
Pattern Recognition 96 (2019) 106996 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Exploring uncertainty in pseudo-label guided unsupervised domain 

adaptation 

Jian Liang 

a , b , c , ∗, Ran He 

a , c , d , Zhenan Sun 

a , c , d , Tieniu Tan 

a , c , d 

a Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition, Institute of Automation, 

Chinese Academy of Sciences (CASIA), China 
b Department of ECE, National University of Singapore (NUS), Singapore 
c University of Chinese Academy of Sciences (UCAS), China 
d Center for Excellence in Brain Science and Intelligence Technology, CAS, China 

a r t i c l e i n f o 

Article history: 

Received 20 December 2018 

Revised 25 June 2019 

Accepted 31 July 2019 

Available online 1 August 2019 

Keywords: 

Unsupervised domain adaptation 

Pseudo labeling 

Feature transformation 

Progressive learning 

Transfer learning 

a b s t r a c t 

Due to the unavailability of labeled target data, most existing unsupervised domain adaptation (UDA) 

methods alternately classify the unlabeled target samples and discover a low-dimensional subspace by 

mitigating the cross-domain distribution discrepancy. During the pseudo-label guided subspace discovery 

step, however, the posterior probabilities (uncertainties) from the previous target label estimation step 

are totally ignored, which may promote the error accumulation and degrade the adaptation performance. 

To address this issue, we propose to progressively increase the number of target training samples and 

incorporate the uncertainties to accurately characterize both cross-domain distribution discrepancy and 

other intra-domain relations. Specifically, we exploit maximum mean discrepancy (MMD) and within- 

class variance minimization for these relations, yet, these terms merely focus on the global class structure 

while ignoring the local structure. Then, a triplet-wise instance-to-center margin is further maximized to 

push apart target instances and source class centers of different classes and bring closer them of the 

same class. Generally, an EM-style algorithm is developed by alternating between inferring uncertainties, 

progressively selecting certain training target samples, and seeking the optimal feature transformation to 

bridge two domains. Extensive experiments on three popular visual domain adaptation datasets demon- 

strate that our method significantly outperforms recent state-of-the-art approaches. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Researchers always assume that the training and testing data

re drawn from the same distribution for simplicity in the field

f pattern recognition and machine learning. Nevertheless, the as-

umption does not always hold in real-world applications, and the

erformance at testing time can be significantly degraded [1] . For

nstance, a classifier trained on the annotated near-infrared human

aces (the so-called source domain) may fail to recognize the face

mages under the visible light (target domain). To tackle this is-

ue, a naive strategy would be to collect a certain number of la-

eled target data, yet it is time-consuming and expensive. Benefit-

ng from cheap and massive publicly available datasets, researchers

ome up with another emerging strategy, domain adaptation (DA).

A tries to leverage domain shift characteristics from labeled data
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n an auxiliary and related domain for learning with new unlabeled

r partially labeled data [2] . According to the availability of labeled

arget instances, domain adaptation methods can be divided into

wo main categories, unsupervised one [3,4] and semi-supervised

ne [5,6] . The common practice of discriminative training is not

enerally feasible for unsupervised cases, however, making it es-

ecially challenging to describe the cross-domain relation. In this

aper, we focus on this challenging but practical unsupervised do-

ain adaptation problem. 

Numerous approaches have been proposed in the last decade to

ddress unsupervised domain adaptation (UDA) [7–12] . To relate

wo different feature spaces together, one natural solution is in-

tance re-weighting, i.e., adjusting the weights of source instances

o better match the target data distribution [13] . However, this so-

ution works well only when certain parts of source instances can

e reused for learning with the target domain, and the conditional

istributions are not identical [14] , which is rather hard to meet.

n contrast, feature transformation methods [15,16] are more flexi-

le where one common subspace is sought to make two domains

istribute similarly to each other. The majority of existing feature
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Fig. 1. Toy example of the instance-to-center margins. (a) is more preferred than (b) since two target classes are more separable. (Green arrow: instance-to-center distance, 

best viewed in color). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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transformation methods incorporate the empirical maximum mean

discrepancy (MMD) [17,18] as a regularizer on the feature map-

ping function to mitigate various distribution differences across do-

mains. Apart from the marginal distribution difference exploited in

[15,16] , JDA [19] further considers the conditional distribution dif-

ference across domains, which greatly improves the recognition ac-

curacy. 

Due to the lack of labeled target instances, an iterative pseudo-

label guided scheme is always adopted by UDA methods to es-

timate the pseudo target labels, which further guide the feature

transformation [20,21] or non-linear feature representations learn-

ing of deep methods [22] . Extensive effort s have been devoted to

leveraging MMD to explicitly minimize the distances of the empir-

ical expectations of different distributions (i.e., the domain mean

and the class means), i.e., the distribution discrepancy is measured

by several pairwise distances. Looking at Fig. 1 , we find that (a)

and (b) share nearly the same empirical MMD values, however, we

expect the margin between each one target instance to its corre-

sponding source center and other source centers to be maximized

like (a). Obviously, maximizing this triplet-wise instance-to-center

margin will enforce more separable target classes in turn. Actu-

ally, we focus on local separability by exploring hard negative min-

ing [23] where the closest source center from different classes in-

stead is picked as a negative sample within the triplet. 

Different from supervised DA methods like [24] where the tar-

get labels are accurately provided, the pseudo target labels appear-

ing during the iteration process are often not accurate, which can

deteriorate the following feature transformation optimization prob-

lem for UDA. For example, if the initialized domain-invariant pro-

jection is not good enough, some hard target instances lying on the

border of multiple classes would be misclassified, which severely

affects the feature projection step in turn. Nevertheless, none of

the previous DA methods have ever considered the confidences of

the pseudo labeled target data. 

To address these issues above, we put forward a novel

method called Progressive leArning with Confidence-wEighted Tar-

gets (PACET) for UDA. We follow [21] and exploit the within-

domain intra-class compactness and cross-domain distribution dif-

ference to infer the domain-invariant projection, thus two domains

onto the learned subspace are expected to be semantically aligned

and discriminative. As mentioned above, the discriminative ability

is further enhanced by considering a local repulsive force term in

Fig. 1 . Then we train a standard classifier with projected source in-

stances and exploit the conditional posterior probability as confi-

dence of each uncertain target to each class rather than treat these

target samples equally. Furthermore, these target confidences are

seamlessly incorporated into both cross-domain and with-domain

objectives for better adaptation. Intuitively, previous class centers

are calculated by weighting different target instances, where the

hard samples contribute less to updating the target class centers,

which is considered somewhat to misclassified instances. Addition-

ally, inspired by self-paced learning [25] where training samples

are automatically included from ‘easy’ to ‘hard’, we further arrange

the target instances in order of the formerly learned confidences

t  
nd progressively pick them with the increase of the number of it-

rations, which is expected to alleviate the error accumulation. Fi-

ally, an EM-style scheme is exploited to alternately learn feature

ransformation, estimate the pseudo target labels as well as their

lass confidence scores (i.e., class posterior probability) and select

ertain training target instances. Empirical experiments reveal that

his EM-style scheme quickly converges in several iterations (See

ig. 4 ). The main contributions of this paper are summarized as

ollows: 

• We introduce the problem of addressing the uncertainties of

target pseudo labels, which is important yet under-studied in

the domain adaptation area. 
• We propose a novel approach that progressively includes more

target samples into training and incorporates previously esti-

mated class confidence scores to characterize both the within-

and cross- domain relations. Especially, we provide a more ac-

curate conditional distribution discrepancy than that of [19,21] .
• To fully exploit the discriminative cross-domain structures, we

compensate joint distribution adaptation by designing a new

local triplet-wise instance-to-center margin for better separa-

bility. 
• Experimental results demonstrate the superiority of our

method over recent state-of-the-art approaches. Particularly, on

the challenging Office-Caltech dataset with VGG features show

that our method advances the best reported average accura-

cies [26] from 83.4% to 88.2% and 81.7% to 87.2%, respectively. 

