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Abstract

Selecting appropriate hyperparameters is crucial for unlocking the full potential1

of advanced unsupervised domain adaptation (UDA) methods in unlabeled target2

domains. Although this challenge remains under-explored, it has recently garnered3

increasing attention with the proposals of various model selection methods. Reli-4

able model selection should maintain performance across diverse UDA methods5

and scenarios, especially avoiding highly risky worst-case selections—selecting6

the model or hyperparameter with the worst performance in the pool. Are existing7

model selection methods reliable and versatile enough for different UDA tasks? In8

this paper, we provide a comprehensive empirical study involving 8 existing model9

selection approaches to answer this question. Our evaluation spans 12 UDA meth-10

ods across 5 diverse UDA benchmarks and 5 popular UDA scenarios. Surprisingly,11

we find that none of these approaches can effectively avoid the worst-case selection.12

In contrast, a simple but overlooked ensemble-based selection approach, which we13

call EnsV, is both theoretically and empirically certified to avoid the worst-case14

selection, ensuring high reliability. Additionally, EnsV is versatile for various15

practical but challenging UDA scenarios, including validation of open-partial-set16

UDA and source-free UDA. Finally, we call for more attention to the reliability17

of model selection in UDA: avoiding the worst-case is as significant as achieving18

peak selection performance and should not be overlooked when developing new19

model selection methods. Code is available in the supplementary materials.20

1 Introduction21

Deep learning has achieved incredible advancements in various tasks through supervised learning22

with large labeled datasets [1]. However, obtaining labels can be expensive, and deep models often23

struggle to generalize to unlabeled data from unseen distributions [2]. Domain adaptation [3] tackles24

this challenge by transferring knowledge from a labeled source domain to a target domain with limited25

labels but a similar task. Unsupervised domain adaptation [4] (UDA), particularly, has garnered26

significant attention due to its practical assumption that the target domain is entirely unlabeled,27

witnessing the development of many effective methods [5–8] and practical settings [9–12].28

However, successful applications of UDA methods across diverse tasks rely heavily on selecting ap-29

propriate hyperparameters. Sub-optimal hyperparameters can cause state-of-the-art UDA methods to30

underperform compared to the source-trained model without target-domain adaptation [19, 18]. This31
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Table 1: Statistics for worst-case selections by various model selection methods are provided across
110 closed-set UDA tasks (potentially an additional 21 tasks on DomainNet [13]), 24 partial-set UDA
tasks, and 17 source-free UDA tasks (only for applicable methods). These statistics represent the
count of worst-case selections divided by the total count of tasks, with bold font indicating the best
worst-case avoidance. ‘n.a.’ indicates that certain methods are not applicable without source data.

Method Closed-set UDA Partial-set UDA Source-free UDA
SourceRisk [9] 16 / 110 2 / 24 n.a.
IWCV [14] 15 / 110 3 / 24 n.a.
DEV [15] 9 / 110 1 / 24 n.a.
RV [16] 2 / 110 1 / 24 n.a.
Entropy [17] 15 / 131 7 / 24 16 / 17
InfoMax [18] 9 / 131 12 / 24 16 / 17
SND [19] 33 / 131 3 / 24 11 / 17
Corr-C [20] 80 / 131 4 / 24 3 / 17
EnsV (Ours) 0 / 131 0 / 24 0 / 17

phenomenon emphasizes the significance of model selection, also called hyperparameter selection or32

validation, in UDA. Taking the typical one-hyperparameter validation task of a given UDA method as33

an example, we need to determine the optimal value of a hyperparameter η among a set of m different34

candidate values {ηi}mi=1. By applying these different ηi with the same UDA method, we can obtain35

a set of m different models with the parameter weights {θi}mi=1. The goal is to identify the candidate36

model that exhibits the best performance on the unlabeled target domain and subsequently adopt37

the associated hyperparameter value for η. This model selection problem remains challenging and38

under-explored in UDA due to cross-domain distribution shifts and the absence of labeled target data.39

Existing approaches can be categorized into two types. The first type involves leveraging labeled40

source data for target-domain model selection [9, 14–16]. The second type designs unsupervised41

metrics based on priors of the learned target-domain structure and utilizes the metrics for model42

selection [17, 19, 18, 20]. It is natural to ask: Are these approaches reliable in model selection tasks,43

i.e., can they maintain good performance for various practical UDA tasks?44

To answer this question, we conduct an extensive empirical study to assess the performance of all45

selection methods across various practical UDA settings, including closed-set UDA [21], partial-set46

UDA [10], open-partial-set UDA [11], and source-free UDA [12, 22]. Notably, the model selection47

problem of open-partial-set UDA has not been investigated before. Surprisingly, we find that despite48

their specific designs, all these methods encounter challenges in avoiding the selection of poor49

or even the worst models across various UDA methods and settings. This renders the adaptation50

ineffective or even harmful, thereby constraining their adoption by researchers and practitioners in51

the community [18]. For instance, Table 1 compares the worst-case selection statistics of all these52

model selection methods across various practical UDA settings. These settings include standard53

closed-set UDA and partial-set UDA, which have been extensively studied in prior works [15, 19],54

and source-free UDA, where the model selection problem has not been widely investigated. The55

comparison reveals that all the methods occasionally or even frequently suffer from worst-case model56

selection situations, indicating high unreliability.57

In contrast, we note that a simple ensemble-based validation baseline, dubbed EnsV, can effectively58

avoid the worst-case selection. Through a straightforward theoretical analysis of the ensemble, we59

observe that it is guaranteed to surpass the worst candidate model’s performance. Our introduced60

