [13], [18] leverage pseudo-labels and mul-
tiple class-wise domain discriminators to enable fine-grained
alignment between domains. In contrast, [14] conditions the
adversarial domain alignment on discriminative information
via the outer product between features and predictions. [15],
[16] introduce a classification-aware domain discriminator.
Especially, [16] imposes the fine-grained adversarial loss with
pseudo-labels and [15] performs the adversarial training asym-
metrically between semantic labels and the domain labels. Dif-
ferent from [15], [17] replaces the original discriminator with a
domain-aware classifier and achieves the asymmetrical adver-
sarial training within the exact classifier. [43] improves [17]
by introducing discriminative interaction between domain pre-
dictions and semantic predictions.

Concerning the above works, the conditional domain adver-
sarial training methods [13]–[18], [20] are the most related
to ours. We thus compare NOUN and PRONOUN with
these works in Table I in terms of the implementation of
the discriminator and the sensitivity to pseudo-labels. The
comparison shows that NOUN and PRONOUN are compact,
easy to implement, and reliable conditional domain adversarial
training methods.

III. METHOD

In this section, we begin with the basic settings of UDA as
well as the introduction of domain adversarial training [20].
Then we revisit a naive conditional domain adversarial training
method, i.e., the concatenation conditioning strategy men-
tioned in [14] and analyze its failure in domain alignment
with multi-modal structures. We then propose NOUN, a sim-
ple yet effective concatenation conditioning method. Finally,
we propose a novel prototype-based conditioning strategy to
mitigate the misalignment induced by inaccurate predictions.

A. Preliminaries

In a vanilla UDA task, we are given label-rich source
domain data {(x i

s, yi
s)}ns

i=1 sampled from the joint distribution
Ps(xs, ys ) and unlabeled target domain data {x i

t }nt
i=1 sampled

from the joint distribution Qt (xt , yt ), where x i
s ∈ XS and

yi
s ∈ YS denote an image and its corresponding label from the

source domain dataset and x i
t ∈ XT denotes an image from

the target domain dataset and Ps �= Qt . The goal of UDA is to
learn a discriminative model from XS , YS , and XT to predict
labels for unlabeled target samples XT .

Domain adversarial training methods aim to reduce the
domain discrepancy through learning domain-invariant fea-
tures. Then the discriminative classifier trained by source
labeled data can be freely applied to target unlabeled data.
A prevailing domain adversarial training framework proposed
in [20], [21] consists of a feature extractor network G,
a classifier network F , and a discriminator network D. Given
an image x, we denote the feature vector extracted by G as
f = G(x) ∈ R

d and the probability prediction obtained by F
as p = F( f ) ∈ R

c, where d means the feature dimension and
c means the number of classes. The vanilla domain adversarial
training method dubbed DANN in [20], [21] can be formulated
as optimizing the following minimax problem:

min
G,F

max
D

Ly(G, F) − λadvLdann(G, D), (1)

Ldann(G, D) = −Ex i
s∼Ps

log[D( f i
s )]

− E
x j

t ∼Qt
log[1 − D( f j

t )], (2)

Ly(G, F) = −E(x i
s ,yi

s)∼Ps
yi

s
T

log( pi
s), pi

s = F(G(x i
s)),

(3)

where the binary classifier D : R
d → [0, 1] predicts

the domain assignment probability for the input features f ,
Ly(G, F) is the cross-entropy loss of labeled source data as
for the classification task, and λadv is the coefficient for the
adversarial loss.

B. Why Does the Naive Concatenation Conditioning Strategy
Fail?

DANN does not explicitly consider discriminative informa-
tion in cross-domain feature alignment. Therefore, it cannot
guarantee the effective alignment of domains with multi-modal
structures, even if the domain discriminator is fully confused.
Motivated by conditional GANs [14], [44], [45] proposes to
leverage the discriminative network prediction p for condi-
tional domain adversarial training. A simple baseline condi-
tioning strategy named DANN-[f, p] in [14] is to condition
the cross-domain feature alignment on network predictions by
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Fig. 1. Results for a 65-way classification UDA task Ar→Cl on Office-Home.
‘k’ is the norm control factor to enlarge the norm of conditioned output.
‘Src-only’ means using the source-trained model without domain adaptation.
(a) illustrates how the norm of the conditioned output affects the adaptation
performance of the concatenation conditioning method. (b) shows the ratio
between the Euclidean norm of two concatenated parts during the training.

directly concatenating features with predictions, i.e., f ⊕ p.
Therefore, the adversarial loss of this naive concatenation
conditioning method, i.e., DANN-[f, p], can be formulated as
the following:
Ldann− f p(G, D) = −Ex i

s∼Ps
log[D( f i

s ⊕ pi
s)]

− E
x j

t ∼Qt
log[1 − D( f j

t ⊕ p j
t )]. (4)

Compared with the adversarial loss of DANN in Eq. (2), the
concatenation operation f ⊕ p explicitly considers discrimi-
native predictions for conditional feature alignment between
domains. However, the naive concatenation conditioning strat-
egy is demonstrated to be unsuccessful for cross-domain align-
ment with multi-modal structures in [14]. Furthermore, [14]
accounts the failure of the naive concatenation conditioning
for the independence between f and p in f ⊕ p. A similar
observation for DANN-[f, p] in our experiments is shown in
Fig. 1(a) when the norm control factor k is set as 1, i.e.,
DANN-[f, p] does not outperform DANN.

