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Due to the unavailability of labeled target data, most existing unsupervised domain adaptation (UDA)
methods alternately classify the unlabeled target samples and discover a low-dimensional subspace by
mitigating the cross-domain distribution discrepancy. During the pseudo-label guided subspace discovery
step, however, the posterior probabilities (uncertainties) from the previous target label estimation step
are totally ignored, which may promote the error accumulation and degrade the adaptation performance.
To address this issue, we propose to progressively increase the number of target training samples and
incorporate the uncertainties to accurately characterize both cross-domain distribution discrepancy and
other intra-domain relations. Specifically, we exploit maximum mean discrepancy (MMD) and within-
class variance minimization for these relations, yet, these terms merely focus on the global class structure
while ignoring the local structure. Then, a triplet-wise instance-to-center margin is further maximized to
push apart target instances and source class centers of different classes and bring closer them of the
same class. Generally, an EM-style algorithm is developed by alternating between inferring uncertainties,
progressively selecting certain training target samples, and seeking the optimal feature transformation to
bridge two domains. Extensive experiments on three popular visual domain adaptation datasets demon-

strate that our method significantly outperforms recent state-of-the-art approaches.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Researchers always assume that the training and testing data
are drawn from the same distribution for simplicity in the field
of pattern recognition and machine learning. Nevertheless, the as-
sumption does not always hold in real-world applications, and the
performance at testing time can be significantly degraded [1]. For
instance, a classifier trained on the annotated near-infrared human
faces (the so-called source domain) may fail to recognize the face
images under the visible light (target domain). To tackle this is-
sue, a naive strategy would be to collect a certain number of la-
beled target data, yet it is time-consuming and expensive. Benefit-
ing from cheap and massive publicly available datasets, researchers
come up with another emerging strategy, domain adaptation (DA).
DA tries to leverage domain shift characteristics from labeled data
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in an auxiliary and related domain for learning with new unlabeled
or partially labeled data [2]. According to the availability of labeled
target instances, domain adaptation methods can be divided into
two main categories, unsupervised one [3,4] and semi-supervised
one [5,6]. The common practice of discriminative training is not
generally feasible for unsupervised cases, however, making it es-
pecially challenging to describe the cross-domain relation. In this
paper, we focus on this challenging but practical unsupervised do-
main adaptation problem.

Numerous approaches have been proposed in the last decade to
address unsupervised domain adaptation (UDA) [7-12]. To relate
two different feature spaces together, one natural solution is in-
stance re-weighting, i.e., adjusting the weights of source instances
to better match the target data distribution [13]. However, this so-
lution works well only when certain parts of source instances can
be reused for learning with the target domain, and the conditional
distributions are not identical [14], which is rather hard to meet.
In contrast, feature transformation methods [15,16] are more flexi-
ble where one common subspace is sought to make two domains
distribute similarly to each other. The majority of existing feature
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Fig. 1. Toy example of the instance-to-center margins. (a) is more preferred than (b) since two target classes are more separable. (Green arrow: instance-to-center distance,
best viewed in color). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

transformation methods incorporate the empirical maximum mean
discrepancy (MMD) [17,18] as a regularizer on the feature map-
ping function to mitigate various distribution differences across do-
mains. Apart from the marginal distribution difference exploited in
[15,16], JDA [19] further considers the conditional distribution dif-
ference across domains, which greatly improves the recognition ac-
curacy.

Due to the lack of labeled target instances, an iterative pseudo-
label guided scheme is always adopted by UDA methods to es-
timate the pseudo target labels, which further guide the feature
transformation [20,21] or non-linear feature representations learn-
ing of deep methods [22]. Extensive efforts have been devoted to
leveraging MMD to explicitly minimize the distances of the empir-
ical expectations of different distributions (i.e., the domain mean
and the class means), i.e., the distribution discrepancy is measured
by several pairwise distances. Looking at Fig. 1, we find that (a)
and (b) share nearly the same empirical MMD values, however, we
expect the margin between each one target instance to its corre-
sponding source center and other source centers to be maximized
like (a). Obviously, maximizing this triplet-wise instance-to-center
margin will enforce more separable target classes in turn. Actu-
ally, we focus on local separability by exploring hard negative min-
ing [23] where the closest source center from different classes in-
stead is picked as a negative sample within the triplet.

Different from supervised DA methods like [24]| where the tar-
get labels are accurately provided, the pseudo target labels appear-
ing during the iteration process are often not accurate, which can
deteriorate the following feature transformation optimization prob-
lem for UDA. For example, if the initialized domain-invariant pro-
jection is not good enough, some hard target instances lying on the
border of multiple classes would be misclassified, which severely
affects the feature projection step in turn. Nevertheless, none of
the previous DA methods have ever considered the confidences of
the pseudo labeled target data.

To address these issues above, we put forward a novel
method called Progressive leArning with Confidence-wEighted Tar-
gets (PACET) for UDA. We follow [21] and exploit the within-
domain intra-class compactness and cross-domain distribution dif-
ference to infer the domain-invariant projection, thus two domains
onto the learned subspace are expected to be semantically aligned
and discriminative. As mentioned above, the discriminative ability
is further enhanced by considering a local repulsive force term in
Fig. 1. Then we train a standard classifier with projected source in-
stances and exploit the conditional posterior probability as confi-
dence of each uncertain target to each class rather than treat these
target samples equally. Furthermore, these target confidences are
seamlessly incorporated into both cross-domain and with-domain
objectives for better adaptation. Intuitively, previous class centers
are calculated by weighting different target instances, where the
hard samples contribute less to updating the target class centers,
which is considered somewhat to misclassified instances. Addition-
ally, inspired by self-paced learning [25] where training samples
are automatically included from ‘easy’ to ‘hard’, we further arrange
the target instances in order of the formerly learned confidences

and progressively pick them with the increase of the number of it-
erations, which is expected to alleviate the error accumulation. Fi-
nally, an EM-style scheme is exploited to alternately learn feature
transformation, estimate the pseudo target labels as well as their
class confidence scores (i.e., class posterior probability) and select
certain training target instances. Empirical experiments reveal that
this EM-style scheme quickly converges in several iterations (See
Fig. 4). The main contributions of this paper are summarized as
follows:

o We introduce the problem of addressing the uncertainties of
target pseudo labels, which is important yet under-studied in
the domain adaptation area.

o We propose a novel approach that progressively includes more

target samples into training and incorporates previously esti-

mated class confidence scores to characterize both the within-
and cross- domain relations. Especially, we provide a more ac-

curate conditional distribution discrepancy than that of [19,21].

