
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 6, JUNE 2019 2665

Local Semantic-Aware Deep Hashing With
Hamming-Isometric Quantization
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Abstract— Hashing is a promising approach for compact
storage and efficient retrieval of big data. Compared to the con-
ventional hashing methods using handcrafted features, emerging
deep hashing approaches employ deep neural networks to learn
both feature representations and hash functions, which have been
proven to be more powerful and robust in real-world applications.
Currently, most of the existing deep hashing methods construct
pairwise or triplet-wise constraints to obtain similar binary codes
between a pair of similar data points or relatively similar binary
codes within a triplet. However, we argue that some critical local
structures have not been fully exploited. So, this paper proposes
a novel deep hashing method named local semantic-aware deep
hashing with Hamming-isometric quantization (LSDH), aiming
to make full use of local similarity in hash function learning.
Specifically, the potential semantic relation is exploited to robustly
preserve local similarity of data in the Hamming space. In addi-
tion to reducing the error introduced by binary quantizing,
a Hamming-isometric objective is designed to maximize the
consistency of similarity between the pairwise binary-like features
and corresponding binary codes pair, which is shown to be able
to improve the quality of binary codes. Extensive experimental
results on several benchmark datasets, including three single-
label datasets and one multi-label dataset, demonstrate that the
proposed LSDH achieves better performance than the latest
state-of-the-art hashing methods.

Index Terms— Image retrieval, deep hashing, similarity-
preserving, local structures, Hamming-isometric.

I. INTRODUCTION

W ITH the explosive growth of visual data on the web and
from video surveillance, pursuing an efficient solution

to retrieve similar images becomes the spotlight of research.
For example, given a query image of a cat, it is desirable to
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return similar images with a cat as fast and accurate as possible
for a search engine. Similarity-preserving hashing [8], [10],
[41], [57], [59] is a popular nearest neighbor search technique
for large-scale image retrieval, which has shown superior
potentials for applications with millions or even billions of
images. Due to the appealing efficiency in both search speed
and data storage, more and more hashing works are proposed
in recent years [3], [31], [33], [64], [66].

Generally, hashing methods could be divided into two
categories based on the type of hash functions employed: data-
dependent (also known as learning-based) hashing methods
[11], [27], [31], [58] and data-independent hashing methods
[8], [21]. Since data-independent hashing methods always
require long codes to achieve a satisfying retrieval perfor-
mance, data-dependent hashing methods are proposed to learn
more compact binary codes by utilizing a batch of training
data. In this paper, we will focus on learning-based hashing
with application to image retrieval.

Basically, learning-based hashing methods [15], [35], [58],
[59] aim to learn a set of hash functions for coding each data
point into low-dimensional binary codes, meanwhile enforcing
semantically similar data pair to have small Hamming distance
[36], [44], [53], [68]. By encoding each data point into binary
codes, the similarity between the query and database can be
efficiently computed and the storage cost can be distinctly
decreased. According to whether the supervised information
is available, the learning-based hashing approaches can be
roughly grouped into unsupervised and supervised approaches.
In contrast to unsupervised hashing methods [8], [9], [29], [39]
where no supervision information is provided, supervised
hashing methods [25], [33], [51], [52], [64] mainly lever-
age supervision information (e.g., pointwise semantic labels,
pairwise semantic similarity) to obtain compact binary codes.
Among these hashing methods, the input data is usually rep-
resented by hand-crafted feature descriptors such as SIFT [38]
and GIST [46], followed by separate projection and quantiza-
tion steps to encode these descriptors into binary codes. Since
such descriptors cannot effectively represent the raw data and
the coding process cannot make feedback to feature descrip-
tors, the retrieval accuracy is not good in practical applications.

Recently, a number of hashing methods [22], [26], [62]
explore Convolutional Neural Networks (CNN) [13], [20]
to learn effective feature representations and hash functions,
which have shown much better performance than the
traditional hashing methods with handcrafted feature.
Specifically, deep hashing methods with pairwise labels [2],
[3], [32], [70] generally exploit data pairs’ semantic similarity
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Fig. 1. The illustration of the proposed LSDH. Two ordinary triplets, sharing
the anchor and the negative sample. We first work on a single triplet to get
the ranking order, then we further exploit the underlying semantic relation to
preserve the similarity of the two positive samples.

to obtain similar/dissimilar codes between similar/dissimilar
data pair. Besides, the triplet-wise labels based deep hashing
methods [22], [23], [65], [67], [69] maximize the margin
between similar pair and dissimilar pair to obtain relative
similar binary codes within a triplet. Although these methods
utilize the typical pairwise or triplet-wise constraints to
perform hash learning, the underlying local structure of the
data is not exploited and the generated binary codes can not
robustly preserve the similarity with its neighbors.

In this paper, we propose a novel deep hashing method
named local semantic-aware deep hashing with Hamming-
isometric quantization (LSDH), where we exploit the potential
local structure of the data for hash learning. The proposed
LSDH encourages the generated binary codes to preserve
their local similarity based on their semantic relation, and
Fig. 1 illustrates the main idea of the LSDH. We use a
quadruplet as an input unit, where each quadruplet con-
sists of an anchor sample termed A, two positive samples
termed P1 and P2, a negative sample termed N . We first
expect a triplet embedding to satisfy such ranking con-
straint dist (A, P1)<dist (A, N) from triplet T (A, P1, N) and
dist (A, P2)<dist (A, N) from triplet T (A, P2, N), that is to
say, we employ ranking constraint to increase the distance
between anchor-positive data pair and anchor-negative data
pair. However, the distance of data pair (P1, P2) is unknown
about the anchor-negative pair (A, N). Studies [4], [5] have
shown that triplet-based methods still have a relatively large
intra-class variation on the testing set. Therefore, we further
consider the local similarity among these data pairs and
preserve their similarity by introducing a novel constraint
dist (P1, P2) < dist (A, N), where data point P1 and P2
come from the same class. According to these constraints,
a semantic-aware loss is defined to formulate a novel opti-
mization problem over these data pairs, aiming to generate
more discriminative binary codes.