However, experiments in Fig. 1(a) show that if we simply
introduce a norm control factor k to re-weight the network
prediction for the concatenation conditioning, the adaptation
performance would vary a lot with different k. Since this
re-weighting operation only changes the norm of the con-
catenated prediction p, it is natural to take a closer look at
the norm of the two concatenated parts during the model
training. We illustrate the norm ratio between f and p in
Fig. 1(b) for the naive concatenation conditioning (k equals to
1) and the effective re-weighted concatenation conditioning
case (k equals to 32). It is noteworthy that for the naive
concatenation strategy, the norm ratio keeps more than 50.
While for the re-weighted concatenation strategy, the norm
ratio keeps small and close to 1. In addition, as shown
in Fig. 1(a), re-weighted with moderate norm factors, the
concatenation conditioning can outperform the informative
multi-linear conditioning strategy implemented via the outer
product between f and p [14].

The above observations inspire us to rethink the reason for
the failure of the naive concatenation conditioning strategy.
To figure out how the norm control factor ‘k’ affects the
conditional domain adversarial training, we take a closer look
at the optimization process. For concatenation conditioning
strategy, denote the output dimension of the first layer of
D by de and the weight of the first layer of D by W1 =
W f ⊕ Wg , where W f ∈ R

d×de accepts the input feature f

Fig. 2. How does the norm of the conditioned output affect the optimization
of D? |∇W f Ladv | denotes the absolute value of the mean of gradient matrix
of W f , i.e., ∇W f Ladv . |∇W f Ladv / ∇WpLadv | thus measures the ratio
between gradient of W f and gradient of Wp.

and Wp ∈ R
c×de accepts the conditioned output p. Taking

f ⊕ k p as the input of D and Ladv as the adversarial loss,
we compare the gradients from domain confusion loss to W f

and Wg under different k values in Fig. 2. We analyze the
concatenation conditioning with different k values according
to the performance in Fig. 1(a) and the optimization process
in Fig. 2. For naive concatenation conditioning (k = 1), the
gradient of W f is tens of times that of Wp . The marginal
features f dominate the optimization of D, and conditioned
output predictions p are ignored, making the conditional
adversarial learning degenerate to the ‘DANN’ case.

While for conditioning with extremely large output norm
(k = 210), the conditioned output predictions p dominate
the discriminator optimization, and features v f are ignored,
making the conditional adversarial learning degenerate to the
‘Src-only’ case. Conditioning is beneficial for the domain
adaptation only when the norm of conditioned output is
moderate, e.g., k = 25.

To sum up, the success of re-weighted concatenation con-
ditioning indicates that conditioning on the stop-gradient
concatenated predictions, the discriminator can capture the
multi-modal structures for effective conditional domain align-
ment. Therefore, it seems that the independence between f
and p in the concatenation strategy is not the main obstacle
blocking effective conditioning. Instead, the devil is in the
norm of the concatenated prediction. In fact, since p means
the probability predictions for c categories, the Euclidean norm
of p is between 1

c and 1. In contrast, the feature f is usually
a high-dimension vector. The feature norm of f is probably
tens of times that of p. The effect of this overwhelming norm
ratio between f and p is that the domain confusion objective
neglects the concatenated prediction, leading to ineffective
conditioning. We argue this is the main reason for the failure
of the naive concatenation conditioning strategy.

C. Normalized OutpUt coNditioner (NOUN)

Since the norm of features varies a lot for different tasks,
it is non-trivial to find suitable k for a given UDA task,
as shown in Fig. 1 (a). Besides, Fig. 1 (b) shows that the
norm ratio between two concatenated parts plays an important
role in effective conditional feature alignment across domains.
Therefore, we normalize p to have the same Euclidean norm
of f using Eq. (5). To keep flexible, we retain k as an extra
norm control factor. Then k would represent the norm ratio
between f and p. Therefore, it will be friendly to decide the
value of k within a normal range for different UDA tasks.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 02,2023 at 05:34:53 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: ADVERSARIAL DOMAIN ADAPTATION WITH PROTOTYPE-BASED NORMALIZED OUTPUT CONDITIONER 9363

Fig. 3. The framework of PRONOUN. PRONOUN conditions the cross-domain feature alignment on semantic structure-aware predictions via the concatenation
conditioning. Note that concatenated output predictions are detached without gradient from the binary discriminator D and the global prototypes M are collected
from source domain by Eq. (7) and Eq. (8).

In this way, we obtain an effective concatenation conditioning
method called Normalized OutpUt coNditioner (NOUN). The
adversarial loss of NOUN is formulated as:

p̂a = ‖ fa‖2

‖ pa‖2
pa, a ∈ {s, t}, (5)

Lnoun(G, D) = −Ex i
s∼Ps

log[D( f i
s ⊕ k p̂i

s)]
− E

x j
t ∼Qt

log[1 − D( f j
t ⊕ k p̂i

t )], (6)

where k is a norm control factor and the default value is 1.

D. PROtotype-Based Normalized OutpUt coNditioner
(PRONOUN)

Effective conditioning on network output is supposed to
achieve more discriminative domain alignment than marginal
domain feature alignment. However, output predictions of
target data are probably inaccurate due to the domain shift.
As a result, conditioning the cross-domain feature alignment
directly on pseudo-labels may damage the domain adaptation
performance. [14] thus proposes the entropy conditioning
strategy where entropy is leveraged to explicitly distinguish
out easy-to-transfer samples towards safe adaptation. Differ-
ently, we propose to alleviate the misalignment of multi-modal
structures between domains from the perspective of the con-
ditioning space.