To fully exploit the discriminative cross-domain structures, we

compensate joint distribution adaptation by designing a new

local triplet-wise instance-to-center margin for better separa-
bility.

Experimental results demonstrate the superiority of our

method over recent state-of-the-art approaches. Particularly, on

the challenging Office-Caltech dataset with VGG features show
that our method advances the best reported average accura-
cies [26] from 83.4% to 88.2% and 81.7% to 87.2%, respectively.

2. Related work

Here we provide a brief review of MMD, then discuss some
closely related feature transformation based UDA methods.

2.1. Maximum mean discrepancy

MMD [17] is primarily proposed to test whether distributions
p and q are different on the basis of samples drawn from each of
them, by finding a smooth function that behaves distinctively on
the points drawn from p and q. Specifically, the squared MMD in
a Reproducing Kernel Hilbert Space (RKHS) # is formulated as fol-
lows,

MMD?[F, p, q] = sup. IELf O] =By [f O3
where the notations Ex[f(x)] =Ex-p[f(x)] and Ey[f(y)]=

Ey—4[f(y)] denote the expectations w.r.t. p and g, and | f|l» <1
represents a set of functions in the unit ball of #. As proven in
[18,27], MMD?[F, p, q] = 0 iff p = q.

In a RKHS, function evaluations can be written as f(x) =
(p(x), f), and k(-,-) = (¢(-),¢(-)) is the universal kernel associ-
ated with this mapping function. Then the expectation Ex[f(x)]
can be rewritten as Ex[f(x)] = (u[p]. f), where p[p] = Exp[¢p(x)]
is the expectation of ¢(x). Given observations X := {1, ..., xn} and
Y :={y1....,yn}, drawn i.i.d. from the distributions p and q respec-
tively, an empirical estimate of squared MMD |[17] is further given



J. Liang, R. He and Z. Sun et al./Pattern Recognition 96 (2019) 106996 3

2

MM [, X Y] = | 3¢ x) — 13 0| (1)
i=1 Jj=1

H

2.2. Feature transformation based UDA methods

We introduce several similar works [15,16,19-21,28,29] in spirit
to our work and discuss the differences between them. Being
one of the pioneering feature transformation based DA methods,
TCA [15] embeds both the source and target data into a shared
low-dimensional space, and attempts to jointly preserve the vari-
ance and reduce the marginal distribution difference across do-
mains. DIP [16] exploits manifold learning and Gaussian kernel for
MMD, and accounts the source discriminative information by mini-
mizing the source within-class variance. Besides previous marginal
distributions, JDA [19] first exploits the conditional distributions
across domains in the common space together to better character-
ize the cross-domain difference. Once pseudo target labels are ob-
tained, JDA would pull closer not only the overall domain means
but also the same class means from different domains, which
is more desirable. DICE [21] proposes a simple domain-irrelevant
class clustering objective which has been proven to include both
JDA and DIP as special cases, while MCS [28] develops a related
minimum center shift strategy for weakly supervised source do-
main. DGA-DA [29] extends JDA by putting forward a repulsive
force term, which drags different classes across domains far away
from each other. Besides, JGSA [20] designs two geometrically close
projections for the source and target domains, respectively. Besides
the coupled projections learning, it also accounts for the source
discriminative information preservation as well as total variance
maximization.

Apart from data-centric transformation methods, subspace cen-
tric transformation methods [3,7] directly align two domains
rather than discover a new common space and recent studies
[30,31] in the literature exploit the optimal transport theory. Ben-
efiting from the powerful representations of deep neural net-
works, recent deep DA methods [11,32-35] have achieved great
successes. Among them, [11,32] try to minimize the domain dis-
crepancy while [33,34] explore the adversarial objective to encour-
age domain confusion. Researchers further address some novel DA
problems, e.g., DA with supervision from source classifiers [36],
open-set DA [37]. Regardless of shallow and deep DA methods, the
majority of them utilize MMD to measure the domain difference,
however, none of them account for the weights of target instances,
resulting into the degraded class means in the target domain.

Generally, our method is built on DICE [21] by adding one local
repulsive term and considering the probabilistic divergences and
variances as well as a curriculum learning framework. Specifically,
the cross-class repulsive term differs from that of DGA-DA in con-
sidering the locality (pushing far away the most indistinguishable
class rather than all other classes). To the best of our knowledge,
our work is among the first attempts to incorporate the uncertain-
ties of pseudo target labels to domain adaptation.

2.3. Semi-supervised learning

In reality, UDA can be considered as a vanilla semi-supervised
learning problem if the difference across domains vanishes. Thus,
some popular techniques, e.g., self-training [38] and co-training
[39], adopted in semi-supervised learning can be naturally applied
to UDA. Typically, at each iteration, self-training (also called self-
teaching) adds the most confident unlabeled points together with
their predicted labels to the training set, and re-trains the clas-
sifier to obtain the new confidences until there are no unlabeled
data left. Following this idea, [40] exploits a strategy inspired by

[41] in which the unlabeled samples with the maximum and min-
imum values of the decision function are moved into the training
set, and designs an effective solution for domain adaptation.