In order to guarantee the generated binary codes to be
as discriminative after quantization, most of the existing
deep hashing methods minimize the error introduced by
binary quantizing (quantization error) based on the pointwise
quantization strategy [3], [9], [22], [40], [51], [70]. However,
they ignore a crucial issue that how to efficiently maintain

the well learned paired similarity after binary quantizing.
Benefiting from the isometric mapping [47], we further
develop a Hamming-isometric quantization strategy to ensure
the well learned paired similarity as unchanged as possible,
where a novel quantization loss is proposed to improve the
quality of binary codes.

In addition, to fit the proposed algorithm into a multi-label
image retrieval setting, an extension could be naturally adopted
to LSDH so that it could preserve the neighbors’ similarity
in multi-label image retrieval tasks. Experimental results on
four benchmark datasets demonstrate the effectiveness of the
proposed method.

The contributions of this work are summarized as follows:
1) We propose a novel learning-based hashing method

named LSDH to effectively perform feature learning
and hash learning with CNN, where we exploit the
underlying local structure of the data to preserve their
local similarity.

2) We develop a Hamming-isometric quantization loss for
enhancing the quality of binary codes, in which we
aim to maintain the well learned paired similarity when
binary quantizing is performed.

3) We extend the proposed LSDH to map multi-label
images into compact binary codes according to their
semantic similarity in a multi-label manner, so that the
LSDH is capable of improving the performance for the
multi-label images retrieval.

4) We evaluate the proposed method on several benchmark
datasets. Experimental results show that the LSDH out-
performs state-of-the-art hashing methods.

The rest of this paper is organized as follows. Section II
gives a brief review of related work about deep hashing.
Section III presents the procedure of the proposed LSDH.
Section IV shows the details, results, and analysis of the
experiment. Section V concludes the paper.

II. RELATED WORK

Due to the efficiency in both search speed and storage cost,
hashing has become the most popular technique for preserv-
ing similarity in large-scale image retrieval. In recent years,
deep learning [14], [16], [20] has made great successes in
image classification [54], [55], object detection [48], semantic
segmentation [37] and visual tracking [43]. Emerging deep
hashing methods [22], [62] also show great competitiveness in
image retrieval. Generally, many hashing methods use two-step
learning strategies [3], [9], [18], [40], [70]: metric learning [1]
and binary quantizing [51]. Metric learning is applied to
the dimensionality reduction of original spatial samples for
obtaining low dimensional binary-like embedding, and binary
quantizing transforms the binary-like embedding into binary
codes. In this section, we mainly make a brief review of typical
deep hashing methods.

A. Deep Hashing With Pairwise Samples

A series of deep hashing methods adopt feature learn-
ing strategies with pairwise labels for coding images into
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Fig. 2. An overview of the proposed local semantic-aware deep hashing framework, which includes a shared sub-network, a hashing layer, a quantization
loss and a semantic-aware loss.

binary codes, aiming to preserve the similarity between a pair
of data samples.

CNNH: Convolutional Neural Network Hashing
(CNNH) [62] is a supervised hashing method, which
utilizes a CNN to perform hash learning with pairwise labels.
Specifically, it decomposes this process into two stages: a
hash codes learning stage and a hash functions learning stage.
Given n images I = {I1, I2, ...In}, in stage 1 (the hash code
learning stage), CNNH performs the approximated hash codes
learning for each raw image by optimizing the following loss
function:

min
s

||S − 1

q
H H T ||2F , (1)

where || · ||F denotes the Frobenius norm; H ∈ {−1, 1}n×q

denotes the approximate hash codes matrix where each row
is a q-dimensional hash codes; S ∈ {0, 1}n×n denotes the
semantic similarity of image pairs in I , in which Si j = 1 when
image Ii and I j are similar, otherwise Si j = 0. The codes
inner product Hi. H T

j. is divided by codes length of q in order
to fit Si j ∈ {−1, 1}, thus optimizing Eq.(1) is equivalent to
minimize the distance between Hi. H T

j. and q S. In the process
of optimization, CNNH firstly relaxes the integer constraints
of H and randomly initializes H ∈ [−1, 1]n×q , then optimizes
the objective using a coordinate descent algorithm with newton
directions. Thus, Eq.(1) can be re-formulated as:

min ||H. j H T
. j − (q S −

∑

c �= j

H.c H T
.c )||2F , (2)

where H. j and H.c denote the j -th and the c-th column of
H respectively. In stage 2 (the hash functions learning stage),
CNNH utilizes the CNN to simultaneously learn image feature
and hash functions with the supervision of binary codes, where
it adopts the LeNet [24] as its basic network framework, and
constructs a latent layer with q bits as its output. During the

training procedure, CNNH takes the hash codes learned in
stage 1 as the ground-truth, and it also uses the provided
label information to guide the hash functions learning when
label information is available. Although CNNH can learn
both feature representations and hash functions, its two-stage
framework is suboptimal for hash learning as the deep feature
representations learned in stage 2 cannot make feedback to the
binary codes learned in stage 1.

B. Deep Hashing With Triplet-Wise Samples

Deep hashing with triplet labels is mainly designed to max-
imize the margin between positive sample pair and negative
sample pair to preserve their relative similarity within a triplet.

DNNH: Different from the CNNH, Deep Neural Network
Hashing (DNNH) [22] is a supervised hashing method
employing an end-to-end deep hashing framework with
triplet-wise constraints. DNNH adopts the Network in
Network architecture [30] as its basic framework, where a
shared sub-network with multiple convolution-pooling layers
captures image representations, and it further adopts a divide-
encode module encouraged by sigmoid activation function
and a piece-wise threshold function for hash learning. Unlike
CNNH [62] that exploits the similarity between image pairs,
DNNH develops a triplet ranking loss [50] to maximize the
margin between positive sample pairs and negative sample
pairs when generating binary codes:

ltriplet (b(I ), b(I+, b(I−))

= max
(
0, 1 + ‖b(I ) − b(I+)‖H − |b(I ) − b(I−)‖H

)

s.t . b(I ), b(I+), b(I−) ∈ {−1, 1}k, (3)

where I, I+, and I− denote the anchor, the positive, and the
negative sample in each triplet respectively; b(·) denotes the
discrete binary codes; ‖ · ‖H denotes the Hamming distance.
Considering the integer constraints and non-differential
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property in Eq.(3), binary codes are relaxed by using the
range constraints and the Hamming distance is replaced by
the Euclidean distance for facilitating loss computation and
gradient updating.

