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Abstract

Contrastive self-supervised learning (CSL) has attracted increasing attention for
model pre-training via unlabeled data. The resulted CSL models provide instance-
discriminative visual features that are uniformly scattered in the feature space.
During deployment, the common practice is to directly fine-tune CSL models
with cross-entropy, which however may not be the best strategy in practice. Al-
though cross-entropy tends to separate inter-class features, the resulting models
still have limited capability for reducing intra-class feature scattering that exists in
CSL models. In this paper, we investigate whether applying contrastive learning
to fine-tuning would bring further benefits, and analytically find that optimiz-
ing the contrastive loss benefits both discriminative representation learning and
model optimization during fine-tuning. Inspired by these findings, we propose
Contrast-regularized tuning (Core-tuning), a new approach for fine-tuning CSL
models. Instead of simply adding the contrastive loss to the objective of fine-tuning,
Core-tuning further applies a novel hard pair mining strategy for more effective
contrastive fine-tuning, as well as smoothing the decision boundary to better ex-
ploit the learned discriminative feature space. Extensive experiments on image
classification and semantic segmentation verify the effectiveness of Core-tuning.

1 Introduction

Pre-training a deep neural network on a large database and then fine-tuning it on downstream tasks
has been a popular training scheme. Recently, contrastive self-supervised learning (CSL) has attracted
increasing attention on model pre-training, since it does not rely on any hand-crafted annotations but
even achieves more promising performance than supervised pre-training on downstream tasks [6} (7,
211123, 149]). Specifically, CSL leverages unlabeled data to train visual models via contrastive learning,
which maximizes the feature similarity for two augmentations of the same instance and minimizes the
feature similarity of two instances [62]. The learned models provide instance-discriminative visual
representations that are uniformly scattered in the feature space [S7].

Although there have been substantial CSL studies on model pre-training [24}49]], few have explored
the fine-tuning process. The common practice is to directly fine-tune CSL models with the cross-
entropy loss [6, |13} 21]. However, we empirically (cf. Table|l)) find that different fine-tuning methods
significantly influence the model performance on downstream tasks, and fine-tuning with only cross-
entropy is not the optimal strategy. Intuitively, although cross-entropy tends to learn separable features
among classes, the resulting model is still limited in its capability for reducing intra-class feature
scattering [39,159] that exists in CSL models. Meanwhile, most existing fine-tuning methods (34, [36]]
are devised for supervised pre-trained models and tend to enforce regularizers to prevent the fine-
tuned models changing too much from the pre-trained ones. However, they suffer from the issue of
negative transfer [9], since downstream tasks are often different from the pre-training contrastive task.
In this sense, how to fine-tune CSL models remains an important yet under-explored question.
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Figure 1: Illustration of two challenges in contrastive fine-tuning. (1) How to mine hard sample
pairs for more effective contrastive fine-tuning. As shown in (a), the majority of sample pairs are
easy-to-contrast, which may induce negligible contrastive loss gradients that contribute little to
learning discriminative representations. (2) How to improve the generalizability of the model. As
shown in (d), the classifier simply trained with cross-entropy is often sharp and near training data,
leading to limited generalization performance.

Considering that optimizing the unsupervised contrastive loss during pre-training yields models
with instance-level discriminative power, we investigate whether applying contrastive learning to
fine-tuning would bring further benefits. To answer this, we analyze the contrastive loss during
fine-tuning (cf. Section[3) and find that it offers two benefits. First, integrating the contrastive loss
into cross-entropy can provide an additional regularization effect, as compared to cross-entropy based
fine-tuning, for discriminative representation learning. Such an effect encourages the model to learn
a low-entropy feature cluster for each class (i.e., high intra-class compactness) and a high-entropy
feature space (i.e., large inter-class separation degree). Second, optimizing the contrastive loss will
minimize the infimum of the cross-entropy loss over training data, which can provide an additional
optimization effect for model fine-tuning. Based on the optimization effectiveness as well as the
regularization effectiveness on representations, we argue that optimizing the contrastive loss during
fine-tuning can further improve the performance of CSL models on downstream tasks.

Considering the above benefits, a natural idea is to directly add the contrastive loss to the objective for
fine-tuning, e.g., one recent study [19] simply uses contrastive learning to fine-tune language models.
However, such a method cannot take full advantage of contrastive learning, since it ignores an impor-
tant challenge in contrastive fine-tuning. That is, contrastive learning highly relies on positive/negative
sample pairs, but the majority of sample features are easy-to-contrast (cf. Figure[T] (a)) [20.[60] and
may produce negligible contrastive loss gradients. Ignoring this makes the method [19] fail to learn
more discriminative features via contrastive learning and thus cannot fine-tune CSL models well.

In this paper, to better fine-tune CSL models and enhance their performance on downstream tasks,
we propose a contrast-regularized tuning approach (termed Core-tuning), based on a novel hard pair
mining strategy. Specifically, Core-tuning generates both hard positive and hard negative pairs for
each anchor data via a new hardness-directed mixup strategy (cf. Figure|l|(b-c)). Here, hard positives
indicate the positive pairs far away from the anchor, while hard negatives are the negative pairs
close to the anchor. Meanwhile, since hard pairs are more informative for contrastive learning [20],
Core-tuning further assigns higher importance weights to hard positive pairs based on a new focal
contrastive loss. In this way, the resulting model is able to learn a more discriminative feature
space by contrastive fine-tuning. Following that, we also explore how to better exploit the learned
discriminative feature space in Core-tuning. Previous work has found that the decision boundary
simply trained with cross-entropy is often sharp and close to training data [54], which may make
the classifier fail to exploit the high inter-class separation degree in the discriminative feature space
(cf. Figure 1| (d)), and also suffer from limited generalization performance. To address this, Core-
tuning further uses the mixed features to train the classifier, so that the learned decision boundaries
can be more smooth and far away from the original training data (cf. Figure|l|(e)).

The key contributions are threefold. 1) To our knowledge, we are among the first to look into the
fine-tuning stage of CSL models, which is an important yet under-explored question. To address this,
we propose a novel Core-tuning method. 2) We theoretically analyze the benefits of the supervised
contrastive loss on representation learning and model optimization, revealing that it is beneficial to
model fine-tuning. 3) Promising results on image classification and semantic segmentation verify
the effectiveness of Core-tuning for improving the fine-tuning performance of CSL models. We
also empirically find that Core-tuning benefits CSL models in terms of domain generalization and
adversarial robustness on downstream tasks. Considering the theoretical guarantee and empirical
effectiveness of Core-tuning, we recommend using it as a standard baseline to fine-tune CSL models.



2 Related Work

Contrastive self-supervised learning (CSL). Self-supervised learning is a kind of unsupervised
learning method based on self-supervised proxy tasks, e.g., rotation prediction [[16], colorization
prediction [31] and clustering [64]]. Recently, CSL has become the most popular self-supervised
paradigm, which treats each instance as a category to learn instance-discriminative representations.
State-of-the-art CSL methods include InsDis [62]], MoCo [21]], SimCLR [6l [7]] and InfoMin [49]].
Most CSL studies are devoted to network pre-training, but few have explored the fine-tuning process.

As an effective data augmentation method, mixup [70] has recently been applied to instance augmen-
tation for CSL [24, 27132} 47]. Among these methods, the work [24] uses mixup to generate hard
negative pairs for better instance discrimination. However, all these methods focus on unsupervised
pre-training and cannot accurately generate hard pairs regarding classes. Comparatively, Core-tuning
focuses on the fine-tuning of CSL models and can generate accurate hard positive/negative pairs for
each class. Note that the hardness-directed mixup strategy in Core-tuning is different from manifold
mixup [54] that cannot be directly used to generate hard sample pairs.

Pre-training and Fine-tuning. In deep learning, it is a popular scheme to first pre-train a deep neural
network on a large database (e.g., ImageNet) and then fine-tune it on downstream tasks [36 [35]].
Supervised learning is the mainstream method for pre-training [28], whereas self-supervised learning
is attracting increasing attention since it does not rely on rich annotations [6l [7]. Most existing
methods for fine-tuning, like L2-SP [36] and DELTA [34]], are devised for supervised pre-trained
models and tend to enforce some regularizer to prevent the fine-tuned models changing too much
from the pre-trained ones. However, they may be unsuitable for contrastive self-supervised models,
since downstream tasks are often different from the contrastive pre-training task, leading to negative
transfer [9]]. Very recently, one work [[19] explored contrastive learning to fine-tune language models.
However, it simply add the contrastive loss to the objective of fine-tuning and cannot theoretically
explain why it boosts fine-tuning. More critically, it ignores the challenge of hard pair mining in
contrastive fine-tuning and thus cannot fine-tune CSL models well.