. Related work 

Here we provide a brief review of MMD, then discuss some

losely related feature transformation based UDA methods. 

.1. Maximum mean discrepancy 

MMD [17] is primarily proposed to test whether distributions

 and q are different on the basis of samples drawn from each of

hem, by finding a smooth function that behaves distinctively on

he points drawn from p and q . Specifically, the squared MMD in

 Reproducing Kernel Hilbert Space (RKHS) H is formulated as fol-

ows, 

MD 

2 [ F, p, q ] = sup 

‖ f‖ H ≤1 

‖ E x [ f (x )] − E y [ f (y )] ‖ 

2 
H 

, 

here the notations E x [ f (x )] = E x ∼p [ f (x )] and E y [ f (y )] =
 y ∼q [ f (y )] denote the expectations w.r.t. p and q , and ‖ f‖ H 

≤ 1

epresents a set of functions in the unit ball of H. As proven in

18,27] , MMD 

2 [ F , p, q ] = 0 iff p = q . 

In a RKHS, function evaluations can be written as f (x ) =
 φ(x ) , f 〉 , and k (·, ·) = 〈 φ(·) , φ(·) 〉 is the universal kernel associ-

ted with this mapping function. Then the expectation E x [ f (x )]

an be rewritten as E x [ f (x )] = 〈 μ[ p] , f 〉 , where μ[ p] = E x ∼p [ φ(x )]

s the expectation of φ( x ). Given observations X := { x 1 , . . . , x m 

} and

 := { y 1 , . . . , y n } , drawn i.i.d. from the distributions p and q respec-

ively, an empirical estimate of squared MMD [17] is further given
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t∥∥∥∥∥
̂ MD 

2 
[ F, X, Y ] = 

∥∥∥∥∥ 1 

m 

m ∑ 

i =1 

φ(x i ) −
1 

n 

n ∑ 

j=1 

φ(y j ) 

∥∥∥∥∥
2 

H 

. (1)

.2. Feature transformation based UDA methods 

We introduce several similar works [15,16,19–21,28,29] in spirit

o our work and discuss the differences between them. Being

ne of the pioneering feature transformation based DA methods,

CA [15] embeds both the source and target data into a shared

ow-dimensional space, and attempts to jointly preserve the vari-

nce and reduce the marginal distribution difference across do-

ains. DIP [16] exploits manifold learning and Gaussian kernel for

MD, and accounts the source discriminative information by mini-

izing the source within-class variance. Besides previous marginal

istributions, JDA [19] first exploits the conditional distributions

cross domains in the common space together to better character-

ze the cross-domain difference. Once pseudo target labels are ob-

ained, JDA would pull closer not only the overall domain means

ut also the same class means from different domains, which

s more desirable. DICE [21] proposes a simple domain-irrelevant

lass clustering objective which has been proven to include both

DA and DIP as special cases, while MCS [28] develops a related

inimum center shift strategy for weakly supervised source do-

ain. DGA-DA [29] extends JDA by putting forward a repulsive

orce term, which drags different classes across domains far away

rom each other. Besides, JGSA [20] designs two geometrically close

rojections for the source and target domains, respectively. Besides

he coupled projections learning, it also accounts for the source

iscriminative information preservation as well as total variance

aximization. 

Apart from data-centric transformation methods, subspace cen-

ric transformation methods [3,7] directly align two domains

ather than discover a new common space and recent studies

30,31] in the literature exploit the optimal transport theory. Ben-

fiting from the powerful representations of deep neural net-

orks, recent deep DA methods [11,32–35] have achieved great

uccesses. Among them, [11,32] try to minimize the domain dis-

repancy while [33,34] explore the adversarial objective to encour-

ge domain confusion. Researchers further address some novel DA

roblems, e.g., DA with supervision from source classifiers [36] ,

pen-set DA [37] . Regardless of shallow and deep DA methods, the

ajority of them utilize MMD to measure the domain difference,

owever, none of them account for the weights of target instances,

esulting into the degraded class means in the target domain. 

Generally, our method is built on DICE [21] by adding one local

epulsive term and considering the probabilistic divergences and

ariances as well as a curriculum learning framework. Specifically,

he cross-class repulsive term differs from that of DGA-DA in con-

idering the locality (pushing far away the most indistinguishable

lass rather than all other classes). To the best of our knowledge,

ur work is among the first attempts to incorporate the uncertain-

ies of pseudo target labels to domain adaptation. 

.3. Semi-supervised learning 

In reality, UDA can be considered as a vanilla semi-supervised

earning problem if the difference across domains vanishes. Thus,

ome popular techniques, e.g., self-training [38] and co-training

39] , adopted in semi-supervised learning can be naturally applied

o UDA. Typically, at each iteration, self-training (also called self-

eaching) adds the most confident unlabeled points together with

heir predicted labels to the training set, and re-trains the clas-

ifier to obtain the new confidences until there are no unlabeled

ata left. Following this idea, [40] exploits a strategy inspired by
41] in which the unlabeled samples with the maximum and min-

mum values of the decision function are moved into the training

et, and designs an effective solution for domain adaptation. 

On the contrary, co-training always assumes that each exam-

le is described using two different feature sets that provide differ-

nt, complementary information about the instance. [42] develops

 co-transfer learning framework which seamlessly combines the

o-training and transfer learning paradigms for cross-resolution

ace matching. Inspired by self-paced learning, [43] improves co-

raining with a “draw with replacement” learning module to re-

ove false labeled instances in the initial training rounds. Simi-

arly, [44] proposes a self-paced adaptation to shift object detection

odel from images to videos by learning labeled source samples

nd target data with pseudo-labels in an easy-to-hard way. 

Actually, our method exploits a progressive learning paradigm

hat behaves like self-training and co-training, however, we neither

ove the most confident labeled target data to the source domain

or address a new semi-supervised DA problem by adding previ-

us pseudo-labeled target data to the target domain. 

. Proposed approach 

.1. Notations and definitions 

Denote by p s ( x s ) and p t ( x t ) the probability density functions

f the source data and target data respectively, then each col-

mn of X s ∈ R 

d×n s represents one sample drawn from p s ( x s ), each

olumn of X t ∈ R 

d×n t represents one sample drawn from p t ( x t ),

here d is the feature length of the data instance, n s and n t in-

icate the number of samples in the source and target domain

espectively. Regarding UDA, the labels of the whole source do-

ain are available, i.e., D s = { (x i , y i ) } n s i =1 
, and for the target domain

 t = { (x j , y j ) } n t j=1 
, labels are unavailable during the training phrase.

ote that the label space Y s = Y t is assumed and each domain con-

ains C identical classes, when the feature space X s = X t is also as-

umed, but p s (x s ) 	 = p t (x t ) , which is named dataset shift. Typically,

 k -dimensional space is sought to align different domains in itself,

n explicit feature mapping matrix W ∈ R 

d×k is introduced for sim-

licity. 