On the contrary, co-training always assumes that each exam-
ple is described using two different feature sets that provide differ-
ent, complementary information about the instance. [42] develops
a co-transfer learning framework which seamlessly combines the
co-training and transfer learning paradigms for cross-resolution
face matching. Inspired by self-paced learning, [43]| improves co-
training with a “draw with replacement” learning module to re-
move false labeled instances in the initial training rounds. Simi-
larly, [44] proposes a self-paced adaptation to shift object detection
model from images to videos by learning labeled source samples
and target data with pseudo-labels in an easy-to-hard way.

Actually, our method exploits a progressive learning paradigm
that behaves like self-training and co-training, however, we neither
move the most confident labeled target data to the source domain
nor address a new semi-supervised DA problem by adding previ-
ous pseudo-labeled target data to the target domain.

3. Proposed approach
3.1. Notations and definitions

Denote by ps(xs) and p¢(x;) the probability density functions
of the source data and target data respectively, then each col-
umn of X; € R9*"s represents one sample drawn from ps(xs), each
column of X; € R9™ represents one sample drawn from p(x;),
where d is the feature length of the data instance, ns and n; in-
dicate the number of samples in the source and target domain
respectively. Regarding UDA, the labels of the whole source do-
main are available, i.e., Ds = {(x;,y;) ;’;1, and for the target domain
Dr = {(x;.¥) ?’zl, labels are unavailable during the training phrase.
Note that the label space Ys = ) is assumed and each domain con-
tains C identical classes, when the feature space X; = A; is also as-
sumed, but ps(xs) # pr(x:), which is named dataset shift. Typically,
a k-dimensional space is sought to align different domains in itself,
an explicit feature mapping matrix W e R%*¥ is introduced for sim-
plicity.

Through the paper, all the matrices are written as uppercase,
and lowercase letters for vectors. For a matrix M, its (i, j)th ele-
ment is denoted by m;;, and the transpose of its ith row is dented
by m;. The transpose and trace of M are denoted by MT and tr(M)
respectively, the Frobenius norm of matrix M is denoted by |[M||F,
and the L-norm of a vector v is denoted by ||v||». 1, represents
a full one vector of length n, and I, denotes an identity matrix.
A = diag(b) is a diagonal matrix with its diagonal entry as a;; = b;.

3.2. Objective function

The proposed method PACET tackles unsupervised domain
adaptation by mitigating the joint distributions across domains and
preserving the discriminative information for both domains at the
same time.

The detailed objective function of each component in PACET is
discussed as follows.

Joint Distribution Discrepancy. As suggested in previous works
[19,21], we first aim to reduce the distances of the marginal distri-
butions (ps(xs) and p¢(x¢)) and C conditional distributions (p(xs|ys =
¢) and p(x¢|y: = c), where ce[1, C]) across domains. Since these
distribution differences are nontrivial, we follow [15,19] to adopt
the empirical squared MMD to measure them as

1 & 1 & ’ 1S 2
W= DS Wiyl e YW wel]; @)
i=1 Jj=ns+1 2 c=1
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where a total data matrix X = [X;, X;] € R9*" is defined for conve-
nience, and n =ns + n;. Besides, y = [y1,...,¥n,,...,¥n] is a class
indicator variant, y; € {1,...,C} is an integer variable, and n¢ and
n¢ are the numbers of source samples and target instances belong-
ing to class ¢ respectively. e$ and e!. respectively denote the source
and target centers of the cth class, ie., ef =Y, x1(y;, ¢)/n§, ek =
Z;‘:nsﬂ x;1(yj, ¢)/ng. The binary indicator function 1(a, b) outputs
1 when a=b is true, 0 otherwise. That is to say, the overall
means and class-wise means of the k-dimensional embedding of
the source and target data are required to be as close as possible.
Cross-Domain Local Structure. Since the MMD based cross-
domain discrepancy measures the distances between sets, we fur-
ther introduce the aforementioned triplet-wise instance-to-center
margins below to consider the cross-domain local structure,

n
> IWTx —WTe |3 - [Wx; - wWTes |13, (3)
j=ns+1

where z; denotes the closest negative class of target instance x;,
which will be explained below. Intuitively, minimizing this margin
will enforce two groups of different classes apart from each other
locally. Note that, even though both consider the triplet-center loss,
this term here is quite different from that of [45]. We use a simple
I loss instead of the hinge loss in [45], which helps find a closed-
form solution. Besides, the centers come from one identical modal-
ity for object retrieval in [45] while two centers in Eq. (3) come
from different domains.

Intra-class variance and total variance. Inspired by linear dis-
criminant analysis (LDA), the within-domain intra-class variances
are minimized to preserve the discriminative information while
maximizing the total variance of both source and target instances.
Obviously, such operations make the inter-class variance larger,
where separate source/target classes are expected. Both variances
are naturally defined below,

n. n
3 Wik -wie |2+ Y Wik -wie, |
i=1 Jj=ns+1

2
n

n
and ) [WTx - %WT D xq| - (4)
i=1 q=1 2

To this end, we illustrate all four objective functions in Egs. (2)-
(4) for domain-invariant projection learning. Note that all of them
need to know the pseudo labels of target instances [yn 1, ..., ¥n]-
In the following, we explain how to estimate them and z;, j e
[ns + 1, n] with previous learned projection W. Actually, the pseudo
target labels can be directly estimated from the source classifier,
however, we expect more information from these conditional pos-
terior probabilities. As explained in [19], it is quite hard to directly
model p(y|x), thus we resort to explore the sufficient statistics of
class-conditional distributions p(x|y) instead. Carefully examining
the complete form of the conditional probabilities p(x;ly), we find
that

POu = clx)p(Xu)
pyu=0c)
where p(yy =¢) = Y p(yu = clxu) p(xu)

pulyu =¢) = , uelst)

are the class prior probabilities of being c in the source and tar-
get domains, respectively. We should mention that, all the source
instances are labeled beforehand, hence both the conditional prob-
ability and the prior probability are easily obtained. Subsequently,
the expectation of conditional probability p(xs|ys = c) is calculated
as e =Y 1. x1(y;. ) /n.

