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Abstract. Greedy subspace clustering methods provide an efficient way
to cluster large-scale multimedia datasets. However, these methods do
not guarantee a global optimum and their clustering performance mainly
depends on their initializations. To alleviate this initialization problem,
this paper proposes a two-step greedy strategy by exploring proper neigh-
bors that span an initial subspace. Firstly, for each data point, we seek
a sparse representation with respect to its nearest neighbors. The data
points corresponding to nonzero entries in the learning representation
form an initial subspace, which potentially rejects bad or redundant
data points. Secondly, the subspace is updated by adding an orthogonal
basis involved with the newly added data points. Experimental results
on real-world applications demonstrate that our method can significantly
improve the clustering accuracy of greedy subspace clustering methods
without scarifying much computational time.

Keywords: Greedy subspace clustering · Sparse representation · Sub-
space neighbor

1 Introduction

Clustering is a classic problem in multimedia and computer vision. As an impor-
tant branch of clustering, subspace clustering seeks to cluster data into differ-
ent subspaces and find a low-dimensional subspace fitting each group of points.
It is based on the assumption that high-dimensional data often lies on low-
dimensional subspaces, which usually holds true for the data acquired in real
world. Subspace clustering can be widely applied in image segmentation [1],
motion segmentation [2], face clustering [3], image representation, compres-
sion [4], and multimedia analysis [5,6]. In these applications, data points of
the same class (e.g., pixels belong to the same object, feature points of the same
rigid object in a moving video sequence, face images of the same person) lie on
same underlying subspace, and the mixture dataset can be modeled by unions
of subspaces.

1.1 Related Work on Subspace Clustering

Numerous subspace clustering approaches have been proposed in the past two
decades. Existing work on subspace clustering in machine learning and computer
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vision communities can be divided into four main categories: algebraic, iterative,
statistical and spectral clustering-based methods [7].

Algebraic methods such as matrix factorization-based algorithms [8,9] seg-
ment data points according to a low-rank factorization of the data matrix. But
these methods are not effective when the subspaces are dependent. Generalized
Principal Component Analysis (GPCA) [10] uses a polynomial function to fit a
given point. It can handle both independent and dependent subspaces, but the
computational complexity increases exponentially when the dimension of data
grows. Such methods are sensitive to noise and outliers, due to their assump-
tion of noise-free data. Iterative methods [3,11] iteratively refine subspaces of
each cluster and assign points to the closest subspace. And these methods can
be applied to linear as well as affine subspaces, but it is easy to run into a
local optimum, thus several restarts are often needed. Statistical approaches
such as [12,13], model both data and noise under explicit assumptions of the
probabilistic distribution of data in each subspaces and noise. However, these
statistical approaches are not suitable for real-world applications due to their
sensitivity to outliers.

The standard procedure of spectral clustering-based methods consists of con-
structing an affinity matrix firstly whose elements measure the similarity between
samples, and then applying spectral clustering given the affinity matrix. A num-
ber of spectral clustering-based methods spring out in recent years such as Sparse
Subspace Clustering (SSC) [14,15], Low-Rank Representation (LRR) [16], Low-
Rank Representation via Correntropy (CLRR) [17,18], Low-Rank Sparse Sub-
space Clustering (LRSSC) [19] and Spectral Curvature Clustering (SCC) [20].
The basic idea of SSC is that a data point can be written as a linear or affine
combination of other data points in the same subspace under an l1-minimization
constraint. A similar optimization based method called LRR minimizes nuclear
norm instead of the l1-norm in SSC to guarantee a low-rank affinity matrix.
CLRR proposed by Zhang et al. attempt to maximize the correntropy between
data points and their reconstruction, and an efficient solution of the optimiza-
tion problem based on half-quadratic minimization is given in their paper. Wang
et al. propose a hybrid algorithm termed LRSSC by combining l1-norm and
nuclear norm, based on the fact that the representation matrix is often not only
sparse but also low-rank.