Through the paper, all the matrices are written as uppercase,

nd lowercase letters for vectors. For a matrix M , its ( i, j )th ele-

ent is denoted by m ij , and the transpose of its i th row is dented

y m i . The transpose and trace of M are denoted by M 

T and tr ( M )

espectively, the Frobenius norm of matrix M is denoted by ‖ M ‖ F ,
nd the l 2 -norm of a vector v is denoted by ‖ v ‖ 2 . 1 n represents

 full one vector of length n , and I n denotes an identity matrix.

 = diag (b) is a diagonal matrix with its diagonal entry as a i,i = b i .

.2. Objective function 

The proposed method PACET tackles unsupervised domain

daptation by mitigating the joint distributions across domains and

reserving the discriminative information for both domains at the

ame time. 

The detailed objective function of each component in PACET is

iscussed as follows. 

Joint Distribution Discrepancy. As suggested in previous works

19,21] , we first aim to reduce the distances of the marginal distri-

utions ( p s ( x s ) and p t ( x t )) and C conditional distributions ( p(x s | y s =
) and p(x t | y t = c) , where c ∈ [1, C ]) across domains. Since these

istribution differences are nontrivial, we follow [15,19] to adopt

he empirical squared MMD to measure them as 

1 

n s 

n s ∑ 

i =1 

W 

T x i −
1 

n t 

n ∑ 

j= n s +1 

W 

T x j 

∥∥∥∥∥
2 

+ 

1 

C 

C ∑ 

c=1 

∥∥W 

T e s c − W 

T e t c 
∥∥2 

2 
, (2) 
2 
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where a total data matrix X = [ X s , X t ] ∈ R 

d×n is defined for conve-

nience, and n = n s + n t . Besides, y = [ y 1 , . . . , y n s , . . . , y n ] is a class

indicator variant, y i ∈ { 1 , . . . , C} is an integer variable, and n c s and

n c t are the numbers of source samples and target instances belong-

ing to class c respectively. e s c and e t c respectively denote the source

and target centers of the c th class, i.e., e s c = 

∑ n s 
i =1 

x i 1 (y i , c) /n c s , e 
t 
c =∑ n 

j= n s +1 x j 1 (y j , c) /n c t . The binary indicator function 1 (a, b) outputs

1 when a = b is true, 0 otherwise. That is to say, the overall

means and class-wise means of the k -dimensional embedding of

the source and target data are required to be as close as possible. 

Cross-Domain Local Structure. Since the MMD based cross-

domain discrepancy measures the distances between sets, we fur-

ther introduce the aforementioned triplet-wise instance-to-center

margins below to consider the cross-domain local structure, 

n ∑ 

j= n s +1 

‖ W 

T x j − W 

T e s y j ‖ 

2 
2 − ‖ W 

T x j − W 

T e s z j ‖ 

2 
2 , (3)

where z j denotes the closest negative class of target instance x j ,

which will be explained below. Intuitively, minimizing this margin

will enforce two groups of different classes apart from each other

locally. Note that, even though both consider the triplet-center loss,

this term here is quite different from that of [45] . We use a simple

l 2 loss instead of the hinge loss in [45] , which helps find a closed-

form solution. Besides, the centers come from one identical modal-

ity for object retrieval in [45] while two centers in Eq. (3) come

from different domains. 

Intra-class variance and total variance. Inspired by linear dis-

criminant analysis (LDA), the within-domain intra-class variances

are minimized to preserve the discriminative information while

maximizing the total variance of both source and target instances.

Obviously, such operations make the inter-class variance larger,

where separate source/target classes are expected. Both variances

are naturally defined below, 

n s ∑ 

i =1 

∥∥W 

T x i − W 

T e s y i 

∥∥2 

2 
+ 

n ∑ 

j= n s +1 

∥∥W 

T x j − W 

T e t y i 

∥∥2 

2 
, 

and 

n ∑ 

i =1 

∥∥∥∥∥W 

T x i −
1 

n 

W 

T 
n ∑ 

q =1 

x q 

∥∥∥∥∥
2 

2 

. (4)

To this end, we illustrate all four objective functions in Eqs. (2)–

(4) for domain-invariant projection learning. Note that all of them

need to know the pseudo labels of target instances [ y n s +1 , . . . , y n ] .

In the following, we explain how to estimate them and z j , j ∈
[ n s + 1 , n ] with previous learned projection W . Actually, the pseudo

target labels can be directly estimated from the source classifier,

however, we expect more information from these conditional pos-

terior probabilities. As explained in [19] , it is quite hard to directly

model p ( y | x ), thus we resort to explore the sufficient statistics of

class-conditional distributions p ( x | y ) instead. Carefully examining

the complete form of the conditional probabilities p ( x i | y ), we find

that 

p(x u | y u = c) = 

p(y u = c| x u ) p(x u ) 

p(y u = c) 
, u ∈ { s, t} , 

where p(y u = c) = 

∑ 

x u 

p(y u = c| x u ) p(x u ) 

are the class prior probabilities of being c in the source and tar-

get domains, respectively. We should mention that, all the source

instances are labeled beforehand, hence both the conditional prob-

ability and the prior probability are easily obtained. Subsequently,

the expectation of conditional probability p(x s | y s = c) is calculated

as e s c = 

∑ n s 
i =1 

x 1 (y i , c) / n 
c 
s . 
.3. Confidence-weight strategy 

To address these probabilities in the target domain, we further

everage the posterior probabilities p ( y t | x t ) to accurately estimate C

arget class means, i.e., 

e t c = 

n ∑ 

j= n s +1 

x j s (y j , c) , 

here s (y j , c) = p(y j = c| x j ) / 
∑ 

j 

p(y j = c| x j ) , (5)

here p(y j = c| x j ) measures the posterior probability of target in-

tance x j belonging to the c th class, and s (y j , c) denotes the nor-

alized weight of target instance x j to class c . These probabil-

ty values can be easily obtained by logistic regression or other

lassifiers built on the annotated projected source instances. In

his paper, we adopt the K -nearest neighbor classifier for sim-

licity, which owns only one parameter K . The detailed posterior

robability of projected instance x is described as p(y j = c| x ) =
 

q 1 (y q , c) /K, where q denotes the indexes of K nearest neighbors

f x in the previous projected source domain. 

Last but not least, we need to estimate the pseudo label y j and

he closest negative class z j for each target instance x j via the pos-

erior probability 

 j = arg max 
1 ≤c≤C 

p(y = c| x j ) , z j = arg max 
1 ≤c≤C,c 	 = y j 

p(y = c| x j ) . 

.4. Reformulation and optimization 

Following [15,19] , we first provide an equal and simple formula-

ion for the optimization problem in Eq. (2) as tr(W 

T X M 0 X 
T W ) +

1 
C 

∑ 

c tr(W 

T X M c X 
T W ) respectively, where M 0 , M c ∈ R 

n ×n are ex-

ressed as 

(M 0 ) i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 

n s n s 
, x i , x j ∈ D s 

1 

n t n t 
, x i , x j ∈ D t 

−1 

n s n t 
, otherwise . 