3.3. Confidence-weight strategy

To address these probabilities in the target domain, we further
leverage the posterior probabilities p(y;|x;) to accurately estimate C
target class means, i.e.,

n
e = Y x8(5.0).

j=ns+1

where s(y;.c) = p(y; = clxj)/ > p(y; = clx)). (5)
j

where p(y; = c|x;) measures the posterior probability of target in-
stance x; belonging to the cth class, and s(y;, ¢) denotes the nor-
malized weight of target instance x; to class c. These probabil-
ity values can be easily obtained by logistic regression or other
classifiers built on the annotated projected source instances. In
this paper, we adopt the K-nearest neighbor classifier for sim-
plicity, which owns only one parameter K. The detailed posterior
probability of projected instance x is described as p(y; =c|x) =
>-q1(Vg. ©)/K, where g denotes the indexes of K nearest neighbors
of x in the previous projected source domain.

Last but not least, we need to estimate the pseudo label y; and
the closest negative class z; for each target instance x; via the pos-
terior probability

max

=C|Xj).
|max p(y =clx))

. — arg max =cCl|x;), z;=ar
¥Vj glfcscp(y 1X;). z g

3.4. Reformulation and optimization

Following [15,19], we first provide an equal and simple formula-
tion for the optimization problem in Eq. (2) as tr(WTXMoXTW) +
Ly tr(WTXMXTW) respectively, where My, Mc € R™" are ex-
pressed as

——, X;,X; € D
ngng” P TS
——, Xj,Xj € Ds sy, c) sy, C), Xi,X;j €Dy
NsNg J J
1 —s(y;. ¢
(Mo)jj = . X, Xj € Dr, (Mc)jj = % X; € DS, xj € D¢
S
—1 i —S(y;.0)
——, otherwise. IN ) C x.
nn; ne Xj € Dg, xj € Dy
0, otherwise.

(6)

Here Df represents the set of source samples belonging to class c,
and s(y;, ¢) indicates the normalized weight of target instance x;
to class c. For convenience, we introduce four auxiliary matrices
Ys e R1xC ¥, e RMexC| 7, ¢ RM*C 3]l of them are one-hot encoding
matrices of corresponding variables y, z, like

" 1, =
(Yt)ij:{ Yngsi = J

L zgi=g
0, otherwise.’ 20y = { 7)

0, otherwise.’

and S; € R"*C being the target posterior probability matrix,
(St)i j = PYny+i = JlXne4i)- Subsequently, Eq. (3) can be rewritten as

IWTXYs (YY) T~ 11 — IWTX[Ys (YY) 712 1 1M1 (8)

Likewise, Eq. (4) is easily reformulated as tr(WTXM,X"W) by defin-
ing

v — [l =YD Y] 0
vY7lo0 In, — Se(STSe)1ST |

Note that, inspired by reverse prediction [46], the target within-
class variance is alternated by introducing a latent center variable
E; € R¥C which minimizes ||EY] —X;||? as much as possible. In
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this way, the larger posterior probability, the closer distance be-
tween target instance to its associating center will be enforced like
[47]. Finally, we arrive at one equivalent but simplified optimiza-
tion problem for PACET in the following,

min QW) = tr(WTXMXTW) + A||W|

2 st WIXHX™W =1,
9)

where H:]n—mﬁ € R™" js the data centering matrix, M=
My + % > eMc+aM;+ BMw, M;= [YS(YSTYS)AYQT; —In[][YS(YSTYs)fl
Y I 1T = [Ys (YY) 1205 I 11Ys (YY) 12T 1y, |7, o, B are two
trade-off parameters, and A is a hyper parameter (regularization
parameter) to guarantee the matrix being nonsingular. Using
Lagrange multiplier ¥ = diag(yr,..., ¥) € R&<k we can obtain
the Lagrange function for problem (9)

LW, W) = tr(WT (XMXT + )W) — tr(W (WTXHXTW — L)).
(10)

To seek the minimization of this objective, we set the partial
derivative of £ w.r.t. W to zero, and obtain the following gener-
alized eigenvalue problem,

(XMXT + M)W = ¥ - XHXTW. (11)

Thus, the optimal state arrives when W corresponds to the k small-
est eigenvectors of the above eigen-decomposition. Luckily, this so-
lution is closed-form.

Progressive learning scheme Inspired by self-training
[40,48] and self-paced learning [25], we also develop a progressive
framework that incrementally includes more target instances with
the increase of iterations. Concretely, we rank the target instances
from ‘easy’ to ‘hard’ via the maximum posterior probability, and
pick certain numbers of ‘easy’ instances into the training process.
Eventually, all the target instances are considered.

Once the projection W is learned, we immediately obtain a k-
dimensional space, then we re-train a classifier (KNN in the experi-
ment) using all the labeled source instances and predict the poste-
rior probability (i.e., label proportions) of a target instance belong-
ing to different classes. Finally, these three steps including feature
projection learning, posterior probability inference, target instance
selection are alternately carried out to constitute an EM-style algo-
rithm, the pseudo-code is summarized in Algorithm 1.

Algorithm 1 Progressive leArning with Confidence-wEighted Tar-
gets for Unsupervised Domain Adaptation.

Input: Source data {X;, Ys} and target data X;; trade-off parameters
o =1, f = 0.01, # maximum iteration T = 15; neighborhood
size K, subspace dimensionality k, tradeoff parameters A, initial
proportion p;, proportion increasing rate 6 (6 < 0.1).

Output: Projection matrix W; embedding R e R®; classifier f.

1: Initialize {Mc}g:1, M;, My, as 0 and construct M, in Eq. (6);

2: while not converge and iter < T do

3: Solve the generalized eigen-decomposition problem in Eq.

(11) for W.