More recently, greedy-like spectral clustering-based approaches gain increas-
ing attention due to their low complexity. Dyer et al. induced a greedy method
for sparse signal recovery called orthogonal matching pursuit (OMP) [21], which
is used to replace the l1-minimization in SSC. Heckel and H. Bölcskei proposed
a simple algorithm based on thresholding the correlation between data points
(TSC) [22]. Park and Caramanis presented Nearest Subspace Neighbor (NSN)
in [23], which constructs neighbors via incrementally selecting point that is clos-
est to the subspace. All the greedy approaches share a common advantage of com-
putationally less demanding. However, a major disadvantage of these greedy-like
methods is that they can not cope with complex situation where the subspaces
intersect or lots of noise exist.
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1.2 Paper Contributions

In this paper we propose a two-step greedy subspace clustering (T-GSC) algo-
rithm, which is able to achieve superior clustering performance, comparing to
several state-of-the-art methods. A initial subspace construction step is induced
aiming to improve the robustness of greedy-like algorithms, especially when the
data are not well distributed around their subspaces, e.g. the data is contami-
nated by outliers, the subspaces are intersected. After the first step, different-
class neighbors can be directly ruled out in most cases, resulting in a better
spanning of the subspace. Then, in the second step, the nearest subspace neigh-
bor is added to the neighbors set in a greedy way, which requires much less
run time than other kinds of algorithms. Numerous experimental results demon-
strate that our algorithm can reach state-of-the-art clustering performance, with
better robustness and lower computational cost.

The reminder of this paper is organized as follows. Section 2 reviews the
Nearest Subspace Neighbor algorithm and then describes the technical details of
our method. Then a number of experiments are presented in the Sect. 3. Finally
we draw some conclusions in the Sect. 4.

2 Two-Step Greedy Subspace Clustering

As mentioned before, spectral clustering-based methods follow a basic procedure
of computing an affinity matrix first and then deriving clusters using spectral
clustering. Instead of computing each entry of the affinity matrix, we construct
a neighborhood matrix whose entries are either 0 or 1, as in [22,23]. Hence,
constructing an affinity matrix is transformed into finding a neighborhood of each
data point. The proposed method is mainly inspired by the Nearest Subspace
Neighbor (NSN), which iteratively selects neighbor points most likely to be on
the same subspace. That is to say, NSN choose the nearest neighbor as the first
member of the neighbor set to construct subspace. However, a data point and
its nearest neighbor may belong to different true subspaces in many cases. Thus,
we propose an initial subspace construction step in our algorithm to solve this
problem.

Through this paper, we use uppercase boldface letters to denote matrices,
lowercase letters to denote vectors and scalars, and letters that are uppercase
but not bold stand for parameters and sets. The given data matrix is denoted as
X ∈ RD×N , with each column representing a data point xi ∈ RD. The task of
subspace clustering is to recover the union of K subspaces S = S1 ∪S2 ∪ ...∪SK

where the data points are belong to, and the dimension of each subspace is
supposed to be not higher than P . For each data point xi, there is a neighbor
set Ωi contains M elements. In addition, U represents subspace spanned by a
set of data points: U = span(Ω); projU (x) is defined as the projection of data
point x to the subspace U ; ηm,m = 1, 2, ..., P are orthogonal bases of U ; I{.}
is the indicator function; ‖.‖ denote Euclidean norm for vectors; and 〈.〉 is the
inner product operator.
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2.1 First Step: Initial Subspace Construction

T-GSC constructs a good initial subspace based on the theory of sparse repre-
sentation. Considering a data point xi ∈ RD drawn from a union of subspaces,
it can be sparsely represented by solving

min ‖c‖0 s.t. xi = Xc, (1)

where X is the data matrix. However, this optimization problem of l0-norm is
NP-hard and non-convex in general, while it is proved in [24] that the l1-norm
solution is equivalent to l0-norm solution in certain conditions. So, the l1-norm
is adopted, and Eq. (1) can be reformulated as follows.

min ‖c‖1 s.t. xi = Xc. (2)

There are a huge number of approaches for extracting the sparse solution of
Eq. (2) such as the Basis Pursuit Algorithm [24] and Lasso [25]. The work of
SSC [9] proves that the optimal solution ĉ has zero entries correspond to data
points not lying in the same subspace with xi. Based on this, neighbors from
distinct subspaces can be rejected.