3 Effects of Contrastive Loss for Model Fine-tuning

We start by analyzing the benefits of the contrastive loss during fine-tuning, which will motivate our
new method. Before that, we first define the problem and notations.

Problem Definition and Notation. This paper studies the fine-tuning of contrastive self-supervised
visual models that are pre-trained on a large-scale unlabeled database. During fine-tuning, let
{(xs,y:)}1, denote the target task dataset with n samples, where x; is an instance with one-hot label
y;€RX and K denotes the number of classes. The neural network model is denoted by G, which
consists of a pre-trained feature encoder G and a new predictor G, specific to the target task. Based
on the network, we extract visual representations by z;=G.(x;) and make a prediction by §,=G(z;).
Such a contrastive self-supervised model is generally fine-tuned with the cross-entropy loss [[13} 21]].

Following [1]], we define the random variables of samples and labels as X and Y, and those of
embeddings and predictions as Z|X~G.(X) and Y |Z~G,(Z), respectively. Moreover, let py
be the distribution of Y, p(y, z) be the joint distribution of Y and Z, and py|z be the conditional
distribution of Y given Z. We define the entropy of Y as H(Y):=E,, [—logpy (Y)] and the
conditional entropy of Y given Z as H(Y'|Z):=E,,, , [~ log py|z(Y|Z)]. Besides, we define the
cross-entropy (CE) between Y and Y by H(Y;Y):=E,, [~ log Py (Y')] and the conditional CE given
Z by H(Y; 57|Z)::Ep(y‘z> [ log py 5 (Y| Z)]. Before our analysis, we first revisit contrastive loss.

Contrastive loss. We use the supervised contrastive loss [26] for fine-tuning, which is a variant of
InfoNCE [45]]. Specifically, given a sample feature z; as anchor, the contrastive loss takes the features
from the same class to the anchor as positive pairs and those from different classes as negative pairs.
Assuming features are /o-normalized, the contrastive loss is computed by:
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where 7 is a temperature factor, while P; and A; denote the positive pair set and the full pair set of
the anchor z;, respectively. We next analyze the contrastive loss and find it has two beneficial effects.




3.1 Regularization Effect of Contrastive Loss

We first show the contrastive loss has regularization effectiveness on representation learning based on
the following theorem.

Theorem 1 Assuming the features are {5-normalized and the classes are balanced with equal data
number, minimizing the contrastive loss is equivalent to minimizing the class-conditional entropy
H(Z|Y') and maximizing the feature entropy H(Z):

Leon < H(Z|Y) — H(Z)

Please see Appendix A for the proof. This
theorem shows that £, explicitly regular-
izes representation learning. On one hand,
minimizing L., will minimize H(Z|Y),
which encourages learning a low-entropy
cluster for each class (i.e., high intra-class
compactness). On the other hand, minimiz-
ing Lo, will maximize H(Z) and tends
to learn a high-entropy feature space (i.e.,
large inter-class separation degree). This  (a) Training with L.,  (b) Training with L.e+Leon
provides an additional regularization effect
on the feature space, which can be observed
by the feature visualization in Figure[2} As
for the two assumptions, /5-normalized fea-
tures can be satisfied by a non-linear pro-
jection in practice (cf. Section[4.T)), while
contrastive fine-tuning also empirically performs well on class-imbalanced datasets (cf. Table [6).
Note that this analysis is different from the analysis in unsupervised contrastive learning [57]], which
is specific to the (unlabeled) instance level rather than the class level.

Figure 2: Visualizations of features learned by ResNet-
18 on the CIFAR10 validation set. Compared to training
with only cross-entropy L., the contrastive loss Ly,
helps to regularize the feature space and make it more
discriminative. Best viewed in color.

3.2 Optimization Effect of Contrastive Loss

We next show that the contrastive loss improves the optimization effectiveness during model training
via Theorem

Theorem 2 Assuming the features are £2-normalized and the classes are balanced, the contrastive

loss is positive proportional to the infimum of conditional cross-entropy H(Y; Y’|Z ), where the
infimum is taken over classifiers:

Leon o mfH(Y;Y|Z) — H(Y)
—_————
Conditional CE

Please see Appendix A for proofs. This theorem shows L., boosts model optimization. Concretely,
the label Y is given by datasets, so its entropy H(Y") is a constant and can be ignored. Hence,

minimizing £y, will minimize the infimum of conditional cross-entropy H(Y’; Y |Z), which provides
an additional optimization effect as compared to fine-tuning with only cross-entropy. More intuitively,
pulling positive pairs together and pushing negative pairs further apart make the predicted label
distribution closer to the ground-truth distribution, which further minimizes the cross-entropy loss.

4 Contrast-Regularized Tuning

Based on the above theoretical analysis, we are motivated to introduce contrastive learning to fine-
tune contrastive self-supervised visual models on downstream tasks. Nevertheless, we empirically
find that simply adding the contrastive loss to the fine-tuning objective is insufficient to obtain
promising performance (cf. Table 2). One key cause is that contrastive learning highly relies on
positive/negative sample pairs, but the majority of samples are easy-to-contrast pairs [20} [60] that
may produce negligible contrastive loss gradients. This makes contrastive learning fail to learn more
discriminative representations and thus suffer from unsatisfactory performance. To address this issue
and better fine-tune contrastive self-supervised models, we propose a new contrast-regularized tuning
(Core-tuning) method based on a novel hard sample pair mining strategy as follows.



4.1 Hard Sample Pair Mining for Contrastive Fine-Tuning

For more effective contrastive fine-tuning, Core-tuning generates both hard positive and hard negative
pairs via a new hardness-directed mixup strategy, and meanwhile assigns higher importance weights
to hard positive pairs via a new focal contrastive loss.

Hard positive pair generation. As shown in Figure[I] (b), for a given feature anchor z;, we first find
its hardest positive data (2, 47 and hardest negative data (2", y") based on cosine similarity.

7 )
That is, zf P is the positive data (from the same class) with the lowest cosine similarity to the anchor,
and 2" is the negative data (from different classes) most similar to the anchor. We then generate a
hard positive pair as a convex combination of the two hardest pairs:

= AT+ (L= Ny = T (L Al
where A~Beta(c, o) €[0, 1] [68]], in which a.€(0, 00) is a hyper-parameter to decide the Beta distribu-
tion. The generated positive pairs are located between positives and negatives and thus are harder to
contrast. Note that the generated positive pairs do not have to be the hardest. In fact, as long as we

can generate relatively hard pairs, the performance of contrastive fine-tuning could be improved.

Hard negative pair generation. As shown in Figure[T](c), for a given feature anchor z;, we randomly
select a negative sample (2", y2) to synthesize a semi-hard negative pair as follows:

zp = =Nz + A5y = (1= Ny + i,
where A ~ Beta(a, ). The reason why we select a random negative sample instead of the hardest

negative is that generating too hard negatives may result in false negatives and degrade performance.
Note that semi-hard negatives may even yield better performance in metric learning [61].

Hard pair reweighting. After generating hard sample pairs, we use an additional two-layer MLP

head G to obtain ¢3-normalized contrastive features v;=G¢(z;)/||G:(z;)| 2, since a nonlinear pro-

jection improves contrastive learning [[7,[8]]. Based on these features, one may directly use L., in

Eq. (1) for fine-tuning. However, since hard pairs are more informative for contrastive learning, we

propose to assign higher importance weights to hard positive pairs. Inspired by focal loss [37], we
exp(v, v;/7)

> ea; exp(v] vr/T)’

find that hard positive pairs generally lead to a low prediction probability p;;=
Thus, we reweight L.,,, with (1—p;;) and develop a focal contrastive loss:
1< 1
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where P;, A; denote the anchor’s positive and full pair sets, which contain the generated hard pairs.
Via the hard pair mining strategy, Core-tuning is able to learn a more discriminative feature space.

e(vi vi/7)

4.2 Overall Training Scheme and Smooth Classifier Learning

In fine-tuning, both the feature extractor and classifier need to be trained, so the final training scheme
of Core-tunindﬂis to minimize the following objective:

. m b
nun ECC + 77‘6(1071, i
~— N——
cross-entropy loss  focal contrastive loss

where 7 is a trade-off factor. Since hard sample mining has helped to learn a discriminative feature
space, the remaining question is how to train the classifier for better exploiting such a feature space.