Obtain the k-dimensional embedding R = WT[X;, X;].
Train a K-NN classifier on source instances {(ri,y,-)}f‘;l.
Predict the targets’ posterior probability p(y; = c|z;).
Update matrices ¥;, Z;, and arrange target instances.
Pick (p; = nt) ‘easy’ target instances to constitute new X;.
Update p; = min(p; x (1+6),1).

10:  Update the matrices {Mc}_,. M;, My.

11: end while

12: Re-train one 1-NN (or SVM) classifier f on {(r;, y;)}*,.

B A

3.5. Model selection

Traditional cross-validation does not work for unsupervised do-
main adaptation since no labeled data in the target domain are
available. In this paper, we adopt a reverse validation strategy that
behaves similar as [49]. Detailedly, given a group of parameters,
we can train multiple models together with their predictions on
unlabeled target data. Then we reverse the source domain and tar-
get domain, i.e.,, we consider the target data and their predictions
as new source domain, and infer the labels of the originally labeled
source data (new target domain) via the same parameters, thus we
can obtain the validation accuracy to determine the optimal pa-
rameters. The detailed flowchart of reverse validation is shown in
Fig. 2.

3.6. Complexity analysis

We now discuss the computational complexity of the proposed
method in Algorithm 1. The projection step consists of construct-
ing some matrices and solving the eigen-decomposition problem,
respectively occupies O(nC% + nd + nd?) and O(kd?). On the other
hand, the prediction step occupies O(nsn;d). The ranking and pick-
ing step occupies O(n:logn). Since C«d and k<« n, the overall
complexity of PACET is O(Tnd? + Tn2d).

4. Experiments

We extensively compare our method with recent state-of-the-
art unsupervised domain adaptation approaches on several real-
world visual benchmark datasets.

4.1. Datasets

Office31 [50] contains 4110 images of 31 categories of objects
that provides three different domains, i.e.,, Amazon (A), DSLR (D),
and Webcam (W). The Amazon subset contains product images on
the web, while the DSLR and Webcam subsets capture objects with
different quality-level cameras.

Office-Caltech [10] extends the Office31 dataset to include an
auxiliary object dataset Caltech-256, and extracts 10 common cat-
egories shared by them.

PIE includes massive facial images of 68 people with various
pose, illumination, and expression changes. We follow the setting
in [31] instead of [19] by selecting 4 poses captured by cameras
in 4 different positions, i.e., P1 (CO05, left), P2 (C07, upward), P3
(C09, downward), and P4 (C29, right). All these facial images are
normalized to the size 32 x 32.

4.2. Experiment setting

For each dataset and each kind of features, we need to project
them onto the unit ball (i.e., [, normalization) at first. Note that
A — B indicates that A is the source and B is the target domain. Be-
sides, we evaluate different methods in term of the cross-domain
instance-level accuracy (%).

Baseline methods. 1-NN and SVM are two the basic methods
that are trained on the raw source data and infer the labels of tar-
get instances. We compare PACET with GFK [10], SA [3], JDA [19],
CORAL [7], JGSA [20], Invariant Latent Space (ILS) [8], LDADA [51],
DICE [21] and ATI [37], etc. For fair comparisons, a linear SVM clas-
sifier is also built by LIBLINEAR! in the last step to further verify
the effectiveness of learned embedding, dubbed PACET*. Note that,
all these non-1-NN based methods are marked with * to distinguish

1 https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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Fig. 2. Toy example of reverse validation for UDA. F(s, t, €) denotes the model where s is the labeled source domain, t is the unlabeled target domain, and 6 represents

model parameter, best viewed in color.

them from 1-NN based methods. Once incorporated with deep fea-
tures, PACET* is also compared with deep DA methods (e.g., Resid-
ual Transfer Networks (RTN) [52] and Joint Adaptation Networks
(JAN) [32]).

Features & protocols. For all datasets, we exploit the stan-
dard features kindly provided by previous works. For Office31, we
use the AlexNet-FC; features fine-tuned on the source domain in
[7] and ResNet50 features”. The DeCAFg [20] and VGG-FCg7 [8] as
well as the shallow z-scored SURF features [50] are adopted for
Office-Caltech. Besides, we adopt the 1024 dimensional raw-pixel
features provided in [19] for PIE. For each dataset, all the la-
beled source instances are utilized for training unless otherwise
specified. For the Office-Caltech dataset, another popular protocol
named ‘sampling protocol’ [7,8,10] is also adopted. Under this pro-
tocol, 20 instances per class for A, C, W and 8 instances per class
for D are randomly selected for the source domain.

Implementation details. Almost all the methods mentioned
above have hyper-parameters, yet, it is impossible to conduct a
standard cross-validation with no target labels being unavailable.
Following [19], we evaluate all methods whose codes are kindly
provided by empirically searching the parameter space for the
optimal parameter settings, and report the best results of each
method. For other methods, we directly adopt their reported re-
sults in the original papers that are assumed to be their best per-
formance. For our method PACET, two free parameters «, f are
fixed leaving only three parameters A, k, K and hyper-parameters
p;, O tunable. Note that, we discard the progressive strategy and
carry out reverse validation in Fig. 2 to obtain optimal parameters
for A, k, where A €[0.001, 0.01, 0.05, 0.1], k ranges from C to 2C. The
detailed values and the parameter sensitivity study are provided in
the following section.

4.3. Comparison results

Results on Office31. Table 1 tabulates the cross-domain recog-
nition results of different UDA methods on the Office31 dataset.
Among the counterparts with the AlexNet architecture, DICE and
JAN-A are the state-of-the-art approaches for shallow and deep
models, respectively. PACET ranks the highest and second highest
in all six tasks, and it consistently outperforms DICE. Compared to
deep DA methods, PACET is clearly superior and achieves similar
accuracies to JAN-A. Specially, PACET performs the best for small
source to large target like D— A and W — A.