Fortunately, we do not need to find all data points that lie in the same sub-
space with xi constructing the initial subspace. We just need to find one neighbor
that most likely belongs to the same class with xi to ensure the reliability of the
subspace spanned by them. Therefore, optimizing Eq. (2) among all the data
points is undesirable. In our approach, L nearest neighbors around xi in the
ambient space are chosen to be the bases. Then the l1-optimization problem is
simplified to

min ‖c‖1 s.t. xi = X
(L)
i c. (3)

where X
(L)
i is comprised of the L nearest neighbors of xi, and the problem can

be efficiently solved when L is not large. We use the glmnet toolbox [25] of Lasso
to solve this problem. The data point corresponding to the max entry of c will be
the first neighbor added to xi’s neighbor set Ωi, meanwhile the initial subspace
U is spanned by Ωi.

2.2 Second Step: Greedy Subspace Clustering

Once the initial subspace is built, T-GSC greedily adds the closest point to
the subspace into the neighbor set in the following iterations as NSN, until
enough neighbors are selected. This step mainly involves two stages: finding new
neighbors and updating subspaces.

We use a set of orthogonal bases to represent the subspace. In every iteration,
the subspace is updated by adding an orthogonal basis involved with the newly
added data points according to the Gram-Schmidt process.

ηm+1 = xj∗ −
m∑

k=1

〈xj∗ , ηk〉ηk. (4)
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Then, projU (x) can be easily obtained through the following equation. Note that
we only need to compute the inner product with the newly added orthogonal
basis in the k-th iteration.

projU (x)2 =
∑

k

〈x, ηk〉2. (5)

After all the neighbors are selected, spectral clustering is applied to find the clus-
ters as in other spectral-based algorithms. The following Algorithm 1 summarizes
the whole procedure in T-GSC to cluster data points into different subspaces.

Algorithm 1. Two-step Greedy Subspace Clustering(T-GSC)
Input: Data matrix X ∈ RD×N , maximum subspace dimension P , number of neighbors M ,

number of subspaces K.

Output: Neighbor matrix Z ∈ {0, 1}N×N . Estimated class labels ĉ1, ĉ2, ..., ĉN .

1. Normalize all data points: xi ← xi/‖xi‖;

for each xi do

2. (First step) Construct the initial subspace U and initial neighbor set Ωi by solving Eq.(3);

3. (Second step) Find M neighbors for xi:

(1). Select the closest point to current subspace: j∗ = arg maxj∈[N]\Ωi
projU (xj);

(2). Update the neighbor set: Ωi ← Ωi ∪ {j∗};

(3). Update the subspace: if M < P , then U ← span{xj : j ∈ Ωi};

4. Update the neighborhood matrix: Zij = 1, ∀j ∈ Ωi;

end for

5. Construct the affinity matrix: Wij = Zij + Zji;

6. Apply spectral clustering to (W, K).

3 Experiments

This section presents experimental results of our study. We compare our method
with several state-of-the-art methods on two real-world applications: motion
segmentation and face clustering. For the baseline methods, we use the MATLAB
codes provided by their authors.