EnsV takes a further simple step, utilizing the ensemble as a role model for directly assessing61

candidate models during the model selection process. This strategy ensures the secure avoidance of62

selecting the worst candidate model, thereby enhancing the reliability of model selection. Moreover,63

EnsV only uses target-domain predictions inferred by all candidate models. This eliminates the need64

for specific domain shift assumptions and access to source data, while also requiring no additional65

effort, such as time and memory, as all models are provided within the given problem context. This66

simplicity and versatility make EnsV suitable for various practical UDA scenarios, including the67
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Table 2: Comparisons of unsupervised model selection approaches used for UDA.

Method covariate
shift

label
shift

w/o
source data

w/o extra
hyperparameter

w/o
extra training

worst-case
avoidance

SourceRisk [9] ✗ ✗ ✗ ✗ ✓ ✗
IWCV [14] ✓ ✗ ✗ ✗ ✗ ✗
DEV [15] ✓ ✗ ✗ ✗ ✗ ✗
RV [16] ✓ ✗ ✗ ✗ ✗ ✗
Entropy [17] ✓ ✗ ✓ ✓ ✓ ✗
InfoMax [18] ✓ ✗ ✓ ✓ ✓ ✗
SND [19] ✓ ✓ ✓ ✗ ✓ ✗
Corr-C [20] ✓ ✗ ✓ ✓ ✓ ✗
EnsV (Ours) ✓ ✓ ✓ ✓ ✓ ✓

unexplored challenges of validation for UDA with unknown open classes [19]. Despite EnsV not68

being certified for peak-performance selection, we hope that, as the first to focus on the practical69

aspect of worst-case avoidance in model selection, our empirical study and simple baseline can70

inspire future efforts in developing more reliable model selection methods.71

2 Related Work72

Unsupervised domain adaptation (UDA) is initially studied in a closed-set setting (CDA) where73

only covariate shift [14] is considered as the domain shift, and the two domains share the same74

label set. Recent research has explored many real-world UDA scenarios by incorporating label75

shift, where the two domains have distinct label sets. This includes partial-set UDA (PDA) [10],76

where several source classes are missing in the target domain, open-set UDA (ODA) [23], where77

the target domain contains samples from unknown classes, and open-partial-set UDA (OPDA) [11],78

where there are only some overlaps in the label sets across domains. More recently, source-free79

UDA settings (SFUDA) [24, 12] have been explored, where only the source model instead of source80

data is available for target adaptation, potentially addressing privacy concerns in the source domain.81

Subsequently, in the context of black-box domain adaptation [22], the privacy of the source domain82

is fully safeguarded. Specifically, the research community has made significant efforts to develop83

effective UDA methods in image classification [9, 6] and semantic segmentation [25, 26], which84

can be seen through two distinct research directions. The first direction focuses on aligning the85

distributions across domains by minimizing specific discrepancy measures [27, 28, 21, 29, 30]86

or using adversarial learning to maximize domain confusion [9]. Especially, adversarial learning87

has become a popular approach and has been explored at different levels for domain alignment,88

including image-level [31], manifold-level [9, 32, 6], and prediction-level [5, 25, 26, 33]. The second89

direction focuses on target-oriented learning, aiming to learn a good structure for the target domain.90

This includes self-training approaches [34, 12, 35] and target-specific regularizations [7, 8, 36]. To91

thoroughly assess the efficacy of model selection baselines, we opt for a diverse set of UDA methods92

across various UDA scenarios in our model selection experiments and then utilize these baselines to93

choose the appropriate hyperparameters for different UDA methods.94

Model selection in UDA is significant in the practical deployment of UDA methods but remains95

relatively under-explored. Efforts to address this challenge can be broadly categorized into two lines.96

Early approaches to model selection in UDA focused on estimating the target domain risk through97

labeled source data. SourceRisk [9] utilized a hold-out labeled source validation set to guide model98

selection based on source risk. To mitigate the impact of domain shift on source estimation, [14]99

introduced Importance-Weighted Cross-Validation (IWCV), which re-weights source risk using a100

source-target density ratio estimated in the input space. Building upon this, [15] improved IWCV by101

introducing Deep Embedded Validation (DEV), which estimates the density ratio in the feature space102

and offers lower variance. [16] proposed a novel Reverse Validation approach (RV) that leveraged103

reversed source risk for selection. However, source-based validation methods often necessitate104
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additional model training to handle domain shifts, rendering them cumbersome and less reliable. In105

contrast, recent model selection methods have shifted their focus exclusively to unlabeled target data,106

employing specifically designed metrics for model selection. For instance, [17] introduced the mean107

Shannon’s Entropy of target predictions as a model selection metric, promoting confident predictions.108

[18] proposed the use of Input-Output Mutual Information Maximization (InfoMax)[37] as a metric,109

augmented with class-balance regularization over Entropy. [19] introduced Soft Neighborhood110