Like the CNNH and DNNH, many other hashing
methods [3], [32], [65] directly construct pairwise or triplet-
wise constraint to obtain similar binary codes between a
similar data pair or relative similar codes within a triplet.
However, the proposed LSDH is different from them in
motivation. In addition, many recent metric learning methods
widely adopt the pairwise or triplet-wise constraint to preserve
data pairs’ similarity. For example, the Siamese network [6]
learned contrastive embedding to reduce (increase) the dis-
tance between a positive (negative) pair. The FaceNet [50]
proposed an online strategy by associating each positive pair
to obtain the relative similarity within a triplet. Song et al. [45]
proposed a lifted structure feature embedding, which takes
full advantage of the training batches by lifting the vector of
pairwise distances to obtain a relative similarity. Chen et al. [4]
obtained the relative similarity by further reducing intra-class
variation. Wang et al. [60] attempted to constrain the angle
of the negative point within a triplet to obtain the relative
similarity. Different from these methods, our method exploits
the potential local structure of the data for hash learning, and
employs the semantic relation to facilitate the generated binary
codes preserving their local similarity, rather than the above-
mentioned similarity or relative similarity.

In the following, we will detailedly discuss our two
improvements: 1) exploring the local structure of the data to
preserve their local similarity, 2) maintaining the well learned
paired similarity after binary quantizing.

III. THE PROPOSED METHOD

Most existing deep hashing methods are proposed to learn
the similarity-preserving binary codes between a data pair and
the potential local structure of the data is always overlooked.
In quantization, they usually adopt the pointwise quantiza-
tion scheme, e.g., L1-norm constraint, L2-norm constraint
and smooth approximation function tanh(), to control the
pointwise quantization error, which can not ensure the well
learned paired similarity unchanged after quantization [70].
In this paper, the proposed LSDH takes full consideration
of the local structure of the data distribution to perform
feature learning and hash learning in a unified framework.
Meanwhile, we present a Hamming-isometric quantization
schema to maintain the well learned paired similarity, thus
improving the retrieval performance.

The framework of LSDH is shown in Fig. 2. This archi-
tecture takes a quadruplet of image (an anchor, a negative
sample, and two positive instances) as its input and mainly
consists of four components: 1) a shared sub-network with
multiple convolution-pooling layers and two fully-connected
layers for extracting feature; 2) a hashing layer followed after
the second fully-connected layer for coding each image into
K -bit representations; 3) a semantic-aware loss being used to
similarity learning; 4) a quantization loss being presented to
enhance the quality of binary codes.

A. Semantic-Aware Hashing and Optimization

Given a image set consisting of n data points I =
[I1, I2, ..., In], our goal is to map the data I to a Hamming
space to obtain the corresponding compact representations.
Suppose the output of the shared sub-network in LSDH is
denoted by feature matrix X = [x1, x2, ..., xn] ∈ R

d×n

consisting of d-dimensional feature xi and K hashing functions
are learned to project the feature matrix into K-bit binary
representation B = [b1, b2, ..., bn] ∈ R

K×n . As in [2], [22],
and [40], we use linear projections followed by an element-
wise transformation as our hashing functions. Firstly, we can
obtain the output of the hashing layer by linear projections,
and the specific output is listed as follows:

hi = WT
H xi + νH , (4)

where W H ∈ R
d×K denotes the weight in the hashing layer,

and νH ∈ R
K×1 denotes the bias parameter. Obviously,

the output of the hashing layer hi ∈ R
K is continuous value.

In order to obtain discrete binary codes bi ∈ R
K , the element-

wise transformation is defined as:

bi = sign(hi ), (5)

where sign(·) denotes a sign function, i.e., sign(x) = 1 if
x > 0, otherwise sign(x) = −1. To learn discriminative and
compact binary codes, we introduce details of the proposed
LSDH in the next part, where we use one of the existing
representative networks as our basic network.

The triplet-based input [22] used in learning to rank consists
of an anchor image I , a positive image I+ (similar) and a neg-
ative image I−(dissimilar), and it is not enough to exploit the
potential structure of data. In this paper, we define a quadruplet
Q(Ii , I j , Ik , In) for hash learning, in which the quadruplet
includes an anchor point Ii , two similar points I j and Ik , and
a dissimilar point In . For facilitating loss computation and fast
convergence in training, a novel loss function termed semantic-
aware loss is proposed to preserve their similarity over the
generated binary codes of the quadruplet Q(Ii , I j , Ik , In). The
specific loss function can be described as:

L(bi , b j , bk, bn) = max(0, 1+‖bi −b j‖H −‖bi −bn‖H )

+max(0, 1+‖bi −bk‖H −‖bi −bn‖H )

+max(0, 1+‖b j −bk‖H −‖bi −bn‖H ),

(6)

where ‖ · ‖H represents the Hamming distance. The first two
terms are designed for ranking to learn according to two
different triplets T (Ii , I j , In) and T (Ii , Ik , In), respectively.
The third term takes consideration of the margin between the
positive-positive data pair (I j , Ik) and anchor-negative data
pair (Ii , In), aiming to preserve their local similarity. The
three terms jointly contribute to exploiting the potential local
structure of the data for hash learning.

With the help of the three constraints, the semantic relation
can be potentially employed to facilitate the binary codes
preserving the similarity with its neighbors. Different from
the pairwise or triplet-based hashing methods for obtaining
similar codes between a data pair or relative similar codes
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within a triplet, our method encourages the generated binary
codes to preserve the local similarity. In consideration of
robustness, we construct multiple such quadruplets for each
anchor sample, in which we expect more similar data pairs to
have similar codes.