Smooth classifier learning. Previous work [54] has found that the classifier simply trained with
cross-entropy is often sharp and close to data. This may make the classifier fail to exploit the high
inter-class separation degree in the discriminative feature space due to closeness to training data, as
well as suffer from limited generalization performance since the classifier near the training data may
lead to incorrect yet confident predictions when evaluated on slightly different test samples. To address
this, inspired by the effectiveness of mixup for helping learn a smoother decision boundary [42} 54],
we further use the mixed data from the generated hard sample pair set (denoted by 1) for classifier
training: L7t=—1%"" v, log(gi)—‘—él > (2 .u;)8 Y5 108(Gy(25)). In this way, Core-tuning is able
to learn a smoother classifier that is far away from the training data, and thus can better exploit the
learned discriminative feature space and improve the model generalizability.

2The pseudo code is provided in the supplementary.



Table 1: Comparisons of various fine-tuning methods for the MoCo-v2 pre-trained ResNet-50 model
on image classification in terms of top-1 accuracy. SL-CE-tuning denotes supervised pre-training on
ImageNet and then fine-tuning with cross-entropy.

Method ImageNet20 CIFARIO CIFAR100 Caltechl01 DTD Aircraft Cars Pets Flowers Avg.
SL-CE-tuning 91.01 94.23 83.40 93.39 7440 87.03 89.77 9217 98.78  89.35
CE-tuning 88.28 94.70 80.27 91.87 71.68 86.87 88.61 89.05 9849 87.76
L2SP [36] 88.49 95.14 81.43 91.98 72.18  86.55 89.00 8943 98.66  88.10
M&M [66] 88.53 95.02 80.58 92.91 7243 8745 8890 89.60 9857  88.22
DELTA [34] 88.35 94.76 80.39 92.19 7223 87.05 8873 89.54 98.65 87.99
BSS 9] 88.34 94.84 80.40 91.95 7222 87.18 8850 89.50 9857 87.94
RIFLE [35] 89.06 94.71 80.36 91.94 7245 87.60 89.72 90.05 98.70  88.29
SCL [19] 89.29 95.33 81.49 92.84 7273 8744 8937 89.71 98.65 88.54
Bi-tuning [78] 89.06 95.12 81.42 92.83 7353 8739 8941 89.90 9857  88.58
Core-tuning (ours) 92.73 97.31 84.13 93.46 7537 8948 90.17 9236  99.18  90.47

5 Experiments

We first test the effectiveness of Core-tuning on image classification and then apply it to semantic
segmentation. Next, since Core-tuning potentially improves model generalizability, we further study
how it affects model generalization to new domains and model robustness to adversarial samples.

5.1 Results on Image Classification

Settings. As there is no fine-tuning method devoted to contrastive self-supervised models, we
compare Core-tuning with advanced fine-tuning methods for general models (e.g., supervised pre-
trained models): L2SP [36], M&M [66]l, DELTA [34], BSS [9], RIFLE [35], SCL [19] and Bi-
tuning [[/8]. We denote the fine-tuning with cross-entropy by CE-tuning.

Following [28]], we test on 9 natural image datasets, including ImageNet20 (a subset of ImageNet
with 20 classes), CIFAR10, CIFAR100 [30], Caltech-101 [15], DTD [10], FGVC Aircraft [41],
Standard Cars [29], Oxford-IIIT Pets [46] and Oxford 102 Flowers [44]. Specifically, ImageNet20
is an ImageNet subset with 20 classes, by combining the ImageNette and ImageWoof datasets [22].
Here, we do not directly test on ImageNet [11], since all CSL models are pre-trained on the ImageNet
dataset. These datasets cover a wide range of fine/coarse-grained object recognition tasks.

We implement Core-tuning in PyTorc Following [13]], we use ResNet-50 (1x), pre-trained by
various CSL methods on ImageNet, as the network backbone. All checkpoints of pre-trained models
are provided by authors or by the PyContrast repositor Following [6], we perform parameter tuning
for  and « from {0.1, 1,10} on each dataset. Moreover, we set the temperature 7=0.07. To make
the generated negative pairs closer to negatives, we clip A~Beta(c, @) by A>\,, when generating
hard negative pairs, where A, is a threshold and we set it to 0.8. All results are averaged over 3 runs
in terms of the top-1 accuracy. More dataset details, more implementation details and the parameter
analysis are put in Appendices C and E.

Comparisons with previous methods. We report the fine-tuning performance of the MoCo-v2
pre-trained model in Table[T] When using the standard CE-tuning, the MoCo-v2 pre-trained model
performs worse than the supervised pre-trained model on most datasets. This is because the self-
supervised pre-trained model is less class-discriminative than the supervised pre-trained model due
to the lack of annotations during pre-training. Moreover, the classic fine-tuning methods designed
for supervised pre-trained models (e.g., L2SP and DELTA) cannot fine-tune the contrastive self-
supervised model very well. One reason is that the contrastive pre-training task is essentially different
from the downstream classification task, so strictly regularizing the difference between the contrastive
self-supervised model and the fine-tuned model may lead to negative/poor transfer. In addition,
M&M, SCL and Bi-tuning use the triplet loss or the contrastive loss during fine-tuning. However,
they ignore the two challenges in contrastive fine-tuning as mentioned in Figure[] leading to limited
model performance on downstream tasks. In contrast, Core-tuning handles those challenges well and
improves the fine-tuning performance of CSL models a lot. This result demonstrates the superiority
of Core-tuning. More results like the standard error are put in Appendix D.

3The source code of Core-tuning is available at: https://github.com/Vanint/Core-tuning,
*https://github.com/HobbitLong/PyContrast,
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Table 2: Ablation studies of Core-tuning (Row 5) for fine-tuning MoCo-v2 pre-trained ResNet-50
in terms of top-1 accuracy, where cross-entropy is used in all baselines. Here, L.y, is the original
contrastive loss, while £/, is our focal contrastive loss. Moreover, “mix" denotes the manifold

mixup, while “mix-H" indicates the proposed hardness-directed mixup strategy in our method.

Leon LI, ] mix mix-H | ImageNet20 CIFARIO CIFARIO0 Caltechl0l DTD Aircraft Cars Pets Flowers Avg.
88.28 94.70 80.27 91.87 71.68 86.87 88.61 89.05 9849 8776

Vv 89.29 95.33 81.49 92.84 7273 87.44  89.37 89.71 98.65 8854
Vv 90.67 95.43 81.03 92.68 7331 8837 89.06 9137 9874 8896

Vv vV 92.20 97.01 83.89 93.22 7478  88.88  89.79 9195 9894  90.07
V v 92.73 97.31 84.13 93.46 7537 8948 90.17 9236  99.18 9047

Table 3: Fine-tuning results of ResNet-50, pre-trained Table 4: Fine-tuning performance of var-
by various methods. “Cont." indicates contrastive self- ious architectures. Here, ResNet (R) and
supervised pre-training; CE indicates cross-entropy. ResNeXt (RX) are pre-trained by InfoMin;
DeiT-S [50] is pre-trained by DINO [4].

. Caltech101 DTD Pets
Pre-training Types
CE ours CE ours CE ours

InsDis [62 8230 88.60 69.81 70.94 87.57 89.59 Archs. Caltech101 DTD Pets
PIRL [43 Cont 5423 8929 6895 7172 8687 8952 CE  ours CE  ours CE  ours
]I"'i‘."f\z.'” Jﬁ‘ J g;;‘; 23'(1)‘15 ?gg; ;‘1"3‘9’ gg.(l)g gg’;; R-50 9273 9401 7259 7489 9000 92.34
nfoMin | I - : - - - R-101 93.06 94.33 7338 7509  90.84 92.91
DeepCluster{Z] 80.99 9234 7277 7521 9053 93.17 R-152 9339 94.66 7374 7542 9108 92.97
SwAV [3 Non-Cont. 87.71 9134 7529 7741 9248 9329 RX-101 9371 9512 7443 7597 9197 94.04
BYOL [I7 91.19 9325 7494 7656 9239 9374 RX-152 9392 9519 7476 7622 9270 94.49
CE Supervised 93.65 9420 7440 7727  92.17 93.82 DeiT-S/16 9124 9231 7135 7283 9243 93.72

Ablation studies of Core-tuning. We conduct ablation studies for Core-tuning regarding the focal
contrastive loss and the hardness-directed mixup strategy. As shown in Table 2, each component
improves the fine-tuning performance in Core-tuning. Note that the mixup in Row 3 is the manifold
mixup [54], which is essentially designed for classification and is expected to outperform our
hardness-directed mixup strategy regarding classification performance. However, our proposed
Core-tuning (Row 5) still shows obvious improvement on all datasets, which strongly verifies the
value of contrastive fine-tuning. More ablation results for verifying the effectiveness of hard pair
generation and smooth classifier learning are put in Appendix E.