Density (SND), a novel metric focusing on neighborhood consistency. [20] presented Corr-C, a class111

correlation-based metric that evaluates both class diversity and prediction certainty simultaneously.112

Our EnsV baseline aligns with the latter line of research. Importantly, it operates without making any113

assumptions about cross-domain distribution shifts or the learned target-domain structure, making114

it suitable for a variety of UDA scenarios. A comprehensive comparison, as presented in Table 2,115

underscores that EnsV stands out as a simple and versatile approach.116

Ensemble methods, which harness the collective power of a pool of models through prediction117

averaging, have been extensively studied in the machine learning community for enhancing model118

performance [38–41] and improving model calibration [42, 43]. In the era of deep learning, the119

efficiency of ensembling has garnered significant attention due to the high training cost of deep120

models. Efficient solutions have been proposed, such as using partially shared parameters [44–46]121

and leveraging intermediate snapshots [47–49]. Recently, weight averaging has gained attention as122

an efficient alternative to prediction averaging during inference [50–54]. In addition, diversity is123

considered crucial for effective ensembles. Various approaches have been explored to achieve diverse124

checkpoints, including bootstrapping [55], random initializations [56], tuning hyperparameters [57,125

58, 51], and combining multiple strategies [59]. Different from mainstream ensemble applications, our126

work innovatively and elegantly applies ensemble to help address the open problem of unsupervised127

model selection in various domain adaptation scenarios. In addition, [60] leverages ensembles for128

hyperparameter selection in CDA but directly uses prediction-based ensembling as the output, unlike129

our EnsV, which includes a selection step.130

3 Methodology131

We consider a C-way image classification task to introduce the concept of unsupervised domain adap-132

tation (UDA). In UDA, we typically have a labeled source domain Ds = {(xi
s, y

i
s)}

ns
i=1 comprising133

ns annotated source images xs and their corresponding labels ys. Additionally, there is an unlabeled134

target domain, Dt = {xi
t}

nt
i=1, containing only nt unlabeled target images xt. Despite the tasks being135

similar, there exist data distribution shifts between the two domains. The primary objective of UDA136

is to accurately predict the unavailable target labels, {yit}
nt
i=1, by leveraging a discriminative mapping137

f(x, θ), which is learned using data from two domains. Here, θ ∈ Rd represents the parameter138

weights of the trained UDA model. When presented with an input image x, the model generates a139

probability prediction vector, p = f(x, θ), where p ∈ RC and
∑C

i=1 p
i = 1.140

Model selection in UDA is essentially equivalent to the hyperparameter selection challenge. Here,141

we aim to determine the optimal value for the hyperparameter η from a set of m candidate values142

{ηi}mi=1. The hyperparameter η can encompass various aspects, including the learning rate, loss143

coefficients, architectural settings, training iterations, and more. By training UDA models using the144

m different values of η, we obtain corresponding models with weights denoted as {θi}mi=1. In UDA,145

the objective of model selection is to pinpoint the model θk that demonstrates the best performance146

on the unlabeled target domain. Subsequently, we select the corresponding hyperparameter ηk as the147

optimal choice for potential adaptation with unlabeled target samples from the exact target domain.148

We illustrate the problem setting in Figure 1. Without loss of generality, in this paper, we assume m149

is greater than 1, and candidate models have different weights θ, resulting in different discriminative150

mappings of f(x, θ). For clarity, we treat both θ and the model interchangeably in the presentation.151

This also applies to model selection, hyperparameter selection, and validation.152
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Figure 1: Left: Depiction of the unsupervised model selection problem in domain adaptation
scenarios, where the objective is to identify the optimal model for the unlabeled target domain. Right:
Overview of our approach, EnsV, for model selection, which relies solely on predictions of target
data by all candidate models.

3.1 Ensemble: The Overlooked "Free Lunch" in Model Selection153

Model selection in UDA is challenging due to the absence of labeled target data for directly eval-154

uating candidate models. Existing selection approaches typically address this challenge from two155

perspectives: leveraging labeled source data [15] or designing unsupervised metrics based on specific156

assumed priors [19]. Surprisingly, we’ve observed that all existing model selection methods treat157

each candidate model independently, overlooking the collective potential offered by the off-the-shelf158

ensemble created by these candidates. In this paper, unless otherwise specified, the ensemble refers159

to prediction-based ensembling, which involves averaging probability predictions across all models160

to obtain the averaged prediction, i.e., 1
m

∑m
i=1 f(x, θi) for a sample x.161

In contrast, we first investigate the potential of the ensemble within the model selection problem.162

When contemplating the use of the ensemble, two primary concerns often arise, one concerning163

low efficiency due to training multiple models and the other related to the potential lack of diversity164

among candidate models. Upon closer inspection of model selection, we observe that the problem165

setting inherently offers a range of pre-existing candidate models, effectively addressing the efficiency166

concern without requiring extra model training. Furthermore, all candidate models are trained using167

a UDA method with varying hyperparameter values, resulting in diverse yet effective discriminative168

abilities. This naturally mitigates the diversity concern. Interestingly, the ensemble emerges as a169

"free lunch" in UDA model selection, a previously overlooked insight. To delve deeper into the170

effectiveness of the ensemble, we present a theoretical analysis grounded in the proposition below.171

Proposition 1 Given negative log-likelihood (NLL) as the loss function, defined as l(p, y) = − log py ,172

and considering a random sample x with label y, the following inequality can be established between173

the loss of the ensemble 1
m

∑m
i=1 f(x, θi), the averaged loss of all models {θi}mi=1, and the loss of174

the worst one θworst:175

l(
1

m

m∑
i=1

f(x, θi), y) <
1

m

m∑
i=1

l(f(x, θi), y) < l(f(x, θworst), y).