Due to the non-differential property of the integer
constraints, we relax Eq.(6) by replacing the Hamming
distance with the Euclidean distance and replacing the integer
constraints with the range constraints. Considering the error
[32], [51] introduced by the range constraints as well as the
data pairs’ similarity being changed in two different spaces,
we define a quantization loss to maintain the well learned
paired similarity. Therefore, the final objective can be listed
as follows:

min L̂(hi , h j , hk, hn) + λQ(hi , h j , hk, hn), (7)

where L̂ contributes to learning preserving-similarity binary
codes; Q is used to maintain the paired similarity after
binary quantizing; λ is a hyper-parameter for balancing
the importance of the overall quantization part Q. In the
subsection, we mainly concentrate on the similarity learning
part L̂, and the quantization part Q will be discussed
detailedly in the next subsection, noting that the quantization
part is an essential component of hashing. Then, the L̂ could
be specifically written as:

L̂(hi , h j , hk, hn) = max(0, 1+‖hi − h j‖2
2 − ‖hi − hn‖2

2)

+ max(0, 1+‖hi − hk‖2
2 − ‖hi − hn‖2

2)

+ max(0, 1+‖h j − hk‖2
2 − ‖hi − hn‖2

2),

(8)

and it is continuous and differentiable. According to the
back-propagation algorithm, the gradients of L̂ with respect
to hi are computed as:

∂ L̂

∂hi
= 2(hn −h j )τ [hi , h j , hn]+ + 2(hn −hk)τ [hi , hk, hn]+

−2(hi −hn)τ [hi , h j , hk, hn]+
∂ L̂

∂h j
=−2(hi −h j )τ [hi , h j , hn]++2(h j −hk)τ [hi , h j , hk, hn]+

∂ L̂

∂hk
= −2(hi −hk)τ [hi , hk, hn]+−2(h j −hk)τ [hi , h j , hk, hn]+

∂ L̂

∂hn
= 2(hi −hn)τ [hi , h j , hn]+ + 2(hi −hn)τ [hi , hk, hn]+

+ 2(hi −hn)τ [hi , h j , hk, hn]+ , (9)

where τ [·]+ = 1 if the expression [·]+ is true and τ [·]+ = 0
otherwise. τ [hi , h j , hn]+ is equivalent to τ [1 + ‖hi − h j‖2

2 >
‖hi −hn‖2

2], the same to τ [hi , hk, hn]+, and τ [hi , h j , hk, hn]+
is equivalent to τ [1 + ‖h j − hk‖2

2 > ‖hi − hn‖2
2]. Thus,

the gradients can be easily integrated into the back propagation
of CNN. It is observed that the semantic-aware loss provides
informative gradient signal for the positive-positive pair that is
beneficial to preserve their similarity in a local neighborhood.

B. Hamming-Isometric Quantization

In quantization, existing hashing approaches use binary
quantizing to transform binary-like embedding hi into binary

Fig. 3. The impact on the solver x j by L1-norm discrete constraint
quantization loss (a) and Hamming-isometric quantization loss (b), when a
component or a bit of feature xi is 0.6. The red arrow represents all possible
approximation direction about the solver of x j .

codes bi . For similarity-preserving hash learning, it is
necessary to keep discriminability invariance of the feature
after quantization. Therefore, in training stage, a regularizer
with L1/L2-norm constraint [9], [18], [26], [34], [40], [51]
is widely used to control the quantization error. Following
[32], [40], we use the L1-norm imposed on this error:

QL1(xi ) = ‖hi − bi‖1, (10)

Although the L1-norm based pointwise quantization schema
can reduce the quantization error, it can’t generate high-
quality binary codes for efficient retrieval. In image retrieval
stage, we always weight the similarity of image pairs
by the Hamming distance, while the similarity of image
pairs is weighted by the Euclidean distance ‖hi − hi‖2

2 in
training stage. Therefore, apart from enforcing the pointwise
quantization error as small as possible, we also expect data
pairs’ similarity should be maintained after quantization.
According to the way of balancing similarity, the data pair
should be an isometric mapping [47] from the Euclidean
space to the Hamming space, that is to say, the distance
should be consistent between the pairwise binary codes and
the corresponding binary-like embedding pairs.

Since the distance in Hamming space and Euclidean space
are computed in a different manner, we unify the dis-
tance calculation method of binary codes with L2-norm,
i.e., the Euclidean distance, and the proposed Hamming-
isometric quantization loss can be naturally described
as follows:

QHam(hi , h j ) = ‖hi − bi‖1 + ‖h j − b j‖1

+μ(| ‖hi − h j ‖2
2 − ‖bi − b j‖2

2 | ), (11)

where μ is a hyper-parameter to weight the importance of
Hamming-isometric term. Since the absolute value operation
in the objective function is non-differentiable at some certain
points, we use unit sub-gradient instead in those cases.
Therefore, the gradient of QHam with respect to hi can be
written as:

∂ QHam

∂hi
= δ(hi )+2μ(hi −h j )sign(‖hi −h j‖2

2−‖bi −b j‖2
2)

∂ QHam

∂h j
= δ(h j )−2μ(hi −h j )sign(‖hi −h j ‖2

2−‖bi −b j‖2
2),

(12)

where

δ(x) =
{

1, −1 ≤ x ≤ 0 or x ≥ 1

−1, otherwi se
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Fig. 4. Local semantic-aware hashing for multi-label images. We first
work on two triplets to get the correct ranking, then we further compute the
similarity of the positive-positive sample pair in a multi-label way, aiming to
drag them closer when they share semantic labels as shown in (a), otherwise
push them far away as shown in (b).

From the proposed Hamming-isometric quantization loss,
we can observe that the novel schema preserves both the
discriminability of real-valued feature and the consistency of
image pairs between two different spaces. On the other hand,
it is also beneficial to guide the network to search for the
optimal solver. For example, when the value of a component
in feature xi is 0.6, the corresponding bit value of feature x j

will be close to 1 or -1 from four directions by L1-norm
quantization, as is shown in Fig. 3 (a). In the Hamming-
isometric quantization schema, when x j and xi have the same
sign, x j will be close to 1 from the left of 1 endpoint,
otherwise x j will be close to −1 from the left of −1 endpoint,
as is shown in Fig. 3 (b).