In UDA, a model is trained with labeled source data,
making source predictions nearly one-hot vectors. For better
illustration, we consider using one-hot target predictions for
the conditional domain alignment. Though discriminative, the
multiple modes embedded in the output space are generally
independent and orthogonal to each other. If conditioning
in the output space, concatenated output predictions would
directly dominate the domain alignment. Guided by inaccurate
pseudo-labels, the cross-domain alignment would be mislead-
ing. Note target predictions contain both uncertain predictions
and certain but inaccurate ones. The entropy conditioning [14]
thus cannot fully mitigate the misalignment. Specifically,
imposing domain alignment with confident instances of two

different categories would heavily damage the feature learning
in the target domain. Even if the leveraged target predictions
are soft probabilities, the output space only encodes implicit
and faint information of semantic structures, which helps little
in mitigating the misalignment induced by inaccurate pseudo
labels.

Therefore, we propose to condition the domain alignment
on prototypes, which explicitly encode semantic structures.
Semantic correlations embedded in the semantic structures
are promising to alleviate the misalignment induced by inac-
curate conditioned outputs. We represent the domain-shared
semantic structures with source global prototypes. Specifically,
we update global prototypes in training by the exponential
moving average strategy (ema) over the batch-level prototypes.
We formulate the process of obtaining reliable prototypes as
follows:

Mbatch = [m1 · · · me · · · mc], me =
∑b

i �(ys
i = e) f i

s∑b
i �(ys

i = e)
, (7)

M = λema M + (1 − λema)Mbatch, (8)

where Mbatch ∈ R
d×c denotes batch-level prototypes, me ∈

R
d denotes the prototype of class e, λema ∈ [0, 1) is a

coefficient and M ∈ R
d×c denotes global prototypes.

Taking source prototypes as the basis and projecting output
predictions into the same prototype feature space, we would
obtain discriminative yet semantic structure-aware predic-
tions for conditioning. Seamlessly combining NOUN with
prototype-based conditioning, we obtain the PROtotype-based
Normalized OutpUt coNditioner (PRONOUN). The domain
adversarial training objective of PRONOUN is shown as
below:
Lpronoun(G, D) = −Ex i

s∼Ps
log[D( f i

s ⊕ k p̂i
s MT )]

− E
x j

t ∼Qt
log[1 − D( f j

t ⊕ k p̂i
t MT )]. (9)

Fig. 3 illustrates the framework of PRONOUN. Without
complicated network designs or complex optimization objec-
tives, both NOUN and PRONOUN are simple and compact
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solutions to cross-domain feature alignment with multi-modal
structures.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
NOUN and PRONOUN. We start with experimental settings,
including benchmarks, implementation details, and compared
methods. Then we compare our solutions with related works
on various UDA benchmarks. At last, we provide detailed
analyses on our solutions, including ablation study, compat-
ibility with self-training, stability of training, the sensitivity of
hyper-parameters, and qualitative visualizations in the feature
space or output space.

A. Experimental Setup

We conduct experiments to verify the effectiveness
of NOUN and PRONOUN on cross-domain object
recognition benchmarks including Office-Home [52],
VisDA2017 [53], Office31 [54] and ImageCLEF-DA.1

Besides, we validate the generalization of our methods on
synthetic-to-real semantic segmentation benchmarks including
GTA5 [55]→Cityscapes [56] and Synthia [57]→ Cityscapes.

1) Datasets: Office-Home is a new challenging dataset
that consists of 65 different object categories found typi-
cally in 4 different Office and Home settings, i.e., Artistic
(Ar) images, Clip Art (Ca), Product images (Pr) and Real-
World (Re) images. VisDA2017 is a challenging large-scale
benchmark aimed at the synthetic-to-real object recognition
task across 12 categories. The source domain consists of
152k synthetic images generated by rendering 3D models.
The target domain contains 55k realistic images gathered
from Microsoft COCO [58]. Office31 is a popular dataset
that includes 31 object categories taken from 3 domains, i.e.,
Amazon (A), DSLR (D) and Webcam (W). ImageCLEF-DA
is a dataset built for the ‘ImageCLEF2014:domain-adaptation’
competition. We follow [1] to select 3 subsets, i.e., C, I and
P, which share 12 common object classes.

Cityscapes is a realistic dataset of pixel-level annotated
urban street scenes. We use its original training split and
validation split as training target data and testing target
data, respectively. GTA5 consists of 24,966 densely labeled
synthetic road scenes annotated with the same 19 classes
as Cityscapes. For Synthia, we take the SYNTHIA-RAND-
CITYSCAPES set as the source domain, which contains 9,400
synthetic images compatible with 16 annotated classes of
Cityscapes [59].

2) Implementation Details: For object recognition, we fol-
low the standard protocol [20], i.e., using all labeled source
instances and all unlabeled target instances for UDA, and
report the average accuracy based on results of three random
trials for fair comparisons. Following [14], we experiment with
ResNet-50 model pre-trained on ImageNet for all datasets
excluding VisDA2017 where we use ResNet-101 model to
compare with other works. We follow [14] to choose the
network parameters. The whole model is trained through

1https://www.imageclef.org/2014/adaptation

back-propagation, and λadv increases from 0 to 1 with the
same strategy as [20]. Regarding the domain discriminator,
we design a simple classifier with only one ReLU [60] layer
and two linear layers (256→1024→1). Empirically, we fix the
batch size to 36 with the initial learning rate as 1e-4.