Kindly refer to the Appendix for the proof. This proposition theoretically guarantees that the ensemble176

strictly outperforms the worst candidate model.177

3.2 Ensemble-based Validation (EnsV): Ensemble as a Role Model for Model Selection178

Intuitively, we employ the previously mentioned off-the-shelf ensemble as a reliable role model and179

select the model that generates predictions closest to this role model among all candidates. To begin180

with, for each unlabeled target sample x, we consider the ensemble 1
m

∑m
i=1 f(x, θi) as a reliable181

estimation of its unavailable ground truth. This enables us to obtain reliable predictions for all target182

data, denoted as { 1
m

∑m
i=1 f(xj , θi)}nt

j=1. These ensembles can be viewed as the output of a reliable183
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role model, aiding in accurate model selection in the subsequent step. We then utilize the role model184

to assess all candidate models and select the one with the highest similarity. For simplicity, EnsV185

involves direct measurement of accuracy between the role model output { 1
m

∑m
i=1 f(xj , θi)}nt

j=1 and186

the predictions made by each candidate model, such as {f(xj , θi)}nt
j=1 for the model with weights187

θi. We select the model θk with the highest accuracy and determine the optimal value ηk for the188

hyperparameter η. Figure 1 provides a vivid illustration of our approach, EnsV. Guided by a reliable189

role model, EnsV can safely avoid selecting the worst candidate model, a distinct advantage over all190

existing model selection approaches.191

4 Experiments192

4.1 Setup193

Datasets Our experiments encompass diverse and widely-used image classification benchmarks:194

(i) Office-31[61] with 31 classes and 3 domains (Amazon (A), DSLR (D), and Webcam (W)); (ii)195

Office-Home[62] with 65 classes and 4 domains (Art (Ar), Clipart (Cl), Product (Pr), and Real-196

World (Re)); (iii) VisDA[63] with 12 classes and 2 domains (training (T) and validation (V)); and197

(iv) DomainNet-126[13, 5] with 126 classes and 4 domains (Real (R), Clipart (C), Painting (P),198

and Sketch (S)). Additionally, we conduct experiments in synthetic-to-real semantic segmentation,199

specifically targeting the transfer from GTAV[64] to Cityscapes[65].200

UDA methods In our experiments, we assess all the model selection approaches listed in Table 2.201

Kindly refer to the Appendix for detailed introductions of them. With these approaches, we perform202

model selection for various UDA methods across different UDA settings. For CDA of image203

classification, we consider ATDOC [35], BNM [8], CDAN [6], MCC [36], MDD [33], and SAFN [7].204

For PDA, we consider PADA [10] and SAFN [7]. For OPDA, we consider DANCE [11]. For205

SFUDA, we consider the white-box method SHOT [12] and the black-box method DINE [22]. For206

domain adaptive semantic segmentation, we consider AdaptSeg [25] and AdvEnt [26]. Following207

previous model selection studies [15, 19], we primarily focus on one-hyperparameter validation and208

present the comprehensive hyperparameter settings for all UDA methods in the Appendix. For each209

hyperparameter, we generally explore 7 candidate values. Additionally, we perform two types of210

challenging two-hyperparameter validation tasks. For classification tasks, we select the bottleneck211

dimension as the second hyperparameter from 4 options: 256, 512, 1024, 2048 in MCC and MDD. For212

segmentation tasks, following SND [19], we select the training iteration as the second hyperparameter213

from 8 options, ranging from 16,000 to 30,000 iterations at intervals of 2,000 iterations, in AdaptSeg214

and AdvEnt.215

Implementation details For all UDA methods, we train UDA models using the Transfer Learning216

Library1 or the official GitHub code on a single RTX TITAN 16GB GPU with a batch size of 32217

and a total number of iterations of 5000. Unless specified, checkpoints are saved at the last iteration.218

We adopt ResNet-101 [66] for VisDA and segmentation tasks, ResNet-34 [66] for DomainNet, and219

ResNet-50 [66] for other benchmarks. We assess the selection performance of all model selection220

methods on our trained models for fair comparisons. As a result, comparing our reported values with221

those from the original papers [15, 19] would be inappropriate. We repeat trials with three random222

seeds and report the mean for results. Source-based validation methods allocate 80% of the source223

data for training and the remaining 20% for validation.224

4.2 Comprehensive Comparison of All Model Selection Methods225

Following prior studies [15, 19, 18], we extensively compare our EnsV with 8 other methods in226

standard UDA settings, including CDA and PDA. Averaged results are presented for UDA tasks227

sharing the same target domain. For example, results of ‘Cl→Ar’, ‘Pr→Ar’, and ‘Re→Ar’ on228

Office-Home are averaged and reported under the column labeled ‘→ Ar’. In addition, the column229

1https://github.com/thuml/Transfer-Learning-Library
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Table 3: Validation accuracy (%) of CDA on Office-Home (Home). bold: Best value.