C. Multi-Label Based Hashing

The multi-label image has semantic information of multiple
domains. In this subsection, we focus on exploiting the local
structure of data in a multi-label setting. In the above-defined
quadruplet Q(Ii , I j , Ik , In), the positive-positive sample pair
(I j , Ik ) may not share the same semantic information for
all labels, so we make a slight modification on the previ-
ous defined semantic-aware loss. Specifically, we define the
semantic similarity between I j and Ik as s jk in a multi-label
manner, where s jk = 1 if they share at least one same semantic
label, and s jk = 0 otherwise. According to the quadruplet
Q(Ii , I j , Ik , In), the semantic-aware loss in the multi-label
setting can be described as:

L(bi , b j , bk, bn) = max(0, 1+‖bi − b j‖H − ‖bi − bn‖H )

+max(0, 1+‖bi − bk‖H − ‖bi − bn‖H )

+s jkmax(0, 1+‖b j −bk‖H −‖bi − bn‖H )

+(1 − s jk)max(0, 1 − ‖b j − bk‖H )

(13)

Fig. 4 demonstrates the overview of multi-label image hash
learning. Different from the Eq.(6), we dray the positive-
positive sample pair closer to each other when s jk = 1,
as shown in Fig. 4(a), otherwise we push the positive-positive
sample pair far away, as shown in Fig. 4(b). In addition,
we also relax the objective function by replacing the Hamming
distance with the Euclidean distance and replacing the integer
constraints with the range constraints. Following the single-
label hash learning on section B , we simultaneously adopt
a quantization loss for maintaining the well learned paired

similarity after quantization. Therefore, The new objective can
be short for L̂(hi , h j , hk, hn)+λQ(hi , h j , hk, hn), like that
in Eq. (7), and the quantization part is the same to section B .
The gradients of L̂ with respect to hi are computed as:

∂ L̂

∂hi
= 2(hn −h j )τ [hi , h j , hn]++2(hn −hk)τ [hi , hk, hn]+

−2s jk(hi −hn)τ [hi , h j , hk, hn]+
∂ L̂

∂h j
= −2(hi −h j )τ [hi , h j , hn]+

+ 2s jk(h j −hk)τ [hi , h j , hk, hn]+
− 2(1−s jk)(h j −hk)τ [h j , hk]+

∂ L̂

∂hk
= −2(hi −hk)τ [hi , hk, hn]+

− 2s jk(h j −hk)τ [hi , h j , hk, hn]+
+2(1−s jk)(h j −hk)τ [h j , hk]+

∂ L̂

∂hn
= 2(hi −hn)τ [hi , h j , hn]++2(hi −hn)τ [hi , hk, hn]+

+2s jk(hi −hn)τ [hi , h j , hk, hn]+ , (14)

where we use τ [h j , hk]+ to represent τ [1 − ‖h j − hk‖2
2 > 0],

while τ [hi , h j , hn]+, τ [hi , hk, hn]+ and τ [hi , h j , hk, hn]+
being the same as in Eq.(9).

D. Overall Objective

The overall objective function of the proposed local
semantic-aware deep hashing with Hamming-isometric quan-
tization is given as:

min
∑

i, j,k,l

L̂ (hi , h j , hk, hn) + λ
∑

i, j

QHam(hi , h j ), (15)

where λ is a hyper-parameter to balance the presented quanti-
zation loss, and the data pair of QHam are from the similarity
learning L̂. It is observed that λμ is used to weight the impor-
tance of Hamming-isometric term. In parameters updating, we
adopt stochastic gradient descent algorithm [20] to update all
parameters until convergence.

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed LSDH,
extensive experiments are conducted on three single-label
image datasets and a multi-label dataset. Besides, a variant of
our framework is implemented, namely LSDHL1, where we
only use the L1-norm discrete constraint as the quantization
loss. To better show the advantages of the LSDH, several
state-of-the-art hashing methods are compared under several
retrieval evaluation metrics.

A. Datasets

Experiments are conducted on three large-scale single-
label datasets, i.e., CIFAR-101 [19], SUN3972 [63],

1http://www.cs.toronto.edu/ riz/cifar.html
2http://vision.princeton.edu/projects/2010/SUN/
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CIFAR-203 [19] and a large-scale multi-label datasets NUS-
WIDE4 [7]. These datasets are introduced in details as
follows:

• CIFAR-10 is a benchmark image dataset for similarity
retrieval, consisting of 60,000 color images. Each image
belongs to one of the ten categories, and the size of
each image is 32×32. Following the same setting in [70],
we randomly sampled 1,000 images per class as the query
images. For the unsupervised methods, all the rest of the
images are used as the training set. For the supervised
methods, 5,000 images ( 500 images per class ) are
randomly selected from the rest of images for training.

• SUN397 consists of 108,754 images from 397 scene
categories. Following the similar setting in [34], we use
the subset of 32,099 images that are associated with the
29 largest categories, in which each category consists of
at least 600 images. In our experiments, we randomly
sample 1,000 images as the query set. For the unsuper-
vised methods, all the rest of the images are used as the
training set. For the supervised methods, 5,000 images
are further randomly selected from the rest images as the
training set.

• CIFAR-20 is another famous dataset for object recogni-
tion and image retrieval, which includes 20 superclasses
grouped from the CIFAR-100 dataset.5 and each class
contains 3,000 images of size 32×32. Following the sim-
ilar setting in [70], we randomly sample 100 images per
class as a test query set. For the unsupervised methods,
all the rest of the images are used for training. For the
supervised methods, 500 images per class are further
randomly selected from the rest images for training.

• NUS-WIDE is a public web image dataset downloaded
from Flickr.com, and it contains nearly 270,000 images
with one or multiple labels of 81 semantic con-
cepts. Following the setting [22] and [39] the subset
of 195,834 images that are associated with the 21 most
frequent concepts are used, where each concept consists
of at least 5,000 images. We also randomly sample
100 images per class as a query set. For the unsupervised
methods, all the rest of the images are used for training.
For the supervised methods, 500 images per class are fur-
ther randomly selected from the rest images for training.

B. Compared Algorithms

To demonstrate the performance of the proposed LSDH
method, we compare it with several popular hashing methods:

• LSH [8]: It generates a set of random linear projections
as hash functions.