For semantic segmentation, we adopt DeepLab-V2 [61]
based on ResNet-101 [46] as done in [4], [6], [19], [62].
Following DCGAN [63], the discriminator network consists of
one LeakyReLU layer [64] with the slope of 0.2 and two 4×4
convolutional layers with stride 2 (512→512→1). In training,
we use SGD [65] to optimize the network with momentum
(0.9), weight decay (5e-4) and initial learning rate (2.5e-4).
We use the same learning rate policy as in [61]. Discriminators
are optimized by Adam [66] with momentum (β1 = 0.9,
β2 = 0.99), initial learning rate (1e-4) along with the same
decreasing strategy as above. λadv is set to 1e-3 following [4].

All experiments are implemented via PyTorch on a single
12GB GPU. The total iteration number is set as 10k for
object recognition and 100k for semantic segmentation. The
momentum value λema is set to 0.5 for all tasks without
parameter selection. The norm control factor k is determined
by reverse validation [20] and is set to 3 in PRONOUN for
all tasks. Similar to the entropy-based criterion in [67], the
adapted model producing target predictions with the minimum
mean entropy is selected for testing in the target domain. Data
augmentation skills like random scale or ten-crop ensemble
evaluation are not adopted.

3) Baseline Methods: The general comparisons between our
NOUN as well as PRONOUN and other conditional domain
adversarial training methods are shown in Table I.

For cross-domain object recognition tasks, we compare our
methods with DANN [20], DANN-[f, p] [14], MADA [13],
CDAN [14], IDDA [15], RCA [16], DANN-CA [17] and
CDAN + E [14]. Note that we re-implement these most related
methods using the same training protocol including batch
size and training iterations. As for other hyper-parameters
including learning rate and optimizer setting, we strictly follow
the released code by authors or the implementation details
in original papers. For fair comparisons, we report both
results in original papers if any, and the accuracy of our
re-implementation. Besides, we also compare with the state-
of-the-art works including SAFN [48], SWD [51], ADR [49],
DWC-MEC [47], BSP [50], CAT [68] and iCAN [69].
Our reported ‘source-model-only’ means training a model
on source data with only the supervised loss in Eq. (3)
while using the same training protocol and architecture.
In this way, we can make fair comparisons among different
methods.

For synthetic-to-real semantic segmentation tasks, we com-
pare our methods with domain adversarial training methods
including AdaptSeg [4], SIBAN [5], AdvEnt [62], CLAN [6],
AdaptPatch [19] and another generic UDA method SWD [51].
‘NonAdapt’ shares the similar meaning with ‘source-model-
only’ in object recognition benchmarks.

By default, NOUN introduces no hyper-parameter by setting
the k in Eq. (6) as 1. For results reported in Table II–Table VII,
we report results from original papers in the top rows, the
re-implementation results of related methods using the same
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TABLE II

RECOGNITION ACCURACIES (%) ON Office-Home VIA RESNET-50. BOLD: BEST

TABLE III

ACCURACIES (%) ON VisDA2017 VIA RESNET-101

protocol in the middle rows, and results of our methods in the
bottom rows.

B. Results on Object Recognition Benchmarks

For cross-domain object recognition, we evaluate our
methods on benchmarks including Office-Home, VisDA2017,
Office31, and ImageCLEF-DA.

1) Office-Home: The results of the challenging 65-way
classification benchmark Office-Home are reported in Table II.
All of the compared conditional domain adversarial train-
ing methods beat DANN in terms of the average accuracy,

which verifies the effectiveness of conditional feature align-
ment for domains with multi-modal structures. Among these
re-implemented methods, CDAN [14] models perform the best
and achieve markedly higher average accuracy than results
in original papers, i.e., 63.8% → 65.5% for CDAN and
65.8% → 68.7% for CDAN + E. The naive concatenation
conditioning strategy DANN-[f, p] brings minor improvement
of the average accuracy (0.6%) over DANN. While NOUN
brings a 4.1% absolute increase of the average accuracy
over DANN[f, p] and even outperforms the more informa-
tive multi-linear conditioning method CDAN. Suffering from
inaccurate pseudo-labels, NOUN still falls behind CDAN + E.
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TABLE IV

ACCURACIES (%) ON Office31 VIA RESNET-50

While conditioning on the semantic structure-aware predic-
tions, PRONOUN outperforms CDAN + E for all of the 12
transfer tasks and improves the average accuracy over NOUN
by 4%.

2) VisDA2017: The results of the large-scale benchmark
VisDA2017 are reported in Table III. DANN-[f, p] achieves
almost the same per-class accuracy as DANN, while CDAN
models still outperform other compared domain adversarial
training methods. NOUN significantly improves the per-class
accuracy by 6.7% over DANN-[f, p], comparable with
CDAN + E. Both NOUN and CDANE outperform all other
comparison methods. PRONOUN notably improves NOUN
and achieves the best per-class accuracy among all domain
adversarial training methods.

3) Office31: The results of the standard benchmark Office31
are reported in Table IV. DANN-[f, p] improves marginally
over DANN. Though CDAN + E outperforms comparison
methods markedly, CDAN proves slightly inferior to MADA.
The observation is reasonable because tasks in Office31
such as A→D and A→W are easy and can provide more
accurate pseudo-labels, which prioritizes methods involv-
ing explicit class-wise cross-domain feature alignment like
MADA. Comparable with CDAN + E, NOUN improves the
average accuracy by 4.2% over DANN-[f, p]. PRONOUN
brings handsome improvement over NOUN on four main
transfer tasks, including A→D, A→W, D→A, and W→A,
and outperforms CDAN + E.