Method ATDOC [35] BNM [8] CDAN [6]
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

SourceRisk [9] 66.63 52.54 78.57 76.61 68.59 62.44 50.74 77.53 74.76 66.37 55.00 42.65 69.50 68.81 58.99
IWCV [14] 67.97 54.03 78.31 79.26 69.89 66.56 48.16 74.09 73.28 65.52 61.31 41.24 67.17 71.93 60.41
DEV [15] 67.39 54.23 77.78 79.39 69.70 65.76 56.39 73.92 77.59 68.41 67.23 57.04 68.76 76.91 67.49
RV [16] 68.68 56.13 78.93 79.64 70.85 68.25 56.75 78.08 78.67 70.44 67.66 56.74 76.01 77.68 69.52
Entropy [17] 63.67 55.83 76.54 78.36 68.60 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
InfoMax [18] 63.67 55.63 77.61 78.36 68.82 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
SND [19] 63.67 55.63 76.54 77.54 68.34 66.28 54.49 74.15 77.64 68.14 67.94 57.56 76.96 77.68 70.04
Corr-C [20] 63.51 50.39 73.89 73.88 65.42 58.10 45.37 68.97 70.59 60.76 53.84 41.21 64.96 67.65 56.91
EnsV 68.70 58.05 79.81 80.41 71.74 68.61 57.38 78.08 79.54 70.90 67.88 57.56 77.39 78.19 70.25
Worst 62.89 50.39 73.89 73.88 65.26 58.10 45.37 68.96 70.59 60.75 53.80 41.21 64.78 67.65 56.86
Best 68.97 58.35 80.27 80.58 72.04 68.93 57.51 78.43 79.57 71.11 68.19 57.90 77.44 78.19 70.43

Method MCC [36] MDD [33] SAFN [7] Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

SourceRisk [9] 66.57 56.53 79.55 80.90 70.89 62.53 54.43 75.27 75.55 66.94 63.54 51.34 73.66 74.54 65.77 66.26
IWCV [14] 68.69 58.93 80.37 80.08 72.02 64.20 56.50 73.78 74.28 67.19 64.31 52.36 72.31 74.29 65.82 66.81
DEV [15] 68.81 58.07 78.54 80.10 71.38 64.42 56.94 76.85 75.94 68.54 63.15 50.47 71.20 74.54 64.84 68.39
RV [16] 70.40 58.80 80.63 80.39 72.56 66.57 55.75 76.60 76.90 68.96 64.31 50.13 73.77 74.93 65.78 69.68
Entropy [17] 69.29 59.33 80.63 80.96 72.55 66.54 57.63 77.27 77.45 69.72 59.85 46.41 72.51 73.18 62.99 68.63
InfoMax [18] 66.58 58.48 79.12 80.81 71.25 66.54 57.74 77.27 77.45 69.75 64.56 49.71 73.77 73.18 65.31 68.84
SND [19] 69.05 55.61 79.72 79.10 70.87 51.34 38.01 77.61 68.46 58.86 57.90 46.41 67.04 68.18 59.88 66.02
Corr-C [20] 69.05 55.61 79.72 79.10 70.87 47.79 31.69 63.40 60.63 50.88 62.66 46.41 68.83 68.18 61.52 61.06
EnsV 69.92 59.50 80.30 80.86 72.65 66.46 57.81 77.61 76.51 69.60 65.91 52.18 74.51 75.57 67.04 70.36
Worst 62.72 54.63 76.19 78.19 67.93 47.79 31.69 63.40 60.63 50.88 57.90 46.41 67.04 68.18 59.88 60.26
Best 70.68 59.95 80.93 81.02 73.14 66.75 58.36 77.61 77.45 70.04 66.59 53.14 74.90 75.57 67.55 70.72

Table 4: Validation accuracy (%) of CDA on Office-31 (Office) and VisDA.

Method ATDOC [35] BNM [8] CDAN [6]
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V

SourceRisk [9] 72.56 88.96 87.80 83.11 67.79 72.92 90.36 89.43 84.24 70.51 63.90 91.16 89.06 81.37 64.50
IWCV [14] 72.56 86.14 86.54 81.75 67.79 72.92 85.54 89.43 82.63 76.94 63.90 69.08 58.74 63.91 64.50
DEV [15] 72.56 86.14 86.54 81.75 70.34 72.92 85.54 89.43 82.63 76.94 63.90 91.16 88.30 81.12 64.50
RV [16] 74.93 89.96 87.23 84.04 77.37 70.71 88.55 89.43 82.90 74.58 73.27 91.16 88.30 84.24 76.02
Entropy [17] 73.29 86.14 87.80 82.41 62.85 72.67 85.54 83.14 80.45 58.36 71.62 91.16 89.06 83.95 80.46
InfoMax [18] 73.29 86.14 87.80 82.41 76.49 70.52 85.54 83.14 79.73 58.36 71.62 91.16 88.30 83.69 80.46
SND [19] 73.29 92.37 87.80 84.49 77.37 74.44 85.54 83.14 81.04 69.65 71.55 92.37 88.55 84.16 80.46
Corr-C [20] 71.05 90.96 84.40 82.14 67.79 67.16 84.34 78.99 76.83 70.51 58.29 67.67 59.62 61.86 64.50
EnsV 74.83 90.96 87.80 84.53 73.36 74.87 90.36 89.43 84.89 74.58 73.20 92.77 88.55 84.84 79.05
Worst 71.05 86.14 84.40 80.53 62.85 67.16 84.34 78.99 76.83 23.08 58.29 67.67 57.11 61.02 64.50
Best 75.31 92.37 87.80 85.16 77.37 75.52 90.36 89.43 85.10 76.94 73.38 92.77 89.06 85.07 80.46