Three evaluation metrics are used in our experiments: clustering error (CE),
neighbor selection error (NSE) and run time (CT). CE is defined as

CE =
1
N

N∑

i=1

I(ci �= ĉi), (6)

where ci is the class label, and ĉi is the estimated class label. Since the definite
label index of estimated class may be not consistent with its real index, every
permutation of the estimated class label should be calculated in CE, and the
minimum among all the permutation is adopted.
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NSE =
1
N

N∑

i=1

I(j|Wij �= 0, ci �= ĉi). (7)

NSE is the proportion of points that do not have all correct neighbors, it mea-
sures the extent that algorithms misconnect data points from different subspaces
in the adjacency matrix. Besides, we compare the average run time (RT) to eval-
uate our algorithm’s efficiency.

3.1 Motion Segmentation

To verify the performance of T-GSC in motion segmentation problem, we eval-
uate our method on the Hopkins155 motion segmentation database [26],1 which
comprises 155 video sequences of 2 or 3 motions, and the goal of this test is
to segment the tracked points in a frame into different motion clusters. All the
experiments in this paper are directly done on the raw data downloaded from
the database website without any preprocessing.

Choosing the Subspace Dimension P . In theory, the value of subspace
dimension P should be set equal to the underlying subspace where the data
lies in. However, considering the existence of corruption and noise, choosing
the subspace dimension directly equal to its theoretical value is suboptimal.
According to the affine projection model, all the trajectories associated with
a single rigid motion live in an affine subspace of dimension 3, so we choose
the subspace dimension P around 3. The average CE and NSE of T-GSC on
Hopkins155 under different P are listed in Table 1: the minimum CE is obtained
when P = 5. Thus, we set the maximum subspace dimension P = 5 in the
following motion segmentation experiment.

Table 1. Results on Hopkins 155 under varied P

P 3 4 5 6 7

Mean CE(%) 8.57 5.61 3.94 4.73 3.81

Mean NSE(%) 4.71 4.46 3.74 3.54 3.42

Motion Segmentation Performance. Table 2 shows the results over all
sequences in Hopkins155. Since there is no much corruption or missing data
in the Hopkins155 dataset, most baseline algorithms can achieve a really good
performance. We can see that T-GSC performs comparable to the state-of-the-
art methods, while keeps a relatively low computational time. Moreover, the
CE and NSE of T-GSC are much smaller than NSN, which demonstrates the
effectiveness of the first step in our method.
1 The Hopkins155 database is available online at http://www.vision.jhu.edu/data/

hopkins155/.

http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/
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Table 2. Results on Hopkins 155 dataset

Algotithms SSC LRR SCC OMP TSC NSN T-GSC(Ours)

2 Motions Mean CE(%) 1.53 2.13 2.24 17.25 18.44 3.62 3.07

Median CE(%) 0 0 0 13.33 16.92 0 0

Mean NSE(%) 1.09 6.03 – 37.61 2.86 2.91 2.64

Mean RT(s) 0.50 0.96 0.37 0.17 0.16 0.06 0.24

3 Motions Mean CE(%) 4.40 4.03 4.32 27.61 28.58 8.28 6.87

Median CE(%) 0.56 1.43 0.21 23.79 29.67 2.76 1.49

Mean NSE(%) 2.44 10.56 – 78.03 7.42 8.30 7.51

Mean RT(s) 1.03 1.33 0.68 0.28 0.38 0.12 0.38

All Mean CE(%) 2.18 2.56 2.71 19.59 20.73 4.67 3.94

Median CE(%) 0.13 0.32 0.05 15.69 19.80 0.62 0.34

Mean NSE(%) 1.39 7.05 – 46.74 3.89 4.13 3.74

Mean RT(s) 0.62 1.04 0.44 0.19 0.21 0.07 0.27

3.2 Face Clustering

In this section, we evaluate the face clustering performance of T-GSC as well
as many state-of-the-art methods on the Extended Yale-B database [27].2 The
Extended Yale-B dataset contains frontal face images of 38 subjects under 64
different illumination conditions.

To reduce the computational time and memory cost, we use the cropped
images of the Extended Yale-B dataset and resize them to 4842 pixels, then
concatenate the raw pixels value into a 2016-dimensional vector for each data
point. We take a series experiments under different number of subjects. All of
the experimental results of face clustering are adopted average value under 100
random trials.