, (M c ) i j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

n c s n 
c 
s 

, x i , x j ∈ D 

c 
s 

s (y i , c) · s (y j , c) , x i , x j ∈ D t 

−s (y i , c) 

n c s 
, x i ∈ D 

c 
s , x j ∈ D t 

−s (y j , c) 

n c s 
, x j ∈ D 

c 
s , x i ∈ D t 

0 , otherwise . 

(6)

ere D 

c 
s represents the set of source samples belonging to class c ,

nd s (y j , c) indicates the normalized weight of target instance x j 
o class c . For convenience, we introduce four auxiliary matrices

 s ∈ R 

n s ×C , ˆ Y t ∈ R 

n t ×C , Z t ∈ R 

n t ×C , all of them are one-hot encoding

atrices of corresponding variables y, z , like 

( ̂  Y t ) i j = 

{
1 , y n s + i = j 
0 , otherwise . 

, (Z t ) i j = 

{
1 , z n s + i = j 
0 , otherwise . 

, (7)

nd S t ∈ R 

n t ×C being the target posterior probability matrix,

(S t ) i, j = p(y n s + i = j| x n s + i ) . Subsequently, Eq. (3) can be rewritten as

 W 

T X [ Y s (Y 
T 

s Y s ) 
−1 ˆ Y T t ;−I n t ] ‖ 

2 
F − ‖ W 

T X [ Y s (Y 
T 

s Y s ) 
−1 Z T t ;−I n t ] ‖ 

2 
F . (8)

ikewise, Eq. (4) is easily reformulated as tr ( W 

T XM w 

X 

T W ) by defin-

ng 

 w 

= 

[
I n s − Y s (Y T s Y s ) 

−1 Y T s 0 

0 I n t − S t (S T t S t ) 
−1 S T t 

]
. 

ote that, inspired by reverse prediction [46] , the target within-

lass variance is alternated by introducing a latent center variable

 t ∈ R 

d×C which minimizes ‖ E t Y T t − X t ‖ 2 as much as possible. In



J. Liang, R. He and Z. Sun et al. / Pattern Recognition 96 (2019) 106996 5 

t  

t  

[  

t

m

w  

M

Y  

t  

p  

L  

t

L

T  

d  

a(
 

T  

e  

l

 

[  

f  

t  

f  

p  

E

 

d  

m  

r  

i  

p  

s  

r

A  

g

I  

 

 

O

 

3

 

m  

a  

b  

w  

u  

g  

a  

s  

c  

r  

F

3

 

m  

i  

r  

h  

i  

c

4

 

a  

w

4

 

t  

a  

t  

d

 

a  

e

 

p  

i  

i  

(  

n

4

 

t  

A  

s  

i

 

t  

g  

C  

D  

s  

t  

a  

1 https://www.csie.ntu.edu.tw/ ∼cjlin/libsvm/ . 
his way, the larger posterior probability, the closer distance be-

ween target instance to its associating center will be enforced like

47] . Finally, we arrive at one equivalent but simplified optimiza-

ion problem for PACET in the following, 

in 

W 

�(W ) = tr(W 

T X ̃

 M X 

T W ) + λ‖ W ‖ 

2 
F , s.t. W 

T X HX 

T W = I k , 

(9) 

here H = I n − 1 n 1 
T 
n ∈ R 

n ×n is the data centering matrix, ˜ M =
 0 + 

1 
C 

∑ 

c M c + αM i + βM w 

, M i = [ Y s (Y 
T 
s Y s ) 

−1 ˆ Y T t ; −I n t ][ Y s (Y 
T 
s Y s ) 

−1 

ˆ 
 

T 
t ;−I n t ] 

T − [ Y s (Y 
T 
s Y s ) 

−1 Z T t ; −I n t ][ Y s (Y 
T 
s Y s ) 

−1 Z T t ; −I n t ] 
T , α, β are two

rade-off parameters, and λ is a hyper parameter (regularization

arameter) to guarantee the matrix being nonsingular. Using

agrange multiplier � = diag (ψ 1 , . . . , ψ k ) ∈ R 

k ×k , we can obtain

he Lagrange function for problem (9) 

 (W, �) = t r 
(
W 

T 
(
X ̃

 M X 

T + λI k 
)
W 

)
− t r 

(
�

(
W 

T X HX 

T W − I k 
))

. 

(10) 

o seek the minimization of this objective, we set the partial

erivative of L w.r.t. W to zero, and obtain the following gener-

lized eigenvalue problem, 

X ̃

 M X 

T + λI k 
)
W = � · X HX 

T W. (11)

hus, the optimal state arrives when W corresponds to the k small-

st eigenvectors of the above eigen-decomposition. Luckily, this so-

ution is closed-form. 

Progressive learning scheme Inspired by self-training

40,48] and self-paced learning [25] , we also develop a progressive

ramework that incrementally includes more target instances with

he increase of iterations. Concretely, we rank the target instances

rom ‘easy’ to ‘hard’ via the maximum posterior probability, and

ick certain numbers of ‘easy’ instances into the training process.

ventually, all the target instances are considered. 

Once the projection W is learned, we immediately obtain a k -

imensional space, then we re-train a classifier (KNN in the experi-

ent) using all the labeled source instances and predict the poste-

ior probability (i.e., label proportions) of a target instance belong-

ng to different classes. Finally, these three steps including feature

rojection learning, posterior probability inference, target instance

election are alternately carried out to constitute an EM-style algo-

ithm, the pseudo-code is summarized in Algorithm 1 . 

lgorithm 1 Progressive leArning with Confidence-wEighted Tar-

ets for Unsupervised Domain Adaptation. 

nput: Source data { X s , Y s } and target data X t ; trade-off parameters

α = 1, β = 0.01, # maximum iteration T = 15 ; neighborhood

size K, subspace dimensionality k , tradeoff parameters λ, initial

proportion p i , proportion increasing rate θ ( θ ≤ 0.1). 

utput: Projection matrix W ; embedding R ∈ R 

k ×n ; classifier f . 

1: Initialize { M c } C c=1 
, M i , M w 

as 0 and construct M o in Eq. (6); 

2: while not converge and iter ≤ T do 

3: Solve the generalized eigen-decomposition problem in Eq.

(11) for W . 

4: Obtain the k -dimensional embedding R = W 

T [ X s , X t ] . 

5: Train a K-NN classifier on source instances { (r i , y i ) } n s i =1 
. 

6: Predict the targets’ posterior probability p(y j = c| z j ) . 
7: Update matrices ˆ Y t , Z t , and arrange target instances. 

8: Pick ( p i ∗ n t ) ‘easy’ target instances to constitute new X t . 

9: Update p i = min (p i ∗ (1 + θ ) , 1) . 

10: Update the matrices { M c } C c=1 
, M i , M w 

. 