4) ImageCLEF-DA: We report results of the easy bench-
mark ImageCLEF-DA with equal domain size and balanced
classes in Table V. Domains of ImageCLEF-DA are more
visually similar than those of the above benchmarks. Thus
the average accuracy of the source-trained model is higher,
and various comparison methods exhibit generally comparable

TABLE V

ACCURACIES (%) ON ImageCLEF-DA VIA RESNET-50

performance. Specifically, DANN-[f, p] shows few improve-
ments over DANN. Beyond the observation on Office31,
MADA is shown to be comparable with CDAN + E and
outperforms CDAN. While NOUN slightly beats CDAN + E
and PRONOUN further improves the average accuracy over
NOUN.

Across the above results on four different cross-domain
object recognition benchmarks, there are two consistent obser-
vations about our methods. The first one is that NOUN
always brings a significant improvement over DANN-[f, p] and
NOUN beats all of the other domain adversarial training meth-
ods compared in Table I. This observation strongly demon-
strates the effectiveness of NOUN. It also indicates that the
failure of the naive concatenation conditioning method mainly
lies in the weak conditioning strength, since NOUN only
normalizes the norm of concatenated output in DANN-[f, p]
with the norm of the feature. The second consistent observa-
tion is that PRONOUN always further improves NOUN and
outperforms all of the compared baselines, which verifies the
superiority of our prototype-based conditioning strategy.

C. Results on Semantic Segmentation Benchmarks

NOUN can be seamlessly extended to tasks with dense
prediction. As for PRONOUN, we obtain prototypes by simply
averaging features of corresponding pixels. We evaluate both
methods on synthetic-to-real semantic segmentation bench-
marks. Following the VisDA challenge [53], we adopt the
mean intersection-over-union (mIoU) as the evaluation metric.
The results of GTA5→Cityscapes are reported in Table VI and
the results of Synthia→Cityscapes are reported in Table VII.
For both tasks, NOUN outperforms all of the compared
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TABLE VI

COMPARISON RESULTS OF GTA5 [55]→Cityscapes [56] SEMANTIC SEGMENTATION USING RESNET-101 AS THE BACKBONE

TABLE VII

COMPARISON RESULTS OF Synthia [57]→Cityscapes SEMANTIC SEGMENTATION USING RESNET-101 AS THE BACKBONE. MIOU* DENOTES THE MEAN
IOU OF 16 CLASSES, INCLUDING THE CLASSES WITH *

domain adversarial training methods, including those specially
designed for semantic segmentation, which verifies the gener-
alization and effectiveness of NOUN. Inconsistent with obser-
vations in cross-domain object recognition tasks, PRONOUN
does not further improve NOUN on both synthetic-to-real
semantic segmentation tasks. A possible reason is that the
estimated prototypes in semantic segmentation are inaccurate.
Even so, PRONOUN achieves the second-best results on both
segmentation benchmarks.

D. Model Analysis and Discussions

1) Ablation Study: The benefit of enlarging the norm
of concatenated predictions introduced in NOUN has been
demonstrated by comparing DANN-[f, p] and NOUN. To val-
idate the effectiveness of the prototype-based conditioning in
PRONOUN, we further conduct ablation on the four classifi-
cation benchmarks and show the respective average accuracy
in Table VIII. ‘NOUN + E’ means combining the entropy
conditioning [14] with NOUN. Increasing the norm control
factor k from 1 to 3, NOUN models show notable performance
drop on Office-Home and Office31, while both NOUN + E and
PRONOUN models achieve performance improvement on all
benchmarks. This comparison indicates that NOUN suffers
from inaccurate predictions with too strong conditioning.

TABLE VIII

ABLATION STUDY: THE AVERAGE ACCURACY (%) OF DIFFERENT VARI-
ANTS OF NOUN ON OBJECT RECOGNITION BENCHMARKS

Both the entropy conditioning [14] and our prototype-based
conditioning are able to alleviate the misalignment induced by
inaccurate predictions. In addition, the consistent improvement
of NOUN + E and PRONOUN by simply increasing the
norm control factor k, in turn, demonstrates that a larger norm
of concatenated predictions can contribute to more effective
conditional domain alignment. With stronger conditioning,
i.e., k = 3, PRONOUN evidently surpasses the competitive
counterpart of NOUN + E on all benchmarks, which explicitly
verifies the superiority of our prototype-based conditioning.

2) Training Stability: We investigate the convergence of
our methods by testing the model every 50 iterations during
the training and illustrate the empirical accuracy curves of
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Fig. 4. Further analysis of NOUN and PRONOUN on the task Ar→Cl on office-home.

Fig. 5. t-SNE [70] embedding visualizations of UDA methods for the A→D task on Office31. In the upper row, colors denote different domains (red: source,
blue: target). In the bottom row, colors denote different classes, and shapes denote the domain information (source in ◦ and target in �).

Ar→Cl on Office-Home in Fig. 4(a). It is obvious that for
both NOUN and PRONOUN, the model training is stable and
finally converges.