Method MCC [36] MDD [33] SAFN [7] Office VisDA
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V AVG AVG

SourceRisk [9] 73.11 90.96 91.07 85.05 80.46 75.72 91.06 86.23 84.34 72.25 69.20 83.73 87.17 80.03 70.71 83.02 71.04
IWCV [14] 73.11 91.16 88.55 84.27 81.48 75.49 91.16 89.18 85.28 72.25 69.32 86.55 80.38 78.75 66.33 79.43 71.55
DEV [15] 72.70 89.16 93.08 84.98 81.48 75.65 91.16 89.18 85.33 72.25 68.21 86.55 80.38 78.38 66.33 82.36 71.97
RV [16] 73.97 89.06 93.08 85.37 82.22 74.46 92.57 86.79 84.61 77.23 68.69 90.83 87.17 82.23 66.33 83.90 75.62
Entropy [17] 73.93 90.56 93.46 85.98 82.22 76.31 92.57 90.82 86.57 78.95 68.23 91.57 85.66 81.82 70.20 83.53 72.17
InfoMax [18] 73.93 89.16 88.55 83.88 81.48 76.50 92.57 90.82 86.63 78.95 68.23 91.57 87.42 82.41 70.20 83.13 74.32
SND [19] 73.93 91.97 93.46 86.45 69.35 76.50 92.17 90.82 86.50 78.95 68.23 89.96 85.66 81.28 58.15 83.99 72.32
Corr-C [20] 73.93 91.37 93.46 86.25 69.35 74.25 91.57 85.66 83.83 72.25 68.39 86.75 80.38 78.51 62.52 78.24 67.82
EnsV 73.75 90.56 91.45 85.25 82.22 75.92 92.57 90.82 86.44 77.23 69.67 90.96 87.17 82.60 73.96 84.76 76.73
Worst 70.56 86.75 87.17 81.49 69.35 73.06 87.35 85.66 82.02 72.25 67.27 83.73 80.38 77.13 58.15 76.50 58.36
Best 74.42 91.97 93.46 86.62 82.23 76.52 92.57 92.20 87.10 78.95 70.06 91.57 87.42 83.02 75.30 85.34 78.54

‘avg’ signifies the averaged results for each UDA method while the ‘AVG’ row represents the230

averaged results across different UDA methods. ‘Worst’ refers to the worst candidate model with the231

lowest target-domain performance, while ‘Best’ indicates the best candidate model with the highest232

performance. Kindly refer to the Appendix for full results.233

CDA We provide model selection results for 6 typical closed-set UDA methods on Office-Home,234

Office-31, and VisDA in Tables 3 and 4. EnsV consistently outperforms other validation methods235

in terms of the average selection accuracy on each benchmark and consistently achieves near-best236

Table 5: Validation accuracy (%) of PDA on Office-Home.
Method SAFN [7] PADA [10] Home

→ Ar → Cl → Pr → Re avg → Ar → Cl → Pr → Re avg AVG
SourceRisk [9] 66.82 54.71 74.41 76.48 68.11 57.21 41.90 64.48 71.89 58.87 63.49
IWCV [14] 69.36 53.91 71.78 76.38 67.86 59.65 50.51 66.84 72.96 62.49 65.18
DEV [15] 69.36 54.94 73.95 76.06 68.58 66.88 49.29 72.40 70.46 64.76 66.67
RV [16] 68.98 52.74 72.83 77.14 67.92 57.79 40.87 63.87 70.83 58.34 63.13
Entropy [17] 71.75 55.62 76.36 76.59 70.08 60.08 46.51 53.16 62.47 55.56 62.82
InfoMax [18] 63.67 51.74 69.64 73.62 64.67 60.08 51.40 60.20 66.67 59.59 62.13
SND [19] 71.75 51.74 76.36 78.36 69.55 67.80 50.71 59.46 67.13 61.27 65.41
Corr-C [20] 71.23 55.70 76.94 79.13 70.75 61.34 45.65 54.90 62.25 56.04 63.40
EnsV 70.98 56.12 75.67 78.48 70.31 68.54 55.60 69.86 78.23 68.06 69.19
Worst 62.48 49.91 68.50 73.62 63.63 56.29 39.76 50.49 59.31 51.46 57.55
Best 73.37 58.09 77.35 79.33 72.03 69.33 55.86 74.55 79.59 69.83 70.93
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model selection results. Among existing methods, we find the reverse validation (RV) approach is237

consistently the best among the three benchmarks. However, RV requires extra model re-training,238

making it impractical when compared to the efficient target-specific model selection methods.239

PDA For partial-set UDA with label shift of missing source-domain classes, we conduct hyper-240

parameter selections for two different UDA methods on Office-Home (Table 5). Notably, existing241

methods, except for DEV and SND, suffer from frequent low-accuracy selections. In contrast, EnsV242

consistently achieves high-accuracy selections and, on average, outperforms both DEV and SND.243

4.3 Comparison of Target-specific Model Selection Methods244

Table 6: Validation accuracy (%) of CDA on DomainNet-126 (DNet).