Results on different pre-training methods. In previous experiments, we fine-tune the MoCo-v2
pre-trained ResNet-50, but it is unclear whether Core-tuning can be applied to fine-tune models with
other pre-training methods. Hence, we further use Core-tuning to fine-tune ResNet-50, pre-trained by
other CSL methods (i.e., InsDis [62], PIRL [43]], MoCo-v1 [21] and InfoMin [49]), non-contrastive
self-supervised methods (i.e., DeepCluster-v2 [2], SWAV [3]] and BYOL [17]), and supervised
learning. As shown in Table[3] Core-tuning fine-tunes all pre-trained models consistently better than
CE-tuning on 3 image classification datasets. Such results verify the generalizability of the proposed
Core-tuning. More results on different pre-trained models are put in Appendix D.

Results on different network architectures. Previous experiments are based on ResNet-50, while
it is unclear whether Core-tuning can be applied to other network architectures. Hence, we further
use Core-tuning to fine-tune various residual network architectures (i.e., ResNet-101 and 152;
ResNeXt-101 and 152 [63]) pre-trained by InfoMin [49]], and vision transformer (i.e., DeiT-S/16 [50])
pre-trained by DINO [4]. As shown in Table ] Core-tuning fine-tunes all network architectures well
on all three datasets, showing strong universality.

Results on different data sizes. The labeled data may be scarce in downstream tasks. Hence, we
further evaluate Core-tuning on ImageNet20 with different sampling rates of data. We report the
results in Table[5] while the results on the full ImageNet20 have been listed in Table[T} Specifically,
Core-tuning outperforms baselines in all cases. Note that when the data is very scarce (e.g., 10%), the
fine-tuning performance of CE-tuning degrades and fluctuates significantly, in which case Core-tuning
obtains more significant improvement and achieves more stable performance.

Results on large-scale and class-imbalanced dataset. The real-world datasets may be large-scale
and class-imbalanced [72, (73 [77]], so we also evaluate Core-tuning on a long-tailed iNaturalist18
dataset [52], consisting 437,513 images from 8,142 classes. As shown in Table@ Core-tuning also
performs well on the large-scale and class-imbalanced dataset for fine-tuning contrastive pre-trained
models. Note that in our theoretical analysis, we assume that the classes are balanced with the same
data number to facilitate analysis. Nevertheless, this assumption does not mean that contrastive
fine-tuning cannot handle class-imbalanced datasets. Here, the promising results on iNaturalist-18
verify the effectiveness of Core-tuning on highly class-imbalanced scenarios.



Table 5: Fine-tuning performance of the MoCo-v2 pre- Table 7: Fine-tuning performance on PAS-
trained ResNet-50 with various numbers of labeled data. CAL VOC semantic segmentation based
on DeepLab-V3 with ResNet-50, pre-

Sampling Rates on ImageNet20

Method trained by various CSL methods.
10% 25% 50% 75%
CE-tuning  52.97+/-396 63.17+/-3.94 81.78+/-1.37 85.85+/-0.11 — , -
Bi-tuning  60.50+/-1.11 75.86+/-0.74 83.184/-0.27 87.19+/-0.19 Pre-training  Fine-tuning MPA FWIoU MIoU
Core-tuning ~ 78.64+/-0.58 84.48+/-0.34  89.09+/-0.40  90.93+/-0.24 Supervised CE 87.10 89.12  76.52
InsDis CE 83.64 8823 74.14
Table 6: Fine-tuning performance of the MoCo-v2 pre- ours 8453 8867 7481
trained ResNet-50 on large-scale and class-imbalanced  pry. CE 83.16 8822  73.99
. . . ours 8530 8895 7549
iNaturalist18 in terms of top-1 accuracy.
MoCoovl CE 8471 8875 74.94
= . "™ NS ours 8570 89.19  75.94
ine-tuning metho iNaturalist ot CE S73L 9026 7342
CE-tuning 61.72+/-0.18 ours 88.76 9075  79.62
CE—Contrastive—tuning 62.75+/-0.22 . CE 87.17 89.84 77.84
Core-tuning (ours) 63.57+/-0.09 InfoMin ours 8892 90.65 79.48

5.2 Results on Semantic Segmentation

We next apply Core-tuning to fine-tune contrastive self-supervised models on semantic segmentation.

Implementation details. We adopt the DeepLab-V3 framework [5] for PASCAL VOC semantic
segmentation and use CSL pre-trained ResNet-50 models as the backbone. In Core-tuning, we
enforce the contrastive regularizer after the penultimate layer of ResNet-50 via an additional global
average pooling. Following [58]], the model is fine-tuned on VOC train_aug2012 set for 30k steps
via SGD based on two GPUs and evaluated on val2012 set. The image is rescaled to 513 x513 with
random crop and flips for training and with center crop for evaluation. The batch size and output stride
are 16. Besides, we set the initial learning rate to 0.1 and adjust it via the poly decay schedule. Other
parameters are the same as image classification. We use three metrics: Mean Pixel Accuracy (MPA),
Frequency Weighted Intersection over Union (FWIoU) and Mean Intersection over Union (MIoU).

Results. As shown in Table[/| Core-tuning contributes to the fine-tuning performance of all CSL
models in terms of MPA, FWIoU and MIoU. The promising results demonstrate the effectiveness
of Core-tuning on semantic segmentation. Interestingly, we find that with standard fine-tuning, the
models pre-trained by MoCo-v2 and InfoMin have already outperformed the supervised pre-trained
model. One explanation is that self-supervised pre-training may keep more visual information,
compared to supervised pre-training that mainly extracts information specific to classification [[76].
In other words, unsupervised contrastive learning may extract more beneficial information for dense
prediction, which inspires us to explore unsupervised contrastive regularizers in the future.

5.3 Effectiveness on Cross-Domain Generalization

The generalizability of deep networks to unseen domains is important for their application to real-
world scenarios [[12]. We thus wonder whether Core-tuning also benefits model generalization on
downstream tasks, so we apply Core-tuning to the task of domain generalization (DG).

Implementation details. DG aims to train a model on multiple source domains and expect it to
generalize well to an unseen target domain. Specifically, we use MoCo-v2 pre-trained ResNet-50 as
the backbone, and evaluate Core-tuning on 3 benchmark datasets, i.e., PACS [33], VLCS [14] and
Office-Home [53]]. For training, we use Adam optimizer with batch size 32. The learning rate is set
to 5x10~° and the training step is 20,000. More implementation details are put in Appendix C.

Results. We report the results on PACS and VLCS in Table [§| and the results on OfficeHome in
Appendix D, from which we draw observations as follows. First, when fine-tuning with cross-entropy,
the contrastive self-supervised model performs worse than the supervised pre-trained model. This
results from the relatively worse discriminative abilities of the contrastive self-supervised model,
which can also be found in Table[I] Second, enforcing the contrastive regularizer during fine-tuning
improves DG performance, since the contrastive regularizer helps to learn more discriminative features
(cf. Theorem [I)) and also helps to alleviate distribution shifts among domains [25]). Last, Core-tuning
further improves the generalization performance of models. This is because hard pair generation
further boosts contrastive learning, while smooth classifier learning benefits model generalizability.
We thus conclude that Core-tuning is beneficial to model generalization on downstream tasks.



Table 8: Domain generalization accuracies of various fine-tuning methods for MoCo-v2 pre-trained
ResNet-50. CE means cross-entropy; CE-Con enhances CE with the contrastive loss. Moreover,
A/C/P/S and C/L/V/S are different domains in PACS and VLCS datasets, respectively.

Pre-training  Fine-tuning PACS VLCS
C P S Avg. C L \4 S Avg.
Supervised CE 83.65 79.21 96.11 81.46 85.11 98.41 63.81 6855 7545 76.56
CE 7871 7692 90.87 75.67 80.54 9496 66.87 68.96 6498 73.94

MoCo-v2 CE-Con 85.11 81.77 9558 80.12 85.65 9594 67.76 69.31 7357 77.67
ours 87.31 84.06 97.53 8343 88.08 98.50 68.19 73.15 81.53 80.34

Table 9: Adversarial training performance of MoCo-v2 pre-trained ResNet-50 on CIFAR10 under the
attack of PGD-10 in terms of robust and clean accuracies. AT-CE indicates adversarial training (AT)
with CE; AT-CE-Con enhances AT-CE with the contrastive loss; AT-ours uses Core-tuning for AT.