3) Parameter Sensitivity: The introduced hyper-parameters
are k for both NOUN and PRONOUN and λema only for
PRONOUN. We find NOUN generally performs well with k
of 1, i.e., NOUN can work without extra hyper-parameters.
Thus we mainly investigate the sensitivity of k and λema for
PRONOUN on the UDA task Ar→Cl on Office-Home and
show results in Fig. 4(b) and Fig. 4(c), respectively. For k,
we observe that within a moderate range, i.e., when k is less
than 3, increasing the norm of concatenated output brings
improvement. However, an especially large norm of output
leads to performance degradation. The moderate range is 7
for PRONOUN and 6 for NOUN, larger values of k lead to
the worst performance close to the non-adapted source model.
Because with an extreme value of k, the detached concatena-
tion part will dominate the discriminator optimization. Then
the contribution of features to the adversarial loss would be
ignored, making domain adversarial training ineffective. For
λema , we set it as 0.5 for all tasks without selection. As shown
in Fig. 4(c), 0.4–0.7 is a suitable range, and an extremely small
or large value of λema would weaken the performance. The
reason is that moderate λema can provide a better represen-
tation of semantic structures by keeping the prototypes both

consistent and up-to-date, which is beneficial to PRONOUN.
Generally, the newly involved hyper-parameters in PRONOUN
are not sensitive within the normal range.

4) Network Sensitivity: Pseudo-labels play an important
role in conditional domain adversarial training. The net-
work architecture has a great influence on the quality of
pseudo-labels. Thus we evaluate the sensitivity of our meth-
ods to the network architecture. In Fig. 4(d) we report
the respective accuracy of DANN-[f, p], DANN, CDAN,
CDAN + E, NOUN, NOUN + E and PRONOUN for Ar→Cl
on Office-Home with two backbones of different capacity,
i.e., ResNet-18 and ResNet-50, where ‘NOUN + E’ denotes
only replacing our prototype-based conditioning with the
entropy conditioning [14]. For the stronger model ResNet-50,
NOUN slightly beats CDAN and PRONOUN outperforms
both CDAN + E and NOUN + E. For ResNet-18 with worse
pseudo-labels, NOUN slightly falls behind CDAN but still
significantly exceeds DANN-[f, p], and PRONOUN outper-
forms other methods by a large margin. Generally, both of
our methods show desirable robustness to the network change.
NOUN always significantly outperforms DANN-[f, p], and
PRONOUN always performs the best.

5) Compatibility With Self-Training: To evaluate the com-
patibility of NOUN and PRONOUN with other types of
domain adaptation methods, we choose a state-of-the-art
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Fig. 6. Qualitative results of UDA methods on the synthetic-to-real semantic segmentation task of Synthia→Cityscapes.

TABLE IX

COMPATIBILITY WITH THE SELF-TRAINING METHOD: THE AVERAGE

ACCURACY (%) ON OBJECT RECOGNITION BENCHMARKS

self-training method ATDOC [38] for experiments. We report
results on three object recognition benchmarks in Table IX.
We find both NOUN and PRONOUN consistently bring
evident performance improvement when combined with
ATDOC [38]. Especially, PRONOUN helps ATDOC [38]
achieve the new-state-of-the-art average accuracy of 74.1% on
Office-Home.

6) Visualization: For object recognition, we follow the
de facto practice to study the t-SNE [70] visualization of
aligned features generated by different UDA methods in Fig. 5.
As expected, DANN-[f, p] fails to align multi-class distribu-
tions between domains. With effective conditioning, NOUN
better aligns target samples to source clusters and learns
more discriminative target features. With the prototype-based

conditioning strategy, PRONOUN alleviates the misalignment
induced by inaccurate pseudo-labels. For semantic segmenta-
tion, we present some qualitative results in Fig. 6. Compared
with the domain adversarial training involving only marginal
features (FeatAdapt), our NOUN produces cleaner and more
discriminative adapted segmentation results, which verifies the
benefit of the effective conditioning for domain adaptation.

V. CONCLUSION

In this work, we target the UDA problem with multi-
modal structures. We aim to develop simple also com-
pact domain adversarial training solutions to address UDA.
We first rethink the previous failure of the naive concate-
nation conditioning strategy. We find that the small norm
of the concatenated output prediction makes the condition-
ing ineffective. We thus propose NOUN to ensure effective
conditional domain alignment by enlarging the vector norm
of the concatenated prediction. We provide a strong domain
adversarial training method PRONOUN, which involves the
novel prototype-based conditioning strategy to protect NOUN
from inaccurate pseudo-labels. Extensive evaluations on vari-
ous object recognition benchmarks justify the effectiveness of
NOUN and PRONOUN over well-established UDA baselines.
NOUN is also verified to be genric and competitive for
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semantic segmentation UDA tasks. In the future, we aim to
explore applications of PRONOUN to more challenging UDA
tasks like semantic segmentation and object detection.

ACKNOWLEDGMENT

The authors would like to thank the reviewers and the
associate editor for their valuable comments. The authors
also would like to appreciate Jiashi Feng and Shuicheng Yan
for their insightful discussions throughout this project and
comments on the writing of this paper.

REFERENCES

[1] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable fea-
tures with deep adaptation networks,” in Proc. ICML, 2015, pp. 97–105.

[2] K. Saito, Y. Ushiku, and T. Harada, “Asymmetric tri-training for unsu-
pervised domain adaptation,” in Proc. ICML, 2017, pp. 2988–2997.

[3] J. Hoffman, D. Wang, F. Yu, and T. Darrell, “FCNs in the
wild: Pixel-level adversarial and constraint-based adaptation,” 2016,
arXiv:1612.02649.

[4] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and
M. Chandraker, “Learning to adapt structured output space for semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7472–7481.

[5] Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang, “Significance-aware infor-
mation bottleneck for domain adaptive semantic segmentation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6778–6787.

[6] Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Taking a closer look at
domain shift: Category-level adversaries for semantics consistent domain
adaptation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2507–2516.

[7] Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang, “Adversarial style mining
for one-shot unsupervised domain adaptation,” in Proc. NeurIPS, 2020,
pp. 20612–20623.