Method CDAN [6] BNM [8] ATDOC [35] DNet
→ C → P → R → S avg → C → P → R → S avg → C → P → R → S avg AVG

Entropy [17] 67.09 65.80 74.42 59.34 66.66 63.36 64.28 74.31 48.69 62.66 63.75 61.85 79.60 52.17 64.34 64.55
InfoMax [18] 67.09 65.80 74.42 59.34 66.66 67.05 64.28 74.31 55.67 65.33 63.75 61.85 79.60 52.17 64.34 65.44
SND [19] 67.09 64.68 74.42 59.34 66.38 56.56 54.50 74.31 42.37 56.93 63.75 61.85 79.60 47.00 63.05 62.12
Corr-C [20] 57.35 62.88 74.42 54.63 62.32 59.75 63.41 77.62 42.37 60.79 59.98 62.27 74.42 53.69 62.59 61.90
EnsV 65.88 65.27 74.44 57.42 65.75 67.86 66.06 77.62 57.69 67.31 70.30 68.44 80.01 61.73 70.12 67.73
Worst 57.35 60.76 73.44 51.41 60.74 55.79 54.50 74.31 42.37 56.74 59.98 61.85 74.42 47.00 60.81 59.43
Best 67.09 65.80 74.44 59.34 66.66 67.86 66.50 78.68 58.49 67.88 70.30 68.44 80.38 62.23 70.34 68.29

Recent advancements in UDA model selection [19, 18] indicate that validation using only unlabeled245

target data can achieve superior performance compared to source-based methods, with increased246

simplicity. Eliminating the reliance on source data facilitates easy application in various real-world247

UDA scenarios, extending beyond conventional closed-set settings. We particularly compare EnsV248

with other target-specific validation methods on the large-scale benchmark DomainNet and in two249

extra practical UDA settings: OPDA and SFUDA.250

CDA We compare all target-specific validation methods on the large-scale benchmark DomainNet-251

126 (Table 6). EnsV consistently keeps the leading validation performance, while other approaches252

exhibit high variance.

Table 7: H-score [67, 68] (%) of an OPDA method DANCE [11] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [17] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.53 25.39 33.75 39.37 34.27
InfoMax [18] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.33 25.39 33.75 39.37 34.25
SND [19] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 25.39 0.00 28.40 14.98
Corr-C [20] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 69.02 0.00 28.40 18.62
EnsV 38.40 76.96 66.57 71.76 75.17 69.99 77.42 48.15 69.40 81.84 67.54 84.31 68.96
Worst 1.00 0.00 12.73 0.00 17.10 1.95 19.77 11.99 35.69 25.39 0.00 28.40 12.84
Best 67.00 76.96 66.57 71.76 75.17 69.99 77.42 64.32 72.87 81.84 67.54 84.31 72.98

253

OPDA In open-partial-set UDA with label shift of unknown classes, we choose a representative254

method DANCE for validation on Office-Home (Table 7) and measure the H-score [68, 67]. Previous255

validation works have not studied this challenging setting [19], and all of them encounter issues with256

poor model selections. In contrast, EnsV consistently achieves high-accuracy selections.257

Table 8: Validation accuracy (%) of SFUDA on Office-Home, Office-31, and VisDA.
Method SHOT [12] SHOT [12] DINE [22]

→Ar →Cl →Pr →Re avg →A →D →W avg T→V
Entropy [17] 63.38 50.45 77.35 77.65 67.21 71.67 90.76 88.68 83.70 71.99
InfoMax [18] 63.38 50.45 77.35 77.65 67.21 71.67 90.76 88.68 83.70 71.99
SND [19] 64.58 54.17 78.23 77.65 68.66 71.67 90.76 88.68 83.70 74.43
Corr-C [20] 69.13 56.32 79.29 79.14 70.97 71.58 90.76 90.19 84.18 71.99
EnsV 69.58 56.78 80.40 80.76 71.88 74.85 94.78 91.82 87.15 74.43
Worst 63.38 50.45 77.35 77.65 67.21 71.56 90.76 88.68 83.67 71.99
Best 69.83 57.08 80.55 80.76 72.05 75.06 94.78 93.33 87.72 76.17

SFUDA In source-free UDA, where source-based model selection methods are not applicable due to258

no access to source data, we select SHOT for the white-box setting on Office-31 and DINE for the259

black-box setting on VisDA (Table 8). EnsV consistently maintains near-best selections, while other260

target-based approaches frequently make worst-case selections.261
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Table 9: CDA accuracy (%) on Office-Home when two hyperparameters are validated.
Method MDD [33] MCC [36]