{o-attack (o -attack
Method =0.5 =15 =25 = 21255 = 41255 = 8255
Robust  Clean Robust  Clean Robust  Clean Robust  Clean Robust  Clean Robust  Clean
CE 50.25  94.70 48.29  94.70 46.82  94.70 25.13  94.70 12.28  94.70 4.57 94.70
AT-CE 86.59  92.00 89.60 94.28 89.16 94.15 83.20 93.05 75.82  91.99 69.27  92.79
AT-CE-Con  90.74  94.71 90.29  94.80 89.70  94.27 85.07 94.56 79.75  93.79 70.70  93.38
AT-ours 9297 96.82 9232 96.90 92.05 96.87 86.92  96.29 82.01 95.95 74.83  95.90

5.4 Robustness to Adversarial Samples

As is known, deep networks are fragile to adversarial attack [48]]. We next study whether Core-tuning
also benefits model robustness to adversarial samples in the setting of adversarial training (AT).

Implementation details. We use MoCo-v2 pre-trained ResNet-50 as the network backbone, and use
the Projected Gradient Descent (PGD) [40]] to generate adversarial samples with ¢ attack (strength
0=0.5) and ¢, attack (strength 0=4/255). During AT, we use both original samples and adversarial
samples for fine-tuning. Moreover, we use the clean accuracy on original samples and the robust
accuracy on adversarial samples as metrics. More implementation details are put in Appendix C.

Results. We report the results on CIFAR10 in Table E] and the results on Caltech-101, DTD and Pets
in Appendix D. First, despite good clean accuracy, fine-tuning with cross-entropy cannot defend
against adversarial attack, leading to poor robust accuracy. Second, AT with cross-entropy improves
the robust accuracy significantly, but it inevitably degrades the clean accuracy due to the well-known
accuracy-robustness trade-off [S1]]. In contrast, the contrastive regularizer improves both robust and
clean accuracies. This is because contrastive learning helps to improve robustness generalization
(i.e., alleviating the distribution shifts between clean and adversarial samples). Last, Core-tuning
further boosts AT and, surprisingly, even achieves better clean accuracy than the standard fine-tuning
with cross-entropy. To our knowledge, this is quite promising since even the most advanced AT
methods [65169] find it difficult to overcome the accuracy-robustness trade-off [67]]. The improvement
is because both contrastive learning and smooth classifier learning boost robustness generalization.
We thus conclude that Core-tuning improves model robustness on downstream tasks.

6 Conclusions

This paper studies how to fine-tune contrastive self-supervised visual models. We theoretically
show that optimizing the contrastive loss during fine-tuning has regularization effectiveness on
representation learning as well as optimization effectiveness on classifier training, both of which
benefit model fine-tuning. We thus propose a novel contrast-regularized tuning (Core-tuning) method
to fine-tune CSL visual models. Promising results on image classification and semantic segmentation
verify the effectiveness of Core-tuning. Also, we empirically find that Core-tuning is beneficial to
model generalization and robustness on downstream tasks. We thus recommend using Core-tuning as
a standard baseline to fine-tune CSL visual models, and also call for more attention to the fine-tuning
of CSL visual models on understanding its underlying theories and better approaches in the future.

Limitation discussion. One potential limitation of Core-tuning is that it is specifically designed for
and also focuses on the fine-tuning of CSL visual models. Considering the universality of Core-tuning
(cf. Table[3), we will explore the extension of Core-tuning to better fine-tune supervised pre-trained
and other self-supervised visual models and even language models on more tasks.
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Supplementary Materials:
Unleashing the Power of Contrastive Self-Supervised Visual
Models via Contrast-Regularized Fine-Tuning

This supplementary material provides proofs for the analysis of the contrastive loss (cf. Appendix A),
the pseudo-code of the proposed method (cf. Appendix B), more implementation details (cf. Appendix
C), and more empirical results and analysis (cf. Appendices D and E).

A Proof of Theoretical Analysis

This appendix provides proofs for both Theorems 1 and 2.

A.1 Proof for Theorem 1

Proof We follow the notations in the main paper and further denote the sample set of the class
k by Zj,. Moreover, we assume the classes of samples are balanced so that the sample number of
each class is constant | 2| = 7, where n denotes the total number of samples and K indicates the
number of classes. Let us start by splitting the contrastive loss into two terms.

(vi vj/7)
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Let Ck:lzilkﬂ Zze 2, 2 denote the hard mean of all features from the class k, and let the symbol =

indicate equality up to a multiplicative and/or additive constant. We first analyze the first term in
Eg. (2) by connecting it to a tightness term of the center loss, i.e., >, - [[zi—ck % 159]:
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where we use the property of o-normalized features that ||z;||?=||z;||*=1 and the definition of the
class hard mean cy=1z5 3. c 2, 2
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By summing over all classes k, we obtain:

n
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Based on this equation, following [1]], we can interpret the first term in Eq. (2)) as a conditional
cross-entropy between Z and another random variable Z, whose conditional distribution given Y is a
standard Gaussian centered around cy:Z|Y ~N (cy, i):

1 1 2 2 e _ _
— C =H(Z;Z|Y)=H(Z|Y)+D Z||Z]Y).

Based on this, we know that the first term in Eq. () is an upper bound on the conditional entropy of
features Z given labels Y:

S S
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where the symbol > S indicates “larger than" up to a multlphcatlve and/or an addltlve constant. When
Z |Y~./\/ (¢y, 1), the bound is tight. As a result, minimizing the first term in Eq. (2)) is equivalent to
minimizing H(Z|Y):

ZIPI

This concludes the proof for the relationship of the first term in Eq. (2)).
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We then analyze the second term in Eq. (Z), which has the following relationship:
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where we use Jensen’s inequality in the fourth line. The first term in Eq. () is close to the differential
entropy estimator of features Z provided by [56]]:
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=1 k=1 1=1 k=1 1=1 k=1
where d is the dimension of features. Combining Eq. (@) and Eq. (3) leads to:

ka)g S eF>n (Z)—lz > Tk (6)

zZREA; =1 ky;=yi
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The second term in the right side of Eq. () is essentially a redundant term with the first term in
Eq. (@), so we ignore it here. Then, we know that minimizing the second term in Eq. (Z) is equivalent
to maximizing H(Z):

1 & oJ 2
— (=) ~ —
nZlog Z e x —H(Z). 7
i=1 zZLEA;
Combining Eq. (3) and Eq. (7), we conclude the proof of Theorem 1. ]

A.2 Proof for Theorem 2

Proof The mutual information between features Z and labels Y can be defined in two ways:

L(Z)Y)=HY)-HYI|Z) =H(Z) — H(Z|Y). (8)
Based on Theorem 1, we know that:
Loon < H(Z|Y) = H(Z) = ~L(Z;Y), ©)
Combining Eq. (8) and Eq. (9), we have:
Leon X HY|Z) — H(Y). (10)
Then, we relate the conditional entropy H (Y| Z) to the cross entropy loss:
H(Y;Y|Z) = H(Y|Z) + Drr(Y]V]2). (11)

According to Eq. , when we minimize cross-entropy H(Y; )A/|Z ), we implicitly minimize both
H(Y|Z) and Dg (Y ||Y'|Z). In fact, the optimization could be decoupled into 2 steps in a maximize-
minimize (or bound-optimization) way [1]]. The first step fixes the parameters of the network
encoder and only minimizes Eq. (L)) with respect to the parameters of the network classifier. As
this step, #(Y|Z) is fixed and the predictions Y are adjusted to minimize D, (Y||Y|Z). Ideally,
Dy L(YHY|Z ) would vanish at the end of this step [1]]. In this sense, we know that:

H(Y|Z) = inf H(Y;Y|Z). (12)
The second step fixes the classifier and minimizes Eq. with respect to the encoder. By combining
Eq. (1I0) and Eq. (T2), we conclude the proof of Theorem 2. |

B Pseudo-code of Core-tuning

We summarize the scheme of Core-tuning in Algorithm|[I] Here, all hard pair generation is conducted
within each sample batch.

Algorithm 1 The training scheme of Core-tuning.