Choosing the Subspace Dimension P . Similar to the motion segmentation
experiment, we test different P of 9 to 20. The solid line in Fig. 1 shows the
influence of P to T-GSC on Extended Yale-B: when the subspace dimension
ranges from 9 to 14, the clustering error drops monotonically; while the clustering
error keeps almost unchanged when P is increased to 15. This phenomenon
implies that T-GSC is relatively robust to the choice of subspace dimension.
Results of different P to NSN can be also seen in Fig. 1. Comparing T-GSC with
NSN,we can see that T-GSC performs much better in low subspace dimension,
and this demonstrates that T-GSC has more powerful ability to recover the
subspace. Besides, with almost the same clustering error, T-GSC needs fewer
neighbors than NSN, which helps to reduce the computational time.
2 The Extended Yale-B database is available online at http://vision.ucsd.edu/∼leekc/

ExtYaleDatabase/ExtYaleB.html.

http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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Fig. 1. Influence of P to T-GSC and NSN

Table 3. Results on Yale-B dataset

Algotithms SSC LRR OMP TSC NSN T-GSC(Ours)

2 Subjects Mean CE(%) 2.67 4.29 7.41 12.53 1.84 1.45

Median CE(%) 0 0.78 1.57 2.36 0.78 0.78

Mean NSE(%) 8.14 5.59 13.86 10.04 2.63 1.90

Mean RT(s) 17.13 2.59 0.21 0.15 0.28 0.50

3 Subjects Mean CE(%) 4.16 5.60 5.12 20.02 3.32 2.24

Median CE(%) 1.04 1.04 2.08 13.54 2.6 1.56

Mean NSE(%) 20.99 9.95 39.07 19.04 4.72 3.07

Mean RT(s) 21.99 4.89 0.35 0.36 0.95 1.12

5 Subjects Mean CE(%) 4.72 5.72 9.26 29.58 6.18 3.40

Median CE(%) 2.81 2.90 5.00 31.25 5.31 2.97

Mean NSE(%) 53.76 17.53 87.00 27.56 7.65 4.66

Mean RT(s) 32.14 10.48 0.76 0.49 1.86 2.41

10 Subjects Mean CE(%) 11.75 11.65 16.15 41.68 13.63 8.20

Median CE(%) 11.02 12.73 17.19 42.66 12.03 6.41

Mean NSE(%) 76.46 33.47 94.54 36.56 12.44 7.89

Mean RT(s) 61.52 41.16 3.24 1.56 7.91 9.02

Taking the clustering error and computation time into account, we set P =
16 in the following face clustering experiment.

Face Clustering Performance. Table 3 demonstrates the face clustering
results of different numbers of subspaces. T-GSC obtains the smallest mean
CE as well as mean NSE in most cases, while SSC and LRR perform best on
the median CE. One possible reason is that SSC and LRR, which are belong
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to optimization-based methods, are more suitable to handle general condition
but not complex situation, while T-GSC is more robust. Thus the optimization-
based methods fail in the small number of difficult cases, resulting in higher mean
clustering errors than T-GSC. Besides, the proposed method is about three times
faster than SSC, while holds comparable clustering error.

4 Conclusion

This paper studied the initialization problem of greedy subspace clustering meth-
ods, and proposed a two-step greedy subspace clustering method to alleviate this
problem. First, for a data point, T-GSC constructs an initial subspace by seek-
ing a sparse representation with respect to its nearest neighbors. Second, the
subspace is updated by adding an orthogonal basis involved with the newly
added data points. A series of experiments of motion segmentation on the Hop-
kins155 dataset, and face clustering on the Extended Yale-B dataset have been
conducted. Experimental results show that T-GSC achieves better performance
than other greedy subspace clustering methods, and meanwhile maintains com-
parable low computational cost.
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