Ar → Cl Cl → Pr Pr → Re Re → Ar avg Ar → Cl Cl → Pr Pr → Re Re → Ar avg AVG
SourceRisk 55.99 73.15 78.77 69.39 69.33 57.91 76.84 81.13 72.89 72.19 70.76
IWCV [14] 37.89 72.92 80.42 58.43 62.42 46.09 77.74 80.68 74.45 69.74 66.08
DEV [15] 52.60 72.11 53.36 67.70 61.44 59.47 76.84 81.94 74.08 73.08 67.26
RV [16] 57.59 72.25 80.83 70.79 70.37 59.13 76.84 82.03 71.98 72.50 71.44
Entropy [17] 57.21 73.19 80.06 72.31 70.69 59.75 77.77 82.37 74.33 73.56 72.13
InfoMax [18] 57.59 72.92 80.06 72.31 70.72 59.70 78.73 82.58 70.33 72.84 71.78
SND [19] 38.10 56.45 70.03 65.10 57.42 53.49 74.97 77.25 74.12 69.96 63.69
Corr-C [20] 30.17 44.74 57.15 50.76 45.71 44.90 56.75 74.32 67.61 60.90 53.31
EnsV-P 56.91 72.74 80.93 71.16 70.44 60.39 78.71 82.28 74.91 74.07 72.26
Worst 30.17 39.81 53.36 50.76 43.53 43.02 56.75 73.47 67.24 60.12 51.83
Best 57.59 73.35 80.93 72.52 71.10 61.10 78.94 83.04 75.36 74.61 72.86

4.4 Further Comparisons262

Validation with two hyperparameters We conduct two-hyperparameters model selection experi-263

ments with a large pool of model candidates, i.e., 28 models for image classification (Table 9) and 48264

models for image segmentation (Table 10). EnsV consistently achieves near-optimal selections in265

both scenarios, surpassing other versatile validation methods such as Entropy and SND.266

Table 10: Segmentation mIoU (%) of AdaptSeg
and AdvEnt on GTAV → Cityscapes when two
hyperparameters are validated.

Method AdaptSeg [25] AdvEnt [26]
SourceRisk [9] 39.52 39.08
Entropy [17] 39.47 38.41
SND [19] 40.69 40.02
EnsV 40.69 40.67
Worst 35.32 34.22
Best 42.20 41.78

Table 11: CDA accuracy (%) of
BNM with ViT as the backbone.

Method BNM [8]
Entropy [17] 28.21
InfoMax [18] 28.21
SND [19] 52.42
Corr-C [20] 28.21
EnsV 55.16
Worst 28.21
Best 55.16

Robustness to architectures In our experiments, we evaluate the robustness of EnsV across various267

ResNet backbone variants, observing consistent success across different scales. We also conduct268

validation experiments using the ViT-B architecture [69] on the R→S task with BNM. The validation269

results, presented in Table 11, demonstrate that EnsV achieves the best selection. However, all other270

target-based methods except SND make the worst selection.271

5 Conclusion272

Following a thorough empirical comparison of existing UDA model selection approaches, several273

key conclusions emerge: i) The significance of model selection in influencing the deployment274

performance of UDA methods becomes evident. Relying on fixed hyperparameters or limited275

analyses is inadequate. We emphasize the importance of increased attention and transparent reporting276

of validation methods, consistent with recommendations in [15, 19, 18]. ii) Among existing validation277

methods, we recommend the reverse validation (RV) approach, which, despite being overlooked in278

previous studies [15, 19, 18], proves to be the most reliable method for widely studied closed-set279

UDA scenarios when source data is available. However, it requires additional model re-training,280

making it less lightweight compared to target-based validation methods. Moreover, all existing281

model selection methods demonstrate unreliability across diverse UDA methodologies and real-world282

settings such as open-set and source-free UDA. These methods struggle to maintain effectiveness,283

posing a significant risk to the successful application of UDA in various scenarios. iii) Regarding284

our proposed baseline, EnsV, we believe it is a simple and versatile model selection method that is285

certified to avoid worst-case selections. While it may not always achieve peak performance, especially286

when the ensemble result is suboptimal, EnsV offers valuable insights for future explorations in287

reliable model selection methods.288
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-457

ments multiple times)? [Yes]458

(d) Did you include the total amount of compute and the type of resources used (e.g., type459

of GPUs, internal cluster, or cloud provider)? [Yes]460

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...461

(a) If your work uses existing assets, did you cite the creators? [N/A]462

(b) Did you mention the license of the assets? [N/A]463

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]464

465

(d) Did you discuss whether and how consent was obtained from people whose data you’re466

using/curating? [Yes]467

(e) Did you discuss whether the data you are using/curating contains personally identifiable468

information or offensive content? [N/A]469

5. If you used crowdsourcing or conducted research with human subjects...470

(a) Did you include the full text of instructions given to participants and screenshots, if471

applicable? [N/A]472

(b) Did you describe any potential participant risks, with links to Institutional Review473

Board (IRB) approvals, if applicable? [N/A]474

(c) Did you include the estimated hourly wage paid to participants and the total amount475

spent on participant compensation? [N/A]476
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