Require: Pre-trained encoder G.; Loss factor 7; Mixup factor «; Batch size B; Epoch number 7.
Initialize: Classifier G'; Projection head G..
1: for t=1,...,T do
2:  Sample a batch of training data {(x;, v:)}2.1;
3 Obtain features z; = G (x;) for each sample;
4 for i=1,...,.B do
5: Construct positive pair set P; and full pair set A; for z;;
6
7
8
9

Generate hard positive pair (2}, y;") and add it to P;, A;;
Generate hard negative pair (z; ,y; ) and add it to A;;
end for
Obtain contrastive features v; = G.(z;) for all features;
10:  Compute the focal contrastive loss cho
11:  Predict §;=Gy(z;) for the original and generated samples;
12:  Compute the cross-entropy loss L£7¢;
13:  loss.backward(); //loss= L7 + nﬁf(m.
14: end for
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C More Experimental Details

C.1 Implementation Details of Feature Visualization

In the feature visualization, we train ResNet-18 on CIFAR10 with two kinds of losses, i.e., (1)
cross-entropy L..; (2) cross-entropy and the contrastive loss L..+L.,,. For better visualization,
following [38]], we add two fully connected layers before the classifier. The two layers first map the
512-dimensional features to a 3-dimensional feature sphere and then map back to the 10-dimensional
feature space for prediction. The contrastive loss L., is enforced on the 3-dimensional features.
After training, we visualize the 3-dimensional features learned by ResNet-18 in MATLAB.

C.2 More Details of Image Classification

Dataset details. Following [28]], we test on 9 natural image datasets, including ImageNet20 (a
subset of ImageNet with 20 classes) [[L1], CIFAR10, CIFAR100 [30], Caltech-101 [15]], DTD [10I,
FGVC Aircraft [41]], Standard Cars [29], Oxford-IIIT Pets [46] and Oxford 102 Flowers [44]. In
addition, considering real-world datasets may be class-imbalanced [72, (73] (75, [77], we also evaluate
Core-tuning on the iNaturalist18 dataset [52]. Most datasets are obtained from their official websites,
except ImageNet20 and Oxford 102 Flowers. The ImageNet20 dataset is obtained by combining
two open-source ImageNet subsets with 10 classes, i.e., ImaegNette and ImageWoof [22]. Moreover,
Oxford 102 Flowers is obtained from Kaggleﬂ These datasets cover a wide range of classification
tasks, including coarse-grained object classification (i.e., ImageNet20, CIFAR, Caltech-101), fine-
grained object classification (i.e., Cars, Aircraft, Pets) and texture classification (i.e., DTD). The
statistics of all datasets are reported in Table [I0}

Table 10: Statistics of datasets.

DataSet #Classes  # Training # Test
ImageNet20 [22)111] 20 18,494 7,854
CIFARI0 [30] 10 50,000 10,000
CIFAR100 [30] 100 50,000 10,000
Caltech-101 [15] 102 3,060 6,084
Describable Textures (DTD) [10] 47 3,760 1,880
FGVG Aircraft [41] 100 6,667 3,333
Standard Cars [29] 196 8,144 8,041

Oxford-1IIT Pets [46] 37 3,680 3,369
Oxford 102 Flowers [44] 102 6,552 818

iNaturalist18 [52 8,142 437,513 24,426

Implementation details. We implement all methods in PyTorch. All checkpoints of self-supervised
models are provided by the authors or by the PyContrast GitHub repositoryﬂ For most datasets,
following [6l [28]], we preprocess images via random resized crops to 224 x224 and flips. At the
test time, we resize images to 256 x256 and then take a 224 x224 center crop. In such a setting,
however, we find it difficult to reproduce the performance of some CSL models [6]. Therefore, for
some datasets (e.g., CIFAR10 and Aircraft), we resize images to different scales and use rotation
augmentations. Although the preprocessing of some datasets is slightly different from [6], the results
in this paper are obtained with the same preprocessing method w.r.t. each dataset and thus are fair.

Following [28]], we initialize networks with the checkpoints of contrastive self-supervised models.
For most datasets, we fine-tune networks for 100 epochs using Nesterov momentum via the cosine
learning rate schedule. For ImageNet20, we fine-tune networks using stochastic gradient descent
via the linear learning rate decay. For iNaturalist18, we fine-tune networks for 160 epochs. For all
datasets, the momentum parameter is set to 0.9, while the factor of weight decay is set to 10™4. As
for Core-tuning, we set the clipping thresholds of hard negative generation to be A,,=0.8 and the
temperature 7=0.07. The dimension of the contrastive features is 256 and the depth of non-linear
projection is 2 layers. Following [6], we perform hyper-parameter tuning for each dataset. Specifically,
we select the batch size from {64, 128, 256}, the initial learning rate from {0.01,0.1} and 7/« from
{0.1,1,10}. The experiments are conducted on 4 TITAN RTX 2080 GPUs for iNaturalist18, and 1
GPU for all other datasets. All results are averaged over 3 runs. We adopt the top-1 accuracy as the
metric. The statistics of the used hyper-parameters are provided in Table[TT] For other baselines, we
use the same training setting for each dataset, and tune their hyper-parameters as best as possible.

Shttps://wuw.kaggle.com/c/oxford-102-flower-pytorch.
Shttps://github.com/HobbitLong/PyContrast,
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Table 11: Statistics of the used hyper-parameters in Core-tuning.

Hyper-parameter ImageNet20 | CIFARIO [ CIFARIOO | Caltechl01 [ DTD | Aircraft | Cars | Pets | Flowers | iNarutalistl8
epochs 100 160
batch size 256 256 256 256 256 64 64 64 64 128
loss trade-off factor 7 0.1 0.1 1 1 0.1 0.1 0.1 0.1 1 10
mixup factor a 1 1 0.1 0.1 1 0.1 0.1 1 0.1 1
learning rate (Ir) 0.1 0.01 0.01 0.01 0.01 0.01 0.01 | 0.01 0.01 0.1
Ir schedule linear cosine decay

temperature 7 0.07

threshold \,, 0.8

weight decay factor 1071

momentum factor 0.9

projection dimension 256

projection depth 2 layers

C.3 More Details of Domain Generalization

Dataset details. We use 3 benchmark datasets, i.e., PACS [33]], VLCS [14] and Office-Home [53]].
The data statistics are shown in Table [I2] where each dataset has 4 domains. In each setting, we
select 3 domains to fine-tune the networks and then test on the rest of the unseen domains. The key
challenge is the distribution discrepancies among domains, leading to poor performance of neural
networks on the target domain [71} [74].

Table 12: Statistics of datasets.

DataSet #Domains #Classes #Samples Size of images
PACS 4 7 9,991 (3,224,224)
VLCS 4 5 10,729 (3,224,224)
Office-Home 4 65 15,588 (3,224,224)

Implementation details. The overall scheme of Core-tuning for domain generalization is shown in
Figure 3] The experiments are implemented based on the DomainBed repository (18] in PyTorch.
During fine-tuning, we preprocess images through random resized crops to 224 x 224, horizon flips,
color jitter and random gray scale. At the test time, we directly resize images to 224x224. We
initialize ResNet-50 with the weights of the MoCo-v2 pre-trained model, and fine-tune it for 20,000
steps at a batch size of 32 using the Adam optimizer on a single TITAN RTX 2080 GPU. We set
the initial learning rate to 5x 10~ and adjust it via the exponential learning rate decay. All other
hyper-parameters of Core-tuning are the same as image classification. Besides, we use Accuracy as
the metric in domain generalization.

. . — —_—
Source 1 h ( —_— [‘ —> % o
- \ : Contrastive
1 shared || : Loss £/
2 . con
f"@é- : Mixup l
Source 2 ‘ ) A —_— [‘ —> Projection G, v
: : | | J
. i shared | Classification
: R — - ) = . Loss £
Source L "@ ‘ —_—> [‘ - !’
3 | Classifier G, y
Input Images Encoder G, Feature z Mixed Features

Figure 3: The overall scheme of Core-tuning in the setting of cross-domain generalization.