11: end while 

12: Re-train one 1-NN (or SVM) classifier f on { (r i , y i ) } n s i =1 
. 
.5. Model selection 

Traditional cross-validation does not work for unsupervised do-

ain adaptation since no labeled data in the target domain are

vailable. In this paper, we adopt a reverse validation strategy that

ehaves similar as [49] . Detailedly, given a group of parameters,

e can train multiple models together with their predictions on

nlabeled target data. Then we reverse the source domain and tar-

et domain, i.e., we consider the target data and their predictions

s new source domain, and infer the labels of the originally labeled

ource data (new target domain) via the same parameters, thus we

an obtain the validation accuracy to determine the optimal pa-

ameters. The detailed flowchart of reverse validation is shown in

ig. 2 . 

.6. Complexity analysis 

We now discuss the computational complexity of the proposed

ethod in Algorithm 1 . The projection step consists of construct-

ng some matrices and solving the eigen-decomposition problem,

espectively occupies O(nC 2 + n 2 d + nd 2 ) and O(kd 2 ) . On the other

and, the prediction step occupies O(n s n t d) . The ranking and pick-

ng step occupies O(n t logn t ) . Since C 
 d and k 
 n , the overall

omplexity of PACET is O(T nd 2 + T n 2 d) . 

. Experiments 

We extensively compare our method with recent state-of-the-

rt unsupervised domain adaptation approaches on several real-

orld visual benchmark datasets. 

.1. Datasets 

Office31 [50] contains 4110 images of 31 categories of objects

hat provides three different domains, i.e., Amazon (A), DSLR (D),

nd Webcam (W). The Amazon subset contains product images on

he web, while the DSLR and Webcam subsets capture objects with

ifferent quality-level cameras. 

Office-Caltech [10] extends the Office31 dataset to include an

uxiliary object dataset Caltech-256, and extracts 10 common cat-

gories shared by them. 

PIE includes massive facial images of 68 people with various

ose, illumination, and expression changes. We follow the setting

n [31] instead of [19] by selecting 4 poses captured by cameras

n 4 different positions, i.e., P1 (C05, left), P2 (C07, upward), P3

C09, downward), and P4 (C29, right). All these facial images are

ormalized to the size 32 × 32. 

.2. Experiment setting 

For each dataset and each kind of features, we need to project

hem onto the unit ball (i.e., l 2 normalization) at first. Note that

 → B indicates that A is the source and B is the target domain. Be-

ides, we evaluate different methods in term of the cross-domain

nstance-level accuracy (%). 

Baseline methods. 1-NN and SVM are two the basic methods

hat are trained on the raw source data and infer the labels of tar-

et instances. We compare PACET with GFK [10] , SA [3] , JDA [19] ,

ORAL [7] , JGSA [20] , Invariant Latent Space (ILS) [8] , LDADA [51] ,

ICE [21] and ATI [37] , etc. For fair comparisons, a linear SVM clas-

ifier is also built by LIBLINEAR 

1 in the last step to further verify

he effectiveness of learned embedding, dubbed PACET ∗. Note that,

ll these non-1-NN based methods are marked with ∗ to distinguish

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 2. Toy example of reverse validation for UDA. F ( s, t, θ ) denotes the model where s is the labeled source domain, t is the unlabeled target domain, and θ represents 

model parameter, best viewed in color. 
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them from 1-NN based methods. Once incorporated with deep fea-

tures, PACET ∗ is also compared with deep DA methods (e.g., Resid-

ual Transfer Networks (RTN) [52] and Joint Adaptation Networks

(JAN) [32] ). 

Features & protocols. For all datasets, we exploit the stan-

dard features kindly provided by previous works. For Office31, we

use the AlexNet-FC 7 features fine-tuned on the source domain in

[7] and ResNet50 features 2 . The DeCAF 6 [20] and VGG-FC 6,7 [8] as

well as the shallow z -scored SURF features [50] are adopted for

Office-Caltech. Besides, we adopt the 1024 dimensional raw-pixel

features provided in [19] for PIE. For each dataset, all the la-

beled source instances are utilized for training unless otherwise

specified. For the Office-Caltech dataset, another popular protocol

named ‘sampling protocol’ [7,8,10] is also adopted. Under this pro-

tocol, 20 instances per class for A, C, W and 8 instances per class

for D are randomly selected for the source domain. 

Implementation details. Almost all the methods mentioned

above have hyper-parameters, yet, it is impossible to conduct a

standard cross-validation with no target labels being unavailable.

Following [19] , we evaluate all methods whose codes are kindly

provided by empirically searching the parameter space for the

optimal parameter settings, and report the best results of each

method. For other methods, we directly adopt their reported re-

sults in the original papers that are assumed to be their best per-

formance. For our method PACET, two free parameters α, β are

fixed leaving only three parameters λ, k, K and hyper-parameters

p i , θ tunable. Note that, we discard the progressive strategy and

carry out reverse validation in Fig. 2 to obtain optimal parameters

for λ, k , where λ∈ [0.001, 0.01, 0.05, 0.1], k ranges from C to 2 C . The

detailed values and the parameter sensitivity study are provided in

the following section. 

4.3. Comparison results 

Results on Office31. Table 1 tabulates the cross-domain recog-

nition results of different UDA methods on the Office31 dataset.

Among the counterparts with the AlexNet architecture, DICE and

JAN-A are the state-of-the-art approaches for shallow and deep

models, respectively. PACET ranks the highest and second highest

in all six tasks, and it consistently outperforms DICE. Compared to

deep DA methods, PACET is clearly superior and achieves similar

accuracies to JAN-A. Specially, PACET performs the best for small

source to large target like D → A and W → A. 

Once equipped with ResNet50 features, PACET clearly and con-

sistently beats JAN-A for all six cases, which demonstrate the po-

tential of our method. Compared to two recent state-of-the-art ap-
2 https://twanvl.nl/research/domain-adaptation-2017/ . 
roaches SimNet and iCAN, PACET still achieves the best average

ccuracy. For different kinds of features, PACET ∗ respectively out-

erforms the baseline SVM 

∗ by 13.0% and 11.1%, which again veri-

es the effectiveness of our method. Regarding the parameters, we

et λ = 0 . 1 , k = 31 , K = 10 according to the reverse validation. 

Results on Office-Caltech. We investigate two protocols and

our kinds of features in this dataset in Tables 2 and 3 . Regarding

he SURF features with full protocol in Table 2 , PACET advances

he state-of-the-art shallow approach DICE from 51.3 to 53.6 in

erm of the average accuracy. Concretely, PACET ∗ and PACET re-

pectively rank the best or the second best results in 10 and 6 of

2 tasks, which significantly outperform LDADA 

∗, DICE, and KWC 

∗.

bviously, deep features strongly enhance the shallow models like

GSA, LDADA 

∗, DICE ∗ and PACET ∗ in terms of the average accu-

acy. PACET ∗ still obtains the highest average accuracy (93.5) when

wo previous highest reported methods are LSC 

∗ (92.6) and DICE ∗

92.4). Carefully accounting the underlined values, we find that

TN-res merely wins PACET ∗ in 6 out of 12 cases, which further

upports that our shallow PACET ∗ method is still very competi-

ive with RTN-res [52] that achieves the best performance on this

ataset. For the free parameters, we set λ = 0 . 1 , k = 20 , K = 5 . 