Once equipped with ResNet50 features, PACET clearly and con-
sistently beats JAN-A for all six cases, which demonstrate the po-
tential of our method. Compared to two recent state-of-the-art ap-

2 https://twanvl.nl/research/domain-adaptation-2017/.

proaches SimNet and iCAN, PACET still achieves the best average
accuracy. For different kinds of features, PACET* respectively out-
performs the baseline SVM* by 13.0% and 11.1%, which again veri-
fies the effectiveness of our method. Regarding the parameters, we
set A =0.1,k =31,K = 10 according to the reverse validation.

Results on Office-Caltech. We investigate two protocols and
four kinds of features in this dataset in Tables 2 and 3. Regarding
the SURF features with full protocol in Table 2, PACET advances
the state-of-the-art shallow approach DICE from 51.3 to 53.6 in
term of the average accuracy. Concretely, PACET* and PACET re-
spectively rank the best or the second best results in 10 and 6 of
12 tasks, which significantly outperform LDADA*, DICE, and KWC*.
Obviously, deep features strongly enhance the shallow models like
JGSA, LDADA*, DICE* and PACET* in terms of the average accu-
racy. PACET* still obtains the highest average accuracy (93.5) when
two previous highest reported methods are LSC* (92.6) and DICE*
(92.4). Carefully accounting the underlined values, we find that
RTN-res merely wins PACET* in 6 out of 12 cases, which further
supports that our shallow PACET* method is still very competi-
tive with RTN-res [52] that achieves the best performance on this
dataset. For the free parameters, we set A = 0.1,k =20,K = 5.

On the other hand, we compare PACET with two state-of-the-
art methods, ILS and PUnDA under the standard sampling proto-
col [10]. For almost all methods except 1-NN and SVM, VGG-FCg
features are more favorable, that is maybe because deeper layer
provides discriminative features that are not suitable for adapta-
tion. It can be easily seen that PACET and PACET* always signifi-
cantly surpass other methods including JGSA, ILS, PUnDA, LDADA
and DICE for both features. The improvements of PACET* over best
reported results in [26] w.r.t. the average accuracy are 5.8% and
6.7%, respectively. Once changed to the sampling protocol, the im-
provement of PACET grows much larger, thus, we can draw a con-
clusion that our method performs much better especially when
the source is relatively small. For the free parameters, we set A =
0.1,k=15,K =5.

Results on PIE. Observing the results in Table 4, PACET and
PACET* are two best-performing methods w.r.t. the average accu-
racy, which also rank within top two in both 8 out of 12 tasks,
respectively. Among the counterparts, DICE [21] performs the best,
which outperforms the second best DGA-DA by 5.6% w.r.t. the av-
erage accuracy. In addition, we find that GFK-pls, SA*, CORAL* and
ILS perform much worse in this dataset, which may indicate they
are not suitable for raw-pixel features. For the free parameters, we
set A =0.01,k =100,K = 5. All the empirical comparisons results
in Tables 1-4 indicate that the proposed method always achieves
better recognition accuracies than its counterparts.
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Table 1

Results on the Office31 dataset with AlexNet-FC; and ResNet50 features using the full protocol [32]. The best
(in bold), the second best (in italic). [f Yes/ no in the column ‘feature’ denotes with/ without feature learning,

respectively.].

model featuref  method A-D A-W D—-A D-W WA W=D Avg
AlexNet 1-NN 59.4 57.5 47.2 96.1 44.8 99.0 67.3
SVM* 59.2 57.9 48.8 95.2 46.5 98.8 67.7

GFK-pls [10] 58.2 59.4 45.9 95.6 43.8 98.6 66.9

SA [3] 61.0 59.5 46.9 95.1 46.6 93.2 67.9

JDA [19] 66.5 68.8 56.3 97.7 53.5 99.6 73.7

no CORAL* [7] 60.4 57.0 47.6 96.2 46.3 99.0 67.8

JGSA [20] 67.5 62.3 55.6 98.1 52.0 99.8 72.5

ILS [8] 62.9 63.9 50.0 97.2 48.8 99.4 70.4

ATI* [37] 70.3 68.7 55.3 95.0 56.9 98.7 74.2

LDADA* [51] 70.3 68.8 55.9 94.2 53.2 98.5 73.5

DICE [21] 66.7 714 56.5 96.9 58.6 99.8 75.0

PACET (ours) 69.1 71.7 62.3 974 59.2 100.0 76.6

RevGrad [53] 72.3 73.0 53.4 96.4 51.2 99.2 74.3

DRCN [54] 66.8 68.7 56.0 96.4 54.9 99.0 73.6

yes RTN-res [52] 71.0 73.3 50.5 96.8 51.0 99.6 73.7

JAN-A [32] 72.8 75.2 57.5 96.6 56.3 99.6 76.3

12I-Adapt [55]  71.1 75.3 50.1 96.5 52.1 99.6 74.1

no PACET*(ours) 70.3 72.2 61.8 96.0 59.0 99.4 76.5

ResNet50 RevGrad [53] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
RTN-res [52] 77.5 84.5 66.2 96.8 64.8 99.4 81.6

yes JAN-A [32] 85.1 86.0 69.2 96.7 70.7 99.7 84.6

SimNet [56] 85.3 88.6 734 98.2 71.8 99.7 86.2

iCAN [57] 90.1 92.5 721 98.2 69.9 100.0 87.2

o SVM* 77.5 73.8 61.6 96.4 63.2 99.8 78.7
PACET*(ours) 90.8 89.1 735 97.6 73.6 99.8 87.4

Table 2

Results on the Office-Caltech dataset with SURF (above) and DeCAFg features using the full protocol [9,52]. To the best of our
knowledge, RTN-res [52] is a deep DA method that achieves the highest accuracy.