C.4 Implementation Details of Robustness Training

We conduct this experiment in PyTorch. We take Caltech-101, DTD, Pets, and CIFAR10 as datasets,
whose preprocessing are the same as the ones in image classification. We use MoCo-v2 pre-trained
ResNet-50 as the backbone, and use Projected Gradient Descent (PGD) [40] to generate adversarial
samples. During adversarial training (AT), we use both clean and adversarial samples for training
with various fine-tuning methods on a single TITAN RTX 2080 GPU. Other training schemes (e.g.,
the optimizer, the hyper-parameters, the learning rate scheme) are the same as image classification.
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D More Experimental Results

D.1 More Results on Domain Generalization

This appendix further reports the results of domain generalization on OfficeHome. The observations
from Table[I3]are same to the main text. First, when fine-tuning with cross-entropy, the contrastive
self-supervised model performs worse than the supervised pre-trained model. This results from the
relatively worse discriminative abilities of the contrastive self-supervised model, which can also be
found in Table|I} Second, enforcing contrastive regularizer during fine-tuning improves domain
generalization performance, since the contrastive regularizer helps to learn more discriminative
features (cf. Theorem and also helps to alleviate distribution shifts among domains [25[], hence
leading to better performance. Last, Core-tuning further improves the generalization performance of
models on all datasets. This is because hard pair generation further boosts contrastive learning, while
smooth classifier learning also benefits model generalizability. We thus conclude that Core-tuning
improves model generalization on downstream tasks.

Table 13: Domain generalization accuracies of various fine-tuning methods for MoCo-v2 pre-trained
ResNet-50 the on Office-Home dataset. CE means cross-entropy; CE-Con enhances CE with the
contrastive loss. Here, A/C/P/R are four domains in Office-Home.

Pre-training  Fine-tuning Office-Home
C P R Avg.
Supervised CE 56.08 50.83 7249 7521 63.82
CE 50.31 4891 64.72 68.76 58.18

MoCo-v2 CE-Con 55.87 5023 71.51 7499 63.15
ours 5870 52.43 72.89 7536 64.85

D.2 More Results on Adversarial Training

In the main paper, we apply Core-tuning to adversarial training on CIFAR10, while this appendix
further provides the results of adversarial training on three other natural image datasets, i.e., Caltech-
101, DTD and Pets. We draw several observations based on the results on 3 image datasets in
Table[T4] First, despite good clean accuracy, standard fine-tuning with cross-entropy cannot defend
against adversarial attack, leading to poor robust accuracy. Second, AT with cross-entropy improves
the robust accuracy significantly, but it inevitably degrades the clean accuracy due to the accuracy-
robustness trade-off [51]]. In contrast, the contrastive regularizer improves both robust and clean
accuracies. This is because contrastive learning helps to improve robustness generalization (i.e.,
alleviating the distribution shifts between clean samples and adversarial samples), thus leading to
better performance. Last, Core-tuning further boosts AT and, surprisingly, even achieves better
clean accuracy than the standard fine-tuning under the ¢5 attack. To our knowledge, this is quite
promising since even the most advanced AT methods [65} 69]] find it difficult to conquer the accuracy-
robustness trade-off [67]. The improvement is mainly derived from that both contrastive learning and
smooth classifier learning boost the robustness generalization. We thus conclude that Core-tuning is
beneficial to model robustness. We also hope that Core-tuning can motivate people to rethink the
accuracy-robustness trade-off in adversarial training in the future.

Table 14: Adversarial training performance of MoCo-v2 pre-trained ResNet-50 under the attack
of PGD-10 in terms of robust and clean accuracies. CE indicates cross-entropy; AT-CE indicates
adversarial training (AT) with CE; AT-CE-Con enhances AT-CE with the contrastive loss; AT-ours
uses Core-tuning for AT.

PGD - {5 attack (¢ = 0.5) PGD - /, attack (e = 4/255)
Method Caltech101 DTD Pets Caltech101 DTD Pets
Robust  Clean Robust  Clean Robust  Clean Robust  Clean Robust  Clean Robust  Clean
CE 55.69 91.87 4225 71.68 30.94  89.05 27.03 91.87 18.37  71.68 4.63 89.05
AT-CE 87.35 91.61 6193 68.81 78.67  86.25 78.61 90.65 4727 67.13 63.59 84.21
AT-CE-Con  88.67 92.61 64.75 71.24 79.53  87.01 79.87  91.08 4895 69.07 65.60 86.85
AT-ours 89.21 92.83 66.49 7294 82.54  89.22 80.73 91.64 49.43  70.65 67.98 87.20
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D.3 More Results on Image Classification

The results with standard errors. In the main paper, we report the results of image classification
and ablations studies on 9 natural image datasets in terms of the average accuracy. To make the results
more complete, this appendix further reports the results with their standard errors (cf. Tables [T5{I6).

Table 15: Comparisons of various fine-tuning methods for MoCo-v2 pre-trained ResNet-50 on image
classification in terms of top-1 accuracy. Here, “Avg.” indicates the average accuracy over 9 datasets.
SL-CE-tuning denotes supervised pre-training on ImageNet and then fine-tuning with cross-entropy.

Algorithm ImageNet20  CIFARI0O  CIFARIO0  Caltech101 DTD

SL-CE-tuning  91.014/-127 94.23+/-0.07 83.40+/-0.12 93.65+/-021 74.40+/-0.45
CE-tuning 88.28+/-047 94.70+/-039 80.27+/-0.60 91.87+/-0.18 71.68+/-0.53
L2SP [36] 88.49+/-0.40 95.14+/-0.22 81.43+/-0.22 91.98+/-0.07 72.18+/-0.61

M&M [66] 88.53+/-0.21  95.02+/-0.07  80.58+/-0.19  92.91+/-0.08  72.43+/-0.43
DELTA [34] 88.35+/-0.41  94.76+/-0.05  80.39+/-0.41  92.19+/-0.45  72.23+/-0.23

BSS [9] 88.344/-0.62 94.84+/-0.21 80.40+/-0.30  91.95+/-0.12  72.22+/-0.17
RIFLE [35] 89.06+/-0.28  94.71+/-0.13  80.36+/-0.07  91.94+/-0.23  72.45+/-0.30
SCL [19] 89.294/-0.07  95.33+/-0.09  81.49+/-0.27 92.84+/-0.03  72.73+/-0.31

Bi-tuning [78] 89.06+/-0.08  95.12+/-0.15 81.42+/-0.01 = 92.834/-0.06  73.53+/-0.37
Core-tuning 92.73+/-0.17  97.314/-0.10  84.13+/-0.27 93.46+/-0.06  75.37+/-0.37

Algorithm Aircraft Cars Pets Flowers Avg.
SL-CE-tuning  87.03+/-0.02  89.77+/-0.11  92.17+/-0.12  98.78+/-0.10 89.35
CE-tuning 86.87+/-0.18  88.61+/-0.43  89.05+/-0.01  98.49+/-0.06 87.76
L2SP [36] 86.55+/-0.30  89.00+/-0.23  89.43+/-0.27  98.66+/-0.20 88.10

M&M [66] 87.45+/-0.28  88.90+/-0.70  89.60+/-0.09  98.57+/-0.15 88.22
DELTA [34] 87.05+/-0.37  88.73+/-0.05  89.54+/-0.48  98.65+/-0.17 87.99

BSS [9] 87.184/-0.71  88.50+/-0.02  89.50+/-0.42  98.57+/-0.15 87.94
RIFLE [35] 87.60+/-0.50  89.72+/-0.11  90.05+/-0.26  98.70+/-0.06 88.29
SCL [19] 87.444/-0.31 89.37+/-0.13  89.714/-0.20  98.65+/-0.10 88.54
Bi-tuning [78] 87.39+/-0.01 89.41+/-0.28  89.90+/-0.06  98.57+/-0.10 88.58

Core-tuning 89.48+/-0.17  90.17+/-0.03  92.36+/-0.14  99.18+/-0.15 90.47

Table 16: Ablation studies of Core-tuning (Row 5) for fine-tuning MoCo-v2 pre-trained ResNet-50
on 9 natural image datasets in terms of top-1 accuracy. Here, “Avg.” indicates the average accuracy
over the 9 datasets. Besides, L.y, is the original supervised contrastive loss, while £7,,, is our focal
contrastive loss. Moreover, “mix" denotes the manifold mix, while “mix-H" indicates the proposed

hardness-directed mixup strategy in our method.