On the other hand, we compare PACET with two state-of-the-

rt methods, ILS and PUnDA under the standard sampling proto-

ol [10] . For almost all methods except 1-NN and SVM, VGG-FC 6 

eatures are more favorable, that is maybe because deeper layer

rovides discriminative features that are not suitable for adapta-

ion. It can be easily seen that PACET and PACET ∗ always signifi-

antly surpass other methods including JGSA, ILS, PUnDA, LDADA

nd DICE for both features. The improvements of PACET ∗ over best

eported results in [26] w.r.t. the average accuracy are 5.8% and

.7%, respectively. Once changed to the sampling protocol, the im-

rovement of PACET grows much larger, thus, we can draw a con-

lusion that our method performs much better especially when

he source is relatively small. For the free parameters, we set λ =
 . 1 , k = 15 , K = 5 . 

Results on PIE. Observing the results in Table 4 , PACET and

ACET ∗ are two best-performing methods w.r.t. the average accu-

acy, which also rank within top two in both 8 out of 12 tasks,

espectively. Among the counterparts, DICE [21] performs the best,

hich outperforms the second best DGA-DA by 5.6% w.r.t. the av-

rage accuracy. In addition, we find that GFK-pls, SA 

∗, CORAL ∗ and

LS perform much worse in this dataset, which may indicate they

re not suitable for raw-pixel features. For the free parameters, we

et λ = 0 . 01 , k = 100 , K = 5 . All the empirical comparisons results

n Tables 1–4 indicate that the proposed method always achieves

etter recognition accuracies than its counterparts. 

https://twanvl.nl/research/domain-adaptation-2017/
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Table 1 

Results on the Office31 dataset with AlexNet-FC 7 and ResNet50 features using the full protocol [32] . The best 

(in bold), the second best (in italic). [ ‡ Yes/ no in the column ‘feature’ denotes with/ without feature learning, 

respectively.]. 

model feature ‡ method A → D A → W D → A D → W W → A W → D Avg. 

AlexNet 

no 

1-NN 59.4 57.5 47.2 96.1 44.8 99.0 67.3 

SVM 

∗ 59.2 57.9 48.8 95.2 46.5 98.8 67.7 

GFK-pls [10] 58.2 59.4 45.9 95.6 43.8 98.6 66.9 

SA [3] 61.0 59.5 46.9 95.1 46.6 98.2 67.9 

JDA [19] 66.5 68.8 56.3 97.7 53.5 99.6 73.7 

CORAL ∗ [7] 60.4 57.0 47.6 96.2 46.3 99.0 67.8 

JGSA [20] 67.5 62.3 55.6 98.1 52.0 99.8 72.5 

ILS [8] 62.9 63.9 50.0 97.2 48.8 99.4 70.4 

ATI ∗ [37] 70.3 68.7 55.3 95.0 56.9 98.7 74.2 

LDADA ∗ [51] 70.3 68.8 55.9 94.2 53.2 98.5 73.5 

DICE [21] 66.7 71.4 56.5 96.9 58.6 99.8 75.0 

PACET (ours) 69.1 71.7 62.3 97.4 59.2 100.0 76.6 

yes 

RevGrad [53] 72.3 73.0 53.4 96.4 51.2 99.2 74.3 

DRCN [54] 66.8 68.7 56.0 96.4 54.9 99.0 73.6 

RTN-res [52] 71.0 73.3 50.5 96.8 51.0 99.6 73.7 

JAN-A [32] 72.8 75.2 57.5 96.6 56.3 99.6 76.3 

I2I-Adapt [55] 71.1 75.3 50.1 96.5 52.1 99.6 74.1 

no PACET ∗(ours) 70.3 72.2 61.8 96.0 59.0 99.4 76.5 

ResNet50 

yes 

RevGrad [53] 79.7 82.0 68.2 96.9 67.4 99.1 82.2 

RTN-res [52] 77.5 84.5 66.2 96.8 64.8 99.4 81.6 

JAN-A [32] 85.1 86.0 69.2 96.7 70.7 99.7 84.6 

SimNet [56] 85.3 88.6 73.4 98.2 71.8 99.7 86.2 

iCAN [57] 90.1 92.5 72.1 98.2 69.9 100.0 87.2 

no 
SVM 

∗ 77.5 73.8 61.6 96.4 63.2 99.8 78.7 

PACET ∗(ours) 90.8 89.1 73.5 97.6 73.6 99.8 87.4 

Table 2 

Results on the Office-Caltech dataset with SURF (above) and DeCAF 6 features using the full protocol [9,52] . To the best of our 

knowledge, RTN-res [52] is a deep DA method that achieves the highest accuracy. 

Source A A A C C C D D D W W W 

Avg. 
Target C D W A D W A C W A C D 

1-NN 34.2 35.7 31.2 36.0 38.2 29.2 28.3 29.6 83.7 31.6 28.8 84.7 40.9 

SVM 

∗ 42.7 39.5 39.0 53.0 42.0 45.1 33.7 30.4 82.0 36.2 34.4 86.6 47.1 

GFK-pls [10] 43.6 44.6 45.1 51.6 43.3 44.1 39.1 31.7 85.4 31.8 34.3 87.9 48.5 

SA ∗ [3] 44.3 36.3 38.3 54.8 45.2 44.4 39.4 34.3 85.1 36.3 33.2 83.4 47.9 

JDA [19] 39.4 39.5 38.0 44.8 45.2 41.7 33.1 31.5 89.5 32.8 31.2 89.2 46.3 

CORAL ∗ [7] 45.1 39.5 44.4 54.3 36.3 38.6 37.7 33.8 84.7 35.9 33.7 86.6 47.6 

JGSA [20] 41.5 47.1 45.8 51.5 45.9 45.4 38.0 29.9 91.9 39.9 33.2 90.5 50.0 

ILS [8] 40.0 40.1 39.0 48.5 45.9 41.4 41.2 34.6 85.8 37.6 31.2 86.0 47.6 

LDADA ∗ [51] 36.7 40.4 46.0 54.6 47.0 60.5 42.0 26.5 72.1 41.6 32.6 70.5 47.5 

DICE [21] 42.7 49.7 52.2 50.2 51.0 48.1 41.1 33.7 84.1 37.5 37.8 87.3 51.3 

KWC ∗ [58] 46.0 47.8 41.7 53.2 49.7 47.8 41.7 39.4 85.8 39.0 36.4 82.8 50.9 

PACET (ours) 44.3 50.3 53.2 52.2 52.2 51.5 40.8 34.5 91.5 40.8 39.0 92.4 53.6 

PACET ∗(ours) 45.9 49.7 52.5 57.5 54.8 53.9 40.3 35.7 87.8 41.8 40.1 91.1 54.2 

SVM 

∗ 85.0 87.9 79.0 91.4 89.8 80.0 87.1 78.8 98.6 75.7 72.0 99.4 85.4 

LSC ∗ [59] 87.9 94.9 88.8 94.3 95.3 91.2 92.4 86.2 98.6 93.3 88.0 100.0 92.6 

JDOT ∗ [30] 85.2 87.9 84.8 91.5 89.8 88.8 88.1 84.3 96.6 90.7 82.6 98.1 89.0 

JGSA [20] 84.9 88.5 81.0 91.4 93.6 86.8 92.0 86.2 99.7 90.7 85.0 100.0 90.0 

ATI ∗ [37] 86.5 92.8 88.7 93.8 89.6 93.6 93.4 85.9 98.9 93.6 86.3 100.0 91.9 

LDADA ∗ [51] 88.0 91.5 93.2 92.2 96.1 90.9 92.7 87.0 94.2 92.3 87.9 97.5 92.0 

DICE ∗ [21] 87.6 89.8 88.5 93.0 96.2 95.3 92.5 88.3 99.0 91.8 86.9 100.0 92.4 

KWC ∗ [58] 87.3 87.3 84.8 93.5 91.1 86.4 89.8 85.2 97.3 89.0 83.2 99.4 89.5 

PACET ∗(ours) 88.3 94.9 92.2 93.6 96.2 95.6 92.7 89.3 99.0 92.9 86.9 100.0 93.5 

RTN-res [52] 88.1 95.5 95.2 93.7 94.2 96.9 93.8 84.6 99.2 92.5 86.6 100.0 93.4 

4
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.4. Subspace visualization with t-SNE 