[8] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel method for the two-sample problem,” J. Mach. Learn. Res.,
vol. 1, pp. 1–10, May 2008.

[9] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep
domain adaptation,” in Proc. ECCV, 2016, pp. 443–450.

[10] W. Zellinger, T. Grubinger, E. Lughofer, T. Natschläger, and
S. Saminger-Platz, “Central moment discrepancy (CMD) for domain-
invariant representation learning,” in Proc. ICLR, 2017.

[11] P. Koniusz, Y. Tas, and F. Porikli, “Domain adaptation by mixture of
alignments of second-or higher-order scatter tensors,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 7139–7148.

[12] I. Goodfellow et al., “Generative adversarial nets,” in Proc. NeurIPS,
2014, pp. 2672–2680.

[13] Z. Pei, Z. Cao, M. Long, and J. Wang, “Multi-adversarial domain
adaptation,” in Proc. AAAI, 2018, pp. 3934–3941.

[14] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial
domain adaptation,” in Proc. NeurIPS, 2018, pp. 1647–1657.

[15] V. K. Kurmi and V. P. Namboodiri, “Looking back at labels: A class
based domain adaptation technique,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2019, pp. 1–8.

[16] S. Cicek and S. Soatto, “Unsupervised domain adaptation via regularized
conditional alignment,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 1416–1425.

[17] L. Tran, K. Sohn, X. Yu, X. Liu, and M. Chandraker, “Gotta adapt’em
all: Joint pixel and feature-level domain adaptation for recognition in
the wild,” in Proc. CVPR, 2019, pp. 2672–2681.

[18] Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C.-F. Wang, and
M. Sun, “No more discrimination: Cross city adaptation of road scene
segmenters,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 1992–2001.

[19] Y.-H. Tsai, K. Sohn, S. Schulter, and M. Chandraker, “Domain adapta-
tion for structured output via discriminative patch representations,” 2019,
arXiv:1901.05427.

[20] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” in Proc. ICML, 2015, pp. 1180–1189.

[21] Y. Ganin et al., “Domain-adversarial training of neural networks,”
J. Mach. Learn. Res., vol. 17, no. 1, pp. 2030–2096, 2016.

[22] H. Shimodaira, “Improving predictive inference under covariate shift by
weighting the log-likelihood function,” J. Statist. Planning Inference,
vol. 90, no. 2, pp. 227–244, 2000.

[23] M. Dudík, S. J. Phillips, and R. E. Schapire, “Correcting sample selec-
tion bias in maximum entropy density estimation,” in Proc. NeurIPS,
2006, pp. 323–330.

[24] J. Huang, A. Gretton, K. Borgwardt, B. Schölkopf, and A. J. Smola,
“Correcting sample selection bias by unlabeled data,” in Proc. NeurIPS,
2007, pp. 601–608.

[25] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2012, pp. 2066–2073.

[26] B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, “Unsupervised
visual domain adaptation using subspace alignment,” in Proc. IEEE Int.
Conf. Comput. Vis., Dec. 2013, pp. 2960–2967.

[27] B. Sun, J. Feng, and K. Saenko, “Return of frustratingly easy domain
adaptation,” in Proc. AAAI, 2016, pp. 2058–2065.

[28] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation
via transfer component analysis,” IEEE Trans. Neural Netw., vol. 22,
no. 2, pp. 199–210, Feb. 2010.

[29] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature
learning with joint distribution adaptation,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2013, pp. 2200–2207.

[30] S. Herath, M. Harandi, and F. Porikli, “Learning an invariant Hilbert
space for domain adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 3956–3965.

[31] J. Liang, R. He, Z. Sun, and T. Tan, “Aggregating randomized
clustering-promoting invariant projections for domain adaptation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 5, pp. 1027–1042,
May 2018.

[32] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discrim-
inative domain adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 2962–2971.

[33] K. Saito, K. Watanabe, Y. Ushiku, and T. Harada, “Maximum classifier
discrepancy for unsupervised domain adaptation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3723–3732.

[34] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell,
“Deep domain confusion: Maximizing for domain invariance,” 2014,
arXiv:1412.3474.

[35] M. Long, J. Wang, and M. I. Jordan, “Deep transfer learning with joint
adaptation networks,” in Proc. ICML, 2017, pp. 2208–2217.

[36] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Proc. Workshop Chal-
lenges Represent. Learn. (ICML), 2013, p. 896.

[37] Y. Li, L. Yuan, and N. Vasconcelos, “Bidirectional learning for domain
adaptation of semantic segmentation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 6936–6945.

[38] J. Liang, D. Hu, and J. Feng, “Domain adaptation with auxiliary target
domain-oriented classifier,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2021, pp. 16632–16642.

[39] J. Choi, M. Jeong, T. Kim, and C. Kim, “Pseudo-labeling curriculum
for unsupervised domain adaptation,” in Proc. BMVC, 2019, p. 67.

[40] Y. Zou, Z. Yu, B. V. Kumar, and J. Wang, “Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training,”
in Proc. ECCV, 2018, pp. 297–313.

[41] J. Liang, R. He, Z. Sun, and T. Tan, “Exploring uncertainty in
pseudo-label guided unsupervised domain adaptation,” Pattern Recog-
nit., vol. 96, Dec. 2019, Art. no. 106996.

[42] J. Zhang, W. Li, and P. Ogunbona, “Joint geometrical and statistical
alignment for visual domain adaptation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1859–1867.