• SH [61]: It learns hash functions by keeping the
neighbors’ consistency in both the input space and the
Hamming space.

• ITQ [9]: It minimizes the quantization loss by a pro-
jection matrix and identifies an orthogonal rotation

3https://www.cs.toronto.edu/ kriz/cifar.html
4http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
5https://www.cs.toronto.edu/ kriz/cifar.html

matrix to refine the initial projection function learned by
PCA/CCA.

• KSH [21]: It minimizes the Hamming distances of sim-
ilar pairs and simultaneously maximizes the Hamming
distances of dissimilar pairs based on a kernel-based
supervised hashing model.

• FastH [28]: It alternately seeks binary codes and learns
hash functions in two steps. Binary codes learning is
formulated as binary quadratic problems while hash func-
tions are accomplished by training a standard binary
classifier.

• SDH [51]: It learns hash functions and one linear classi-
fier by obtained hashing codes.

• CNNH [62]: It first solves for the hashing codes based on
the pair-wise similarities on the training set, and utilizes
the hashing codes and semantic labels to learn hash
functions.

• DNNH [22]: It learns the hash functions by maximizing
the margin between positive sample pair and negative
sample pair within a triplet.

• DHN [70]: It obtains similarity-preserving binary codes
by jointly learning robust image representations tailored
to hash coding and formally control the quantization error.

• DSH [32]: It takes pairs of images (similar/dissimilar)
as training inputs and encourages the output of each
image to approximate discrete values and simultaneously
imposing regularization on the real-valued outputs to
approximate the desired discrete values.

• HashNet [3]: It learns hash functions by a continuation
method with convergence guarantees, and take the imbal-
anced similarity data into consideration.

C. Experimental Settings and Protocols

We implement the proposed method based on the open-
source Caffe [17] framework. The VGG-16 [56] network is
adopted as our basic networks, which has been pre-trained
on the ImageNet2012 dataset [49]. For the hashing layer,
we set its learning rate to be 10 times of that in the preceding
layers. The initial learning rate is 0.0005 and the weight decay
parameter is 0.0005. For the two hyper-parameter parameters
in the quantization loss, we set λ = 0.8, μ = 0.25 in the
single-label dataset and λ = 0.8, μ = 0.75 in the multi-label
dataset, respectively.

In order to comprehensively compare the performance
of different methods, we utilize two search procedures,
i.e. Hamming ranking and hash lookup [66]. For Hamming
ranking, we use three evaluation criterias: 1) precision@500,
i.e., the average precision of the first 500 returned images,
2) precision@k, i.e., the top k closest images in the Hamming
space and 3) precision-recall curves. Regarding the hash
lookup, we adopt precision@R=2 for evaluation, i.e., preci-
sion within a Hamming distance of 2. Since the Mean Average
Precision (MAP) is an aggregative indicator of the overall
performance, we also utilize the MAP to evaluate the retrieval
performance. Considering the calculation of MAP being not
inefficient in a large-scale dataset, we report the results of
top 5,000 returned neighbors for the NUS-WIDE dataset.
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Fig. 5. Comparative evaluations on the CIFAR-10 dataset. (a) precision curves with Hamming radius r = 2. (b) precision curves with top 500 retrieved
samples. (c) precision curves with 48 hashing bits.

Fig. 6. Comparative evaluations on the SUN397 dataset. (a) precision curves with Hamming radius r = 2. (b) precision curves with top 500 retrieved samples.
(c) precision curves with 48 hashing bits.

TABLE I

MAP COMPARISON OF DIFFERENT HASHING
ALGORITHMS ON THE CIFAR-10 DATASET

To guarantee fair comparisons, all deep hashing methods
mentioned above are implemented using the Caffe frame-
work [17], and the source codes are provided by the corre-
sponding authors. In the experiments, all the methods use iden-
tical training and testing sets. For the deep hashing methods,
we use the raw image pixels as input. For traditional hashing

method, images are represented by the 512-dimensional hand-
crafted descriptor GIST [46]. In addition, in order to show the
accuracy by the CNN feature, we also represent each image
by a 4096-dimensional CNN feature that is extracted from the
VGG-16 pre-trained on the ImageNet, where we use ‘−C N N’
to distinguish them in our experimental comparisons.

D. Experiment Results and Analysis

1) Results on CIFAR-10: Table I shows the MAP scores
with all the returned results on the CIFAR-10 dataset for
different lengths codes. Among various methods compared,
it is clear that most of the deep hashing approaches constantly
outperform the traditional hashing methods both in hand-
crafted feature and CNN feature, e.g., LSH, KSH, and SDH,
This could be attributed to the fact that deep networks enable
joint learning of feature representations and hash functions
from raw pixels, and the two processes can promote each
other for improving the generation ability of hash coding.
In addition, the MAP scores of traditional hashing methods
with CNN feature distinctly outperform that with the hand-
crafted feature, and it indicates the CNN feature have more
powerful representation ability for raw images.

Compared to the state-of-the-art deep hashing methods,
the proposed LSDH method improves the average MAP
from 46.6%(CNNH), 55.2% (DNNH), 62.0%(DHN),
66.8%(HashNet) to 74.6% in 12-bit codes, this is because
that the CNN, DHN, HashNet mainly focus on the similar
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Fig. 7. Precision recall curves with different lengths codes on the CIFAR-10 dataset.

Fig. 8. Precision recall curves with different lengths codes on the SUN397 dataset.

TABLE II

MAP COMPARISON OF DIFFERENT HASHING

ALGORITHMS ON THE SUN397 DATASET

feature of image pair, and DNNH mainly utilizes the ranking
loss to maximize the margin between positive image pair
and negative image pair to obtain the relative similarity.
However, the proposed LSDH takes into consideration the
local structure of the data for hash learning and encourages
the generated binary codes to preserve their local similarity
based on their semantic relation. Besides, the LSDH method
shows some performance gain against the LSDHL1, and it
demonstrates that Hamming-isometric quantization schema is
favorable to generate more compact binary codes for image
retrieval.