In addition to the quantitative comparison results, we exploit

ne of the most popular visualization tool t-SNE 3 to compare sub-

paces learned by different methods qualitatively. Here we choose

hree public methods JDA [19] , JGSA [20] and DICE [21] for com-

arison. Observing Fig. 3 carefully, we can discover that the source

lasses (red color) are always separable, however, PACET is the best

erforming method that pursues both inter-class separability and
3 https://lvdmaaten.github.io/tsne/ . 

P  

s  

a  
ithin-class compactness in the target domain. Besides, the target

nstances always lie in the source class area. 

.5. Ablation study, parameter sensitivity and convergence analysis 

We perform an ablation study to investigate the effectiveness of

wo proposed techniques (i.e., confidence-weight strategy and pro-

ressive learning scheme) to addressing uncertainties within tar-

et instances. Particularly, we introduce three different variants of

ACET, i.e., ACET, PAT and AT. Among them, ACET and PAT are the

pecial cases when PACET neglects the progressive learning scheme

nd the confidence-weight strategy, respectively. AT is a baseline

https://lvdmaaten.github.io/tsne/
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Table 3 

Results on the Office-Caltech dataset with VGG-FC 6,7 (above/ below) via sampling protocol [10] . Some results are reproduced 

from [26] . 

Source A A A C C C D D D W W W 

Avg. 
Target C D W A D W A C W A C D 

1-NN 70.1 52.3 60.9 81.9 55.6 65.9 57.0 48.0 86.7 66.4 60.2 91.3 66.4 

SVM 

∗ 74.2 51.7 63.1 86.7 61.5 74.8 58.7 55.5 91.8 73.3 68.2 94.2 71.1 

GFK-pls [10] 77.7 63.5 74.1 86.2 66.5 76.5 69.9 64.0 92.4 81.1 73.5 96.6 76.8 

SA [3] 77.1 64.9 76.0 83.9 66.2 76.0 69.0 62.3 90.5 80.2 71.9 94.2 76.0 

CORAL ∗ [7] 79.0 67.1 74.8 89.4 67.6 77.6 75.8 64.7 94.6 82.3 75.9 96.0 78.7 

JGSA [20] 79.9 71.7 82.6 90.2 76.4 84.5 82.7 73.5 95.4 91.6 79.0 96.3 83.6 

ILS [8] 78.9 72.5 82.4 87.6 73.0 84.4 79.2 66.5 94.2 87.2 79.9 89.3 81.3 

PUnDA ∗ [26] 82.3 76.2 82.7 90.3 76.2 88.3 83.1 69.2 93.4 86.9 82.6 89.8 83.4 

LDADA ∗ [51] 81.6 69.5 81.1 90.2 70.3 83.9 78.0 60.6 89.3 90.2 82.0 89.2 80.5 

DICE [21] 83.0 66.4 75.9 91.9 67.4 83.7 84.4 78.6 94.8 90.3 80.7 93.8 82.6 

PACET (ours) 85.1 72.7 85.6 90.7 79.7 89.7 89.7 80.6 94.8 90.7 84.0 97.0 86.7 

PACET ∗(ours) 87.8 73.4 86.7 92.4 81.0 92.0 90.8 83.7 94.7 91.5 86.5 97.6 88.2 

1-NN 72.6 50.8 64.0 82.6 54.9 65.3 61.2 52.8 88.2 67.8 64.2 88.8 67.8 

SVM 

∗ 76.2 51.8 68.0 86.7 61.3 74.8 58.7 56.0 91.2 74.6 70.6 93.0 71.9 

GFK-pls [10] 76.6 57.6 74.0 84.1 63.4 73.6 67.5 62.9 91.9 76.0 69.5 92.9 74.2 

SA [3] 76.2 60.7 75.0 82.6 63.2 73.6 66.0 59.4 89.5 76.4 69.0 94.0 73.8 

CORAL ∗ [7] 78.6 61.3 71.8 88.6 63.8 76.0 71.2 63.0 93.5 82.0 73.7 94.6 76.5 

JGSA [20] 81.1 72.3 81.4 88.3 72.3 82.5 78.9 72.3 93.6 89.8 79.8 95.8 82.3 

ILS [8] 78.4 71.3 80.9 87.1 67.1 80.1 76.5 66.2 91.8 86.7 76.3 88.2 79.2 

PUnDA ∗ [26] 81.0 75.8 81.4 91.1 70.8 83.8 80.4 69.1 92.0 85.7 80.1 90.1 81.7 

LDADA ∗ [51] 82.5 71.4 86.3 91.2 68.8 85.7 74.5 58.5 88.7 87.8 79.8 86.9 80.2 

DICE [21] 83.7 62.9 79.3 91.7 63.8 84.3 82.3 76.4 94.2 89.4 82.1 91.0 81.7 

PACET (ours) 83.9 73.9 85.1 89.8 79.2 88.1 83.1 76.8 93.8 88.8 81.5 94.0 84.8 

PACET ∗(ours) 86.9 75.4 86.8 92.3 80.9 91.5 85.8 81.1 94.3 90.9 85.6 94.7 87.2 

Table 4 

Results on the PIE dataset. Some results are reproduced from [21] . 

Source P1 P1 P1 P2 P2 P2 P3 P3 P3 P4 P4 P4 
Avg. 