Source A A A C C

C

D D D W w w

Target C D w A D w A C w A C p M
1-NN 342 357 312 360 382 292 283 296 837 316 288 847 409
SVM* 427 395 390 530 420 451 337 304 820 362 344 866 471
GFKpls [10] 436 446 451 516 433 441 391 317 854 318 343 879 485
SA* [3] 443 363 383 548 452 444 394 343 851 363 332 834 479
JDA [19] 394 395 380 448 452 417 331 315 895 328 312 892 463
CORAL* [7] 451 395 444 543 363 386 377 338 847 359 337 866  47.6
JGSA [20] 415 471 458 515 459 454 380 299 919 399 332 905 500
LS [8] 400 401 390 485 459 414 412 346 858 376 312 860 476
LDADA* [51] 367 404 460 546 470 605 420 265 721 416 326 705 475
DICE [21] 427 497 522 502 510 481 411 337 841 375 378 873 513
KWC* (58] 460 478 417 532 497 478 417 394 858 390 364 828 509
PACET (ours) 443 503 532 522 522 515 408 345 915 408 390 924 536
PACET(ours) 459 49.7 525 57.5 548 539 403 357 878 418 401 9.1 542
SVM* 850 879 790 914 898 800 87.1 788 986 757 720 994 854
LSC* [59] 879 949 888 943 953 912 924 862 986 933 880 1000 92.6
JDOT* [30] 852 879 848 915 898 888 881 843 966 907 826 981 890
JGSA [20] 849 835 810 914 936 868 920 862 997 907 850 1000 90.0
ATI* [37] 865 928 887 938 896 936 934 859 989 936 863 1000 919
LDADA* [51] 880 915 932 922 961 909 927 870 942 923 879 975 920
DICE* [21] 876 898 885 930 962 953 925 883 990 918 869 1000 924
KWC* [58] 873 873 848 935 91.1 864 898 852 973 890 832 994 895
PACET*(ours) 883 949 922 936 962 956 927 893 990 929 869 1000 935
RTN-res [52] 88.1 955 952 937 942 969 938 846 992 925 866 1000 93.4

4.4. Subspace visualization with t-SNE

In addition to the quantitative comparison results, we exploit
one of the most popular visualization tool t-SNE> to compare sub-
spaces learned by different methods qualitatively. Here we choose
three public methods JDA [19], JGSA [20] and DICE [21] for com-
parison. Observing Fig. 3 carefully, we can discover that the source
classes (red color) are always separable, however, PACET is the best
performing method that pursues both inter-class separability and

3 https://lvdmaaten.github.io/tsne/.

within-class compactness in the target domain. Besides, the target
instances always lie in the source class area.

4.5. Ablation study, parameter sensitivity and convergence analysis

We perform an ablation study to investigate the effectiveness of
two proposed techniques (i.e., confidence-weight strategy and pro-
gressive learning scheme) to addressing uncertainties within tar-
get instances. Particularly, we introduce three different variants of
PACET, i.e., ACET, PAT and AT. Among them, ACET and PAT are the
special cases when PACET neglects the progressive learning scheme
and the confidence-weight strategy, respectively. AT is a baseline
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Table 3
Results on the Office-Caltech dataset with VGG-FCg; (above/ below) via sampling protocol [10]. Some results are reproduced
from [26].
Source A A A C C C D D D w w w Avg
Target C D W A D Y A C W A C D ’
1-NN 70.1 523 609 819 556 659 570 480 867 664 602 913 664
SVM* 742 517 631 867 615 748 587 555 918 733 682 942 711
GFK-pls [10] 777 635 741 862 665 765 699 640 924 81.1 735 96.6 76.8
SA [3] 77.1 649 760 839 662 760 69.0 623 905 802 719 942 76.0
CORAL* [7] 79.0 671 748 894 676 776 758 647 946 823 759 960 787
JGSA [20] 799 717 826 902 764 845 827 735 954 916 790 963 836
ILS [8] 789 725 824 876 73.0 844 792 665 942 872 799 893 813
PUnDA* [26] 823 762 827 903 762 883 831 692 934 869 826 898 834
LDADA* [51] 816 695 81.1 90.2 703 839 780 60.6 893 902 820 892 805
DICE [21] 830 664 759 919 674 837 844 786 948 903 807 938 826
PACET (ours)  85.1 727 8.6 907 797 897 897 8.6 948 907 840 970 867
PACET*(ours) 87.8 734 867 924 81.0 920 908 837 947 915 865 97.6 882
1-NN 726 508 640 826 549 653 612 528 832 678 642 888 678
SVM* 762 518 680 867 613 748 587 560 912 746 706 930 719
GFK-pls [10] 766 576 740 841 634 736 675 629 919 760 695 929 742
SA [3] 762 607 750 826 632 736 660 594 895 764 690 940 738
CORAL* [7] 786 613 718 886 638 760 712 630 935 820 737 946 765
JGSA [20] 81.1 723 814 883 723 825 789 723 936 898 798 958 823
ILS [8] 784 713 809 871 67.1 80.1 76,5 662 918 867 763 882 792
PUnDA* [26] 81.0 758 814 91.1 708 838 804 69.1 920 857 801 901 817
LDADA* [51] 825 714 863 912 688 857 745 585 887 878 798 869 802
DICE [21] 837 629 793 91.7 638 843 823 764 942 894 821 91.0 817
PACET (ours) 839 739 851 89.8 792 881 83.1 768 938 888 815 940 848
PACET*(ours) 869 754 868 923 809 915 858 81.1 943 909 856 947 872
Table 4
Results on the PIE dataset. Some results are reproduced from [21].
Source P1 P1 P1 P2 P2 P2 P3 P3 P3 P4 P4 P4 Avg
Target P2 P3 P4 P1 P3 P4 P1 P2 P4 P1 P2 P3 .
1-NN 26.1 266 167 245 466 265 214 41.0 262 185 242 283 272
SVM* 309 339 238 318 410 288 323 397 377 294 331 406 336
GFK-pls [10] 294 283 218 300 455 277 269 414 317 314 282 344 314
SA* [3] 328 345 225 277 373 271 291 370 305 345 309 319 313
JDA [19] 731 693 551 738 749 615 690 745 604 596 675 695 673
CORAL* [7] 318 319 199 266 350 259 251 365 260 320 304 326 295
RTML [60] 60.1 552 53.0 581 639 404 53.1 58.7 421 291 333 399 489
OTGL [31] 59.4 587 484 619 644 527 579 647 528 457 513 526 559
JGSA [20] 622 600 451 682 649 523 629 603 512 535 575 543 57.7
ILS [8] 378 352 218 404 318 255 291 319 180 257 214 317 292
DGA-DA* [29] 764 725 608 770 775 636 808 722 645 677 654 716 708
DICD [61] 73.0 720 669 699 659 487 694 654 614 629 570 659 649
DICE [21] 841 779 665 813 740 688 788 767 708 738 712 741 74.8
PACET (ours) 822 808 645 829 735 724 797 793 702 762  69.2 792 75.8
PACET*(ours) 809 790 659 837 719 735 800 781 69.7 776 705 805 759
Table 5
The average accuracies (%) of different methods (ablation study).
Dataset Office31 Office-Caltech
Feature AlexNet SURF DeCAFg VGG-FCy PIE
PACET 76.61 53.57 92.28 86.70 75.83
ACET (w/o Progressive learning) 75.85 53.27 91.50 85.91 74.86
PAT (w/o Confidence wEight) 74.77 52.18  92.37 85.85 73.58
AT (w/o both) 74.46 52.44  90.89 83.77 73.80