More comprehensive results are demonstrated in Fig. 5.
Fig. 5(a) shows the precision curves within Hamming radius 2
for different lengths codes. Fig. 5(b) illustrates the precision
curves within the top 500 retrieved neighbors with various
numbers of bits. Fig. 5(c) gives the precision curves within
different numbers of top retrieved neighbors in 48 bits.
In addition, the precision-recall curves with different numbers
of bits are shown in Fig. 7. Compared to the state-of-the-
art methods, we can observe that our method consistently
obtain the best performance under these metrics, because our
method exploits the intrinsic structure of the data and the
generated binary codes by our model are more discriminative
yet compact.

2) Results on SUN397: SUN397 includes more detailed
information and is more challenging than CIFAR-10. Table II
shows the retrieval MAP results on the SUN397 dataset for
various bits. We can observe that the proposed LSDH achieves
the best results among all state-of-the-art hashing methods.
The LSDH outperforms the traditional hashing method with
the hand-crafted feature in a large margin. Although the MAP
scores of traditional hashing method with CNN feature have
achieved improvements greatly and even outperform some
deep hashing method, our method still surpasses them by
a clear advantage. Besides, we improve the retrieval MAP
from 15.5% (CNNH), 29.4% (DNNH), 34.4% (DHN), 51.3%
(HashNet) to 64.6% in 12-bit binary codes. This is because
the LSDH employs the semantic relation to preserve their
local similarity, rather than the similarity between a data
pair or the relative similarity within a triplet. Meanwhile,
the LSDH maintains the well learned paired similarity as much
as possible after binary quantizing, thus the binary codes are
more effective for retrieval.
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Fig. 9. Comparative evaluations on the CIFAR-20 dataset. (a) precision curves with Hamming radius r = 2. (b) precision curves with top 500 retrieved
samples. (c) precision curves with 48 hashing bits.

Fig. 10. Comparative evaluations on the NUS-WIDE dataset. (a) precision curves with Hamming radius r = 2. (b) precision curves with top 500 retrieved
samples. (c) precision curves with 48 hashing bits.

TABLE III

MAP COMPARISON OF DIFFERENT HASHING

ALGORITHMS ON THE CIFAR-20 DATASET

Fig. 6(a) shows the precision curves within Hamming
radius 2 for different lengths codes. it is clear that the proposed
LSDH approach gets the best search accuracy on all codes
lengths (over 70.0 % search precision in 24 bits, 32 bits,
48 bits). Fig. 6(b) illustrates the precision curves within the
top 500 retrieved neighbors with various numbers of bits

(over 70.0 % search precision except for 12 bits). Fig. 6(c)
gives the precision curves within different numbers of top
retrieved neighbors with 48-bit codes (the search precision is
consistently the best). In addition, Fig. 8 shows the precision-
recall curves with respect to different lengths codes, and the
proposed method consistently has obtained the best precision.

3) Results on CIFAR-20: To further verify the retrieval
performance of the proposed method, we compare LSDH
with the state-of-the-art hashing algorithms on the CIFAR-20
dataset. CIFAR-20 is another famous dataset for image
retrieval and includes 20 super-classes grouped from the
CIFAR-100 dataset.6 Table III shows the MAP results against
the state-of-the-art hashing methods, and it is observed that
the LSDH works the best. Due to more detail information in
this dataset, the overall retrieval results of the CIFAR-20 are
inferior to that of the CIFAR-10. In addition, with the codes
becoming longer, e.g., from 12 to 48, the gain of the MAP
become smaller in all methods, one reasonable explanation is
that the manifold distribution in more classes setting is much
more complicated to estimate.

Fig. 9(a) shows the precision within a Hamming distance
of 2. Fig. 9(b) shows the precision with the top 500 samples.
Fig. 9(c) illustrates the precision@k with 48 bits, and k ranges
from 100 to 1,000. It is observed that LSDH works the
best compared to all other methods. For the precision within
Hamming distance of 2, LSDH could keep a relatively good

6https://www.cs.toronto.edu/ kriz/cifar.html
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TABLE IV

MAP COMPARISON OF DIFFERENT HASHING
ALGORITHMS ON THE NUS-WIDE DATASET

result in various numbers of bits, and the performance of other
methods drops drastically when more bits are generated. The
reason for this is that the LSDH takes consideration of the
local structure of the data for hash coding, and it is prone to
preserve the similarity with its neighbors.

4) Results on NUS-WIDE: To verify the performance of
LSDH in multi-label image retrieval, we compare it with
several state-of-the-art hashing algorithms on the NUS-WIDE
dataset. In all experiments, the similarity between image pairs
is defined according to whether they share semantic labels.
Table IV shows the MAP scores of all compared methods,
we can observe that our approach consistently outperforms
these methods. For example, on the 12-bit codes, the LSDH
first exceeds the MAP score 81.3% while the state-of-the-art
MAP value is 78.1% [3]. In addition, it is observed that the
traditional hashing methods with CNN feature achieve more
than the 20% absolute gain of MAP scores compared to the
hand-crafted feature, and this indicates CNN feature is more
suitable to act as a representation for raw images.

The precisions within Hamming distance of 2 are shown
in Fig. 10(a), and LSDH achieves about 80.0% precision on all
code lengths. The precision curves within the top 500 retrieved
samples are shown in Fig. 10(b), and it is observed that
LSDH achieves a steady and high precision over 81.0%. The
precision curves at 48-bit binary codes of different numbers of
top retrieved samples are illustrated in Fig. 10(c), and LSDH
achieves over 85.0% accuracy for different numbers of top
retrieved samples. Under the three evaluation metrics, our
method outperforms other state-of-the-art supervised hashing
methods, which further demonstrates the benefits of exploiting
the local structure of the data in hash learning.

5) LSDH Versus Metric Learning: Hash learning consists
of metric learning and quantization. In the field of metric
learning, it generally utilizes contrastive loss [12], triplet
loss [50] and their variants for similarity learning.

Fig. 11. The MAP scores of binary codes of different methods based on the
CIFAR-10 and NUS-WIDE datasets.