Target P2 P3 P4 P1 P3 P4 P1 P2 P4 P1 P2 P3 

1-NN 26.1 26.6 16.7 24.5 46.6 26.5 21.4 41.0 26.2 18.5 24.2 28.3 27.2 

SVM 

∗ 30.9 33.9 23.8 31.8 41.0 28.8 32.3 39.7 37.7 29.4 33.1 40.6 33.6 

GFK-pls [10] 29.4 28.3 21.8 30.0 45.5 27.7 26.9 41.4 31.7 31.4 28.2 34.4 31.4 

SA ∗ [3] 32.8 34.5 22.5 27.7 37.3 27.1 29.1 37.0 30.5 34.5 30.9 31.9 31.3 

JDA [19] 73.1 69.3 55.1 73.8 74.9 61.5 69.0 74.5 60.4 59.6 67.5 69.5 67.3 

CORAL ∗ [7] 31.8 31.9 19.9 26.6 35.0 25.9 25.1 36.5 26.0 32.0 30.4 32.6 29.5 

RTML [60] 60.1 55.2 53.0 58.1 63.9 40.4 53.1 58.7 42.1 29.1 33.3 39.9 48.9 

OTGL [31] 59.4 58.7 48.4 61.9 64.4 52.7 57.9 64.7 52.8 45.7 51.3 52.6 55.9 

JGSA [20] 62.2 60.0 45.1 68.2 64.9 52.3 62.9 60.3 51.2 53.5 57.5 54.3 57.7 

ILS [8] 37.8 35.2 21.8 40.4 31.8 25.5 29.1 31.9 18.0 25.7 21.4 31.7 29.2 

DGA-DA ∗ [29] 76.4 72.5 60.8 77.0 77.5 63.6 80.8 72.2 64.5 67.7 65.4 71.6 70.8 

DICD [61] 73.0 72.0 66.9 69.9 65.9 48.7 69.4 65.4 61.4 62.9 57.0 65.9 64.9 

DICE [21] 84.1 77.9 66.5 81.3 74.0 68.8 78.8 76.7 70.8 73.8 71.2 74.1 74.8 

PACET (ours) 82.2 80.8 64.5 82.9 73.5 72.4 79.7 79.3 70.2 76.2 69.2 79.2 75.8 

PACET ∗(ours) 80.9 79.0 65.9 83.7 71.9 73.5 80.0 78.1 69.7 77.6 70.5 80.5 75.9 

Table 5 

The average accuracies (%) of different methods (ablation study). 

Dataset Office31 Office-Caltech 
PIE 

Feature AlexNet SURF DeCAF 6 VGG-FC 6 

PACET 76.61 53.57 92.28 86.70 75.83 

ACET (w/o Progressive learning) 75.85 53.27 91.50 85.91 74.86 

PAT (w/o Confidence wEight) 74.77 52.18 92.37 85.85 73.58 

AT (w/o both) 74.46 52.44 90.89 83.77 73.80 
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method where both two techniques are discarded. Their average

accuracies on several datasets are shown in Table 5 . 

Obviously, PACET is consistently superior to ACET that ignores

the progressive learning strategy, which indicates the importance

of such a self-learning technique. Besides, PACET outperforms PAT

that neglects the confidence-weight strategy via posterior prob-

ability in 4 out of 5 tasks, which highlights that the proposed

weighted relations are more accurate. In addition, ACET performs

better than AT in all the tasks, while PAT is worse than AT for PIE

and Office-Caltech with SURF features, that may be because such
hallow features are not powerful enough to distinguish ‘easy’ and

hard’ samples. However, such drawback can be mitigated to some

egree via using the confidence-weight strategy. While for DeCAF 6 
eatures, PACET is even inferior to PAT because the deep features

ere are quite discriminative, estimating the uncertainties via K-

N may be relatively inaccurate. Generally, both techniques are ef-

ective, and the confidence-weight strategy is more important than

he progressive learning scheme. 

Then we investigate the sensitivity of parameters p i , θ that

re involved into the progressive learning scheme in Algorithm. 1 .
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Fig. 3. The t-SNE visualizations of baseline DA methods and our PACET on A → W on the Office-Caltech (DeCAF 6 ) dataset. (Best viewed in color.). 

Fig. 4. Average accuracy (%) on five datasets w.r.t. neighborhood size K and the number of iterations. 
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pecifically, we set p i in the range of { 0 . 65 , 0 . 70 , . . . , 0 . 90 , 0 . 95 }
nd θ in the range of { 0 . 01 , 0 . 02 , . . . , 0 . 10 } , and other parame-

ers are kept the same for fair comparisons. Carefully looking at

able 6 , we observe that the average accuracies are relatively sta-

le when setting p i between 0.65 and 0.70 and θ between 0.07

nd 0.10. Besides, this table again validates the effectiveness of

he developed progressive learning scheme, because the majority

f accuracies outperforms that of ACET (w/o progressive learning)

i.e., 91.50). Actually, p i = 0 . 7 , θ = 0 . 1 is a default choice in this

aper. 
Table 6 

Average accuracy (%) of PACET on the Office-Caltech (DeCA

tion) and θ (increasing rate). 

0.01 0.02 0.03 0.04 0.05

p i 

0.65 88.92 90.39 91.61 91.15 91.5

0.70 89.67 91.41 92.41 92.10 92.1

0.75 91.52 92.44 92.25 92.33 92.3

0.80 91.91 92.06 92.00 91.98 92.0

0.85 92.30 92.22 92.06 91.64 91.8

0.90 91.95 91.77 91.81 91.61 91.7

0.95 91.64 91.44 91.44 91.44 91.4
In addition, as shown in Fig. 4 , we exploit five various datasets

o verify the sensitivity of parameter K and the experimental con-

ergence analysis. It is easily observed that the accuracies tend to

row up and become steady when the neighbor size K becomes

arger in Fig. 4 (a) in most cases. Actually, K = 5 always achieves

romising performance, making it being a default choice. Besides,

e show the 1-NN accuracies of PACET within the iterative process

n Fig. 4 (b). As expected, the average recognition accuracies on all

our datasets grow up quickly and gradually tend to stable after

bout 8 iterations. 
F 6 ) by using different parameters p i (initial propor- 

θ

 0.06 0.07 0.08 0.09 0.10 

9 91.63 92.40 92.36 92.36 92.54 

6 92.46 92.40 92.52 92.42 92.28 

2 92.13 91.83 91.92 91.89 91.87 

9 91.89 91.55 91.88 91.81 91.80 

9 91.81 92.01 91.93 91.89 91.75 

0 91.67 91.69 91.40 91.46 91.47 

3 91.50 91.50 91.50 91.50 91.50 
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5. Conclusion 

In this paper, we have proposed a novel approach named Pro-

gressive leArning with Confidence-wEighted Targets (PACET) for

unsupervised domain adaptation. Particularly, PACET well tack-

led the uncertainty in pseudo labels of the target domain from

two aspects, progressive target instance selection and incorpo-

rating the learned class confidence scores to characterize both

the within- and cross- domain relations. To increase the cross-

domain inter-class separability, we further develop a new triplet-

wise instance-to-center margin to compensate traditional pairwise

empirical MMD. Further, an EM-style algorithm has been natu-

rally developed to alternately learn feature transformation, esti-

mate the target class confidence scores and select certain training

target instances progressively. Extensive empirical results on three

benchmark datasets have validated the superiority of PACET to re-

cent state-of-the-art UDA methods. Particularly, PACET achieves the

state-of-the-art accuracies and surpasses the recently reported best

results on the most popular Office31 dataset. 

Generally speaking, our method first considers the uncer-

tainty in domain discrepancy for pseudo-label guided unsuper-

vised domain adaptation, which can provide some useful insights

to pseudo-label guided transfer learning methods. There are still,

however, some aspects to be improved. Our method is somewhat

heuristic and lacks some theoretical justification. It also highly re-

lies on the closed set assumption where two domains share the

same label space. Hence, in the future, we would like to discover

some theoretical insights behind our method, and extend it from

the closed set setting to some challenging settings like open-set

and partial domain adaptation. Besides, we also plan to extend it

by incorporating the deep learning technique to learn the domain-

invariant feature representations. 
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