[43] H. Tang and K. Jia, “Discriminative adversarial domain adaptation,” in
Proc. AAAI, 2020, pp. 5940–5947.

[44] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 1125–1134.

[45] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with
auxiliary classifier gans,” in Proc. ICML, 2017, pp. 2642–2651.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[47] S. Roy, A. Siarohin, E. Sangineto, S. R. Bulo, N. Sebe, and E. Ricci,
“Unsupervised domain adaptation using feature-whitening and consen-
sus loss,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 9471–9480.

[48] R. Xu, G. Li, J. Yang, and L. Lin, “Larger norm more transferable:
An adaptive feature norm approach for unsupervised domain adapta-
tion,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1426–1435.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 02,2023 at 05:34:53 UTC from IEEE Xplore.  Restrictions apply. 



HU et al.: ADVERSARIAL DOMAIN ADAPTATION WITH PROTOTYPE-BASED NORMALIZED OUTPUT CONDITIONER 9371

[49] K. Saito, Y. Ushiku, T. Harada, and K. Saenko, “Adversarial dropout
regularization,” in Proc. ICLR, 2018.

[50] X. Chen, S. Wang, M. Long, and J. Wang, “Transferability vs. discrim-
inability: Batch spectral penalization for adversarial domain adaptation,”
in Proc. ICML, 2019, pp. 1081–1090.

[51] C.-Y. Lee, T. Batra, M. H. Baig, and D. Ulbricht, “Sliced wasserstein dis-
crepancy for unsupervised domain adaptation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10285–10295.

[52] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan,
“Deep hashing network for unsupervised domain adaptation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 5018–5027.

[53] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and
K. Saenko, “VisDA: The visual domain adaptation challenge,” 2017,
arXiv:1710.06924.

[54] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category
models to new domains,” in Proc. ECCV, 2010, pp. 213–226.

[55] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for
data: Ground truth from computer games,” in Proc. ECCV, 2016,
pp. 102–118.

[56] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 3213–3223.

[57] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez,
“The SYNTHIA dataset: A large collection of synthetic images for
semantic segmentation of urban scenes,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 3234–3243.

[58] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. ECCV, 2014, pp. 740–755.

[59] Y. Zhang, P. David, and B. Gong, “Curriculum domain adaptation
for semantic segmentation of urban scenes,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 2020–2030.

[60] V. Nair and G. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp. 807–814.

[61] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

[62] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez, “ADVENT:
Adversarial entropy minimization for domain adaptation in semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2517–2526.

[63] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 2015,
arXiv:1511.06434.

[64] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. Workshop Deep
Learn. Audio, Speech, Lang. Process. (ICML), 2013.

[65] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT. Heidelberg, Germany: Physica-Verlag,
2010, pp. 177–186.

[66] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015.

[67] P. Morerio, J. Cavazza, and V. Murino, “Minimal-entropy correlation
alignment for unsupervised deep domain adaptation,” in Proc. ICLR,
2018.

[68] Z. Deng, Y. Luo, and J. Zhu, “Cluster alignment with a teacher for
unsupervised domain adaptation,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 9944–9953.

[69] W. Zhang, W. Ouyang, W. Li, and D. Xu, “Collaborative and adversarial
network for unsupervised domain adaptation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3801–3809.

[70] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

Dapeng Hu received the B.Sc. degree in elec-
tronic information science and technology from
Nanjing University in 2017. He is currently pursuing
the Ph.D. degree with the National University of
Singapore. His research interests focus on domain
adaptation, self-supervised learning, and computer
vision.

Jian Liang received the B.Eng. degree in electronic
information and technology from Xi’an Jiaotong
University, China, in July 2013, and the Ph.D. degree
in pattern recognition and intelligent systems from
NLPR, CASIA, in January 2019. He was a Research
Fellow with the National University of Singapore,
Singapore, from June 2019 to April 2021. Cur-
rently, he joins NLPR as an Associate Professor. His
research interests focus on transfer learning, pattern
recognition, and computer vision.

Qibin Hou received the Ph.D. degree from the
School of Computer Science, Nankai University,
under Prof. Ming-Ming Cheng’s supervision. Then,
he worked at the National University of Singapore
as a Research Fellow. He is currently an Associate
Professor at Nankai University. His research inter-
ests include deep learning, image processing, and
computer vision.

Hanshu Yan (Graduate Student Member, IEEE)
received the B.Eng. and B.Sc. degrees from Beihang
University (BUAA) in 2015 and the M.Sc. degree
from the National University of Singapore (NUS)
in 2017, where he is currently pursuing the Ph.D.
degree with the ECE Department, working with
Prof. Vincent Y. F. Tan and Dr. Jiashi Feng. His
current research interests include robust and efficient
machine learning algorithms.

Yunpeng Chen received the Ph.D. degree from the
National University of Singapore (NUS), advised by
an Assistant Professor Jiashi Feng and an Associate
Professor Shuicheng Yan. He is currently the Algo-
rithm Director at Meitu Inc., where he is working
on machine learning and computer vision, including
video understanding, image representation learning,
and deep learning architecture engineering. Till now,
he has published over 30 papers in top international
journals and conferences, such as CVPR, NeurIPS,
ECCV, ICCV, and IEEE TRANSACTIONS ON PAT-

TERN ANALYSIS AND MACHINE INTELLIGENCE, with over 2,700 citations.
He also received the PREMIA Best Student Conference Paper Award. He is
the winner of ILSVRC 2017 and ILSVRC 2015 and HIE 2020.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 02,2023 at 05:34:53 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