method where both two techniques are discarded. Their average
accuracies on several datasets are shown in Table 5.

Obviously, PACET is consistently superior to ACET that ignores
the progressive learning strategy, which indicates the importance
of such a self-learning technique. Besides, PACET outperforms PAT
that neglects the confidence-weight strategy via posterior prob-
ability in 4 out of 5 tasks, which highlights that the proposed
weighted relations are more accurate. In addition, ACET performs
better than AT in all the tasks, while PAT is worse than AT for PIE
and Office-Caltech with SURF features, that may be because such

shallow features are not powerful enough to distinguish ‘easy’ and
‘hard’ samples. However, such drawback can be mitigated to some
degree via using the confidence-weight strategy. While for DeCAFg
features, PACET is even inferior to PAT because the deep features
here are quite discriminative, estimating the uncertainties via K-
NN may be relatively inaccurate. Generally, both techniques are ef-
fective, and the confidence-weight strategy is more important than
the progressive learning scheme.

Then we investigate the sensitivity of parameters p;, 6 that
are involved into the progressive learning scheme in Algorithm. 1.
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Specifically, we set p; in the range of {0.65,0.70,...,0.90, 0.95}
and 6 in the range of {0.01,0.02,...,0.10}, and other parame-
ters are kept the same for fair comparisons. Carefully looking at
Table 6, we observe that the average accuracies are relatively sta-
ble when setting p; between 0.65 and 0.70 and 6 between 0.07
and 0.10. Besides, this table again validates the effectiveness of
the developed progressive learning scheme, because the majority
of accuracies outperforms that of ACET (w/o progressive learning)
(i.e., 91.50). Actually, p;=0.7,0 =0.1 is a default choice in this
paper.

Table 6

In addition, as shown in Fig. 4, we exploit five various datasets
to verify the sensitivity of parameter K and the experimental con-
vergence analysis. It is easily observed that the accuracies tend to
grow up and become steady when the neighbor size K becomes
larger in Fig. 4(a) in most cases. Actually, K =5 always achieves
promising performance, making it being a default choice. Besides,
we show the 1-NN accuracies of PACET within the iterative process
in Fig. 4(b). As expected, the average recognition accuracies on all
four datasets grow up quickly and gradually tend to stable after
about 8 iterations.

Average accuracy (%) of PACET on the Office-Caltech (DeCAFs) by using different parameters p; (initial propor-

tion) and 6 (increasing rate).

0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.65 8892 9039 91.61 91.15 9159 91.63 9240 9236 9236 92.54
0.70  89.67 9141 9241 9210 9216 9246 9240 9252 9242 92.28
075 9152 9244 9225 9233 9232 9213 9183 9192 9189 91.87
Di 0.80 9191 92.06 92.00 9198 92.09 9189 9155 91.88 91.81 91.80
0.85 9230 9222 92.06 91.64 91.89 91.81 9201 9193 9189 9175
090 9195 91.77 9181 91.61 91.70 91.67 91.69 9140 9146 9147
095 91.64 9144 9144 9144 9143 9150 9150 91.50 9150 91.50
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5. Conclusion

In this paper, we have proposed a novel approach named Pro-
gressive leArning with Confidence-wEighted Targets (PACET) for
unsupervised domain adaptation. Particularly, PACET well tack-
led the uncertainty in pseudo labels of the target domain from
two aspects, progressive target instance selection and incorpo-
rating the learned class confidence scores to characterize both
the within- and cross- domain relations. To increase the cross-
domain inter-class separability, we further develop a new triplet-
wise instance-to-center margin to compensate traditional pairwise
empirical MMD. Further, an EM-style algorithm has been natu-
rally developed to alternately learn feature transformation, esti-
mate the target class confidence scores and select certain training
target instances progressively. Extensive empirical results on three
benchmark datasets have validated the superiority of PACET to re-
cent state-of-the-art UDA methods. Particularly, PACET achieves the
state-of-the-art accuracies and surpasses the recently reported best
results on the most popular Office31 dataset.

Generally speaking, our method first considers the uncer-
tainty in domain discrepancy for pseudo-label guided unsuper-
vised domain adaptation, which can provide some useful insights
to pseudo-label guided transfer learning methods. There are still,
however, some aspects to be improved. Our method is somewhat
heuristic and lacks some theoretical justification. It also highly re-
lies on the closed set assumption where two domains share the
same label space. Hence, in the future, we would like to discover
some theoretical insights behind our method, and extend it from
the closed set setting to some challenging settings like open-set
and partial domain adaptation. Besides, we also plan to extend it
by incorporating the deep learning technique to learn the domain-
invariant feature representations.
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