Fig. 12. The MAP of LSDH @ 12 bits w.r.t. tradeoff parameter λ ∈ [0, 1]
and μ ∈ [0, 1]. (a) CIFAR-10. (b) NUS-WIDE.

In order to further validate the effectiveness of the proposed
LSDH, we make comparisons with these typical metric learn-
ing method for the application of image retrieval, including
LiftedStruct [45], BeyondTriplet [4], LearningAngular [60]
and the baseline triplet loss [50]. Noting that triplet loss
in [50] uses its assigned second network. Considering the error
between the real-valued output and the discrete binary codes,
we employ the proposed quantization technique after metric
learning for fair comparisons.

Based on the mean of ten-times running results, the MAP
scores of these metric learning methods on dataset
CIFAR-10 and NUS-WIDE are shown in Fig. 11. It is
clear that our approach obviously surpasses the baseline
triplet loss, and shows competitive results over other three
metric learning methods on different lengths codes. Specifi-
cally, we can achieve an average absolute increase of 5.21%
against LiftedStruct, 3.30% against BeyondTriplet and 1.95%
against LearningAngular on the CIFAR-10 dataset. On the
NUS-WIDE, we can achieve an average absolute increase of
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Fig. 13. Top 20 retrieved results from the CIFAR-10 dataset by LSDH with 12 bits. The first column shows the query examples, and other columns show
the top-20 retrieval results of LSDH. The red rectangles indicate wrong retrieval results.

6.80% against LiftedStruct, 4.15% against BeyondTriplet and
2.72% against LearningAngular.

The reason behind of getting better results is that the
proposed LSDH exploits the potential local structure for hash
learning, where we attempt to employ the semantic relation
to facilitate the binary codes preserving their local similarity,
rather than the similarity between a data pair or the relative
similarity within a triplet. Nevertheless, these metric learning
methods mainly learn a relative similarity within a triplet,
and it is not enough to obtain compact binary codes. The
LiftedStruct adopts an effective sampling to construct the triple
for obtaining a relative similarity. The BeyondTriplet further
reduces the anchor-positive sample pair variation to get a
robust relative similarity. The LearningAngular constrains the
angle of the negative point for obtaining a relative similarity.
In addition, the retrieval task aims to return the top k nearest
neighbors given an image, and we think our method is more
prone to find the nearest neighbors compared to these metric
learning methods.

E. Empirical Analysis

1) Sensitivity: We use the hyper-parameters λ and μ to
balance the importance of the proposed quantization loss.
In our schema, λμ is jointly used to balance the importance
of Hamming-isometric term.

Fig. 12 shows the effect on the MAP for different λ and μ
on the CIFAR-10 and NUS-WIDE datasets. We can see that
our model is stable for different λ. In addition, when μ is
non-zero, the precision becomes better to some degree, which
validates the effectiveness of the proposed Hamming-isometric
quantization loss.

2) Visualization: In order to observe intuitively the deep
representation, Fig. 14 visualizes the binary representation
learned by DHN [70], HashNet [3], LSDHL1 and LSDH
based on the visualization tool t-SNE [42], which is a non-
linear dimensionality reduction algorithm for exploring high

Fig. 14. The t-SNE of binary codes learned by DHN [70], HashNet [3],
LSDHL1 and LSDH on the CIFAR-10 dataset. (a) DHN. (b) HashNet.
(c) LSDHL1. (d) LSDH.

dimensional data and maps multidimensional data into two
or more dimensions for intuitive visual observation. In the
Fig. 14, different colors denote different category distribution
and a single point denotes a single sample, where we randomly
choose 1,000 samples of each category from the CIFAR-10
dataset (10 classes) for visualization.

We can observe that the DHN and HashNet fail to show
clear boundaries in Fig. 14(a-b), because their models only
learn pairwise similarity relationships in feature representation,
whereas LSDHL1 fully exploits the underlying structure of

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 09,2022 at 01:04:54 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: LOCAL SEMANTIC-AWARE DEEP HASHING 2677

TABLE V

MAP SCORES OF LSDH AND ITS VARIANTS, LSDH-C, LSDHL1, LSDHL1-C ON THREE DATASETS

data to preserve the similarity and learns more discriminative
deep representation, as shown in Fig. 14(c). LSDH further
takes into consideration Hamming-isometric quantization for
enhancing the quality of binary codes, so the boundaries
of deep representation are clearer in Fig. 14. In addition,
to acquire qualitative visual results, Fig. 13 shows the top
20 image retrieval results on CIFAR-10 with 12-bit binary
codes given a query image.

3) Ablation Study: We further investigate a variant of
LSDH: LSDH-C and a variant of LSDHL1: LSDHL1-C.
‘-C’ indicates that binarization (sign(x) → b) is not per-
formed in testing and we directly use the binary-like embed-
ding x for similarity retrieval.

We present the results of the MAP in Table V. We can
observe that LSDHL1-C gives superior results compared to
LSDHL1, due to the loss of discriminative power caused by
quantizing binary-like embedding into binary codes. LSDH
performs better than LSDHL1 with different lengths codes,
because LSDH can maintain the well learned paired similarity
after binary quantizing, thus LSDH can obtain more discrim-
inative and compact binary codes. In addition, LSDH-C is
superior to LSDHL1-C in the majority of cases, which further
demonstrates that the Hamming-isometric quantization schema
is beneficial to image retrieval.

V. CONCLUSION

In this paper, we propose a novel hashing method named
local semantic-aware deep hashing with Hamming-isometric
quantization to learn compact binary codes. We fully consider
the local structure of data distribution to perform hash learning,
and a semantic-aware loss is defined on multiple sample pairs
to preserve their local similarity. Moreover, we develop a
Hamming-isometric quantization loss to maintain the well
learned paired similarity after binary quantizing, which is
proved to be helpful in improving the quality of binary codes.
In addition, we make an extension of our model for coding
the multi-label image so that our model is adaptable to multi-
label image retrieval. Experimental results have shown the
effectiveness of our method compared with eleven state-of-
the-art methods on four widely-used image retrieval datasets.
In the future, we will further explore the underlying structure
of data to perform effective hash learning. We also plan to
investigate the quantization technique and figure out its impact
on the retrieval performance.
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