Lee | Leon Lgml mix mix-H | ImageNet20 CIFAR10 CIFAR100 Caltech101 DTD
Vv 88.28+/-0.47 94.70+/-0.39  80.27+/-0.60 91.87+/-0.18  71.68+/-0.53
Vv V4 89.29+/-0.07 95.33+/-0.09  81.49+/-0.27 92.84+/-0.03  72.73+/-0.31
Vv 4 90.67+/-0.09  95.43+/-0.20 81.03+/-0.11  92.68+/-0.06  73.31+/-0.40
4 4 V4 92.204/-0.15  97.01+/-0.10  83.89+/-0.20 93.22+/-0.18  74.78+/-0.31
vV v V4 92.73+/-0.17  97.314/-0.10  84.13+/-0.27 93.46+/-0.06  75.37+/-0.37
Lee | Leon Ll,, | mix mix-H Aircraft Cars Pets Flowers Avg.
V4 86.87+/-0.18 88.61+/-0.43  89.05+/-0.01  98.49+/-0.06 87.76
Vv 4 87.44+/-0.31 89.37+/-0.13  89.71+/-0.20 98.65+/-0.10 88.54
4 4 88.37+/-0.14  89.06+/-0.14  91.37+/-0.03  98.74+/-0.11 88.96
4 4 V4 88.88+/-0.34  89.79+/-0.12 91.95+/-0.33  98.94+/-0.12 90.07
vV v v 89.48+/-0.17 90.174/-0.03  92.36+/-0.14  99.18+/-0.15 90.47

The fine-tuning results on ImageNet. Since ImageNet has rich labeled samples for fine-tuning and
the CSL models are also pre-trained on ImageNet, the performance gain of different fine-tuning
methods may not vary as significantly as on the small-scale target datasets. Even so, the results in
Table|17]|also demonstrate the effectiveness of Core-tuning on very large-scale data.

Table 17: Fine-tuning results of the MoCo-v2 ResNet-50 fine-tuned by various methods, on ImageNet.

Pre-training  Fine-tuning Top-1 accuracy
MoCo-v2 [8] CE-tuning 76.82
MoCo-v2 [8] CE-Contrastive-tuning 77.13
MoCo-v2 [8] Core-tuning (ours) 77.43
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More results on different pre-training methods. This appendix provides the fine-tuning results of
Core-tuning for the SImCLR pre-trained models. Since the official checkpoints of SImCLR-v1 [6]
and SimCLR-v2 [7]] are based on Tensorflow, we convert them to the PyTorch and try to reproduce
cross-entropy tuning (CE-tuning) in our experimental settings. Note that although the reproduction
performance of CE-tuning is slightly worse than the original paper [6} [7], the results in this paper
are obtained with the same preprocessing method w.r.t. each dataset and thus are fair. As shown in
Table[T8] Core-tuning consistently outperforms CE-tuning for SimCLR pre-trained models.

Table 18: Fine-tuning results of ResNet-50, pre-trained by various methods.

Caltech101 DTD Pets
CE-tuning ours CE-tuning ours CE-tuning ours

SimCLR-v1 [[6]  90.53+/-0.06  92.40+/-0.06 90.53+/-0.06  71.26+/-0.05 89.34+/-0.46  90.89+/-0.09
SimCLR-v2 [7]  92.44+/-0.18  93.46+/-0.02 71.26+/-0.26  74.75+/-0.41 88.28+/-0.26  90.64+/-0.31

Pre-training

The results on linear evaluation. This appendix provides linear evaluation for Core-tuning. Specifi-
cally, we first fine-tune the MoCo-v2 pre-trained ResNet-50 with Core-tuning and then train a linear
classifier for prediction. As shown in Table[T9] Core-tuning performs better than CE-tuning.

Table 19: Results of linear evaluation for the ResNet-50 fine-tuned by various methods, on CIFAR10.

Pre-training  Fine-tuning Top-1 accuracy

MoCo-v2 [8] CE-tuning 94.78+/-0.28
MoCo-v2 [8] Core-tuning (ours) 97.09+/-0.14

The results on KNN evaluation. This appendix provides the KNN evaluation for Core-tuning. To
be specific, we first fine-tune the MoCo-v2 pre-trained ResNet-50 with Core-tuning and then use
KNN for prediction. As shown in Table 20} Core-tuning also outperforms CE-tuning.

Table 20: Results of KNN evaluation for the ResNet-50 fine-tuned by various methods, on CIFAR10.

Pre-training  Fine-tuning Top-1 accuracy

MoCo-v2 [8] CE-tuning 94.63+/-0.32
MoCo-v2 [8] Core-tuning (ours)  96.65+/-0.06

D.4 The Results with Standard Errors on Semantic Segmentation

In the main paper, we report the average results of semantic segmentation on PASCAL VOC. This
appendix further reports the results with their standard errors (cf. Table 21).

Table 21: Fine-tuning performance on PASCAL VOC semantic segmentation based on DeepLab-V3
with ResNet-50, pre-trained by various CSL methods. CE indicates cross-entropy.

Pre-training Fine-tuning MPA FWIoU MloU
Supervised CE 87.10+/-0.20 89.12+/-0.17 76.52+/-0.34
InsDis [E2] CE 83.64+/-0.12  88.23+/-0.08 74.14+/-0.21
nsuis ours 84.53+/-0.31 88.67+/-0.07 74.81+/-0.13
PIRL @3] CE 83.16+/-0.26  88.22+/-0.24  73.99+/-0.42
ours 85.30+/-0.24 88.95+/-0.08 75.49+/-0.36
MoCo-v1 (2] CE 84.71+/-0.56  88.75+/-0.04  74.94+/-0.12
ours 85.70+/-0.32  89.19+/-0.02 75.94+/-0.23
MoCo-v2 (8] CE 87.31+/-0.31  90.26+/-0.12  78.42+/-0.28
ours 88.76+/-0.34  90.75+/-0.04  79.62+/-0.12
) CE 87.37+/-0.48 90.27+/-0.12  78.16+/-0.19
SImCLR-V2IZl (4 87.954/-0.20 90.714/-0.13  79.15+/-0.33
CE 87.17+/-0.20 89.84+/-0.09 77.84+/-0.24

InfoMin 9] ours  88.924/-0.36  90.65+/-0.09 79.48+/-0.30
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E More Analysis of Core-tuning

E.1 Analysis of Projection Dimension and Depth

In previous experiments, we use a 2-layer MLP to extract contrastive features with dimension 256.
Here, we further analyze how the dimension and the depth influence Core-tuning. The results on
ImageNet20 are reported in Figure ] where the fine-tuning performance of Core-tuning can be
further improved by changing the feature dimension to 128 and the depth to 3. Note that the best
dimension and depth of the projection head may vary on different datasets, but the default setting
(i.e., dimension 256 and depth 2) is enough to obtain consistently good performance.
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Figure 4: Analysis of the projection dimension and the projection depth in Core-tuning on ImageNet20
based on MoCo-v2 pre-trained ResNet-50. Each run tests one parameter and fixes others. Best
viewed in color.

E.2 Analysis of Loss and Mixup Hyper-Parameters

This appendix discusses the influence of the loss trade-off parameter 7 and the mixup sampling factor
« on Core-tuning based on the ImageNet20 dataset. Each run tests one parameter and fixes others.
As shown in Figure[5] when =0.1 and a=1, Core-tuning performs slightly better on ImageNet20.
Note that the best 17 and « can be different on diverse datasets.

E.3 Analysis of Temperature Factor

Following the implementation of the supervised contrastive loss [26]], we set the temperature factor
7 to 0.07 for Core-tuning by default. In this section, we further analyze the influence of 7 on Core-
tuning when fine-tuning MoCo-v2 pre-trained models on ImageNet20. As shown in Figure[5} when 7
is small (e.g., 0.01 or 0.07), Core-tuning performs slightly better on ImageNet20. The potential reason
is that a small temperature parameter implicitly helps the method to learn hard positive/negative
pairs [55]], which are more informative and beneficial to contrastive learning. Note that the best 7
can be different on different datasets, but the default setting (i.e., 7 = 0.07) is enough to achieve
comparable performance.
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Figure 5: Analysis of 1, a and the temperature factor in Core-tuning on ImageNet20 based on
MoCo-v2 pre-trained ResNet-50. Each run tests one factor and fixes others. Best viewed in color.
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E.4 Analysis of Hard Pair Thresholds

In our hardness-directed mixup strategy, to make the generated negative pairs closer to negative pairs,
we clip A~Beta(a, @) by A>\,, when generating hard negative pairs. In our experiments, we set the
threshold \,, = 0.8. In this appendix, we analyze the influences of the negative pair threshold A,,.
Meanwhile, although we do not constrain hard positive generation, we also analyze the potential
positive pair threshold \,,. The results on ImageNet20 are reported in Table E} On the one hand, A,
satisfies our expectation that the generated hard negative pairs should be closer to negatives, i.e., a
larger \,, can lead to better performance. On the other hand, we find when no crop is conducted for
hard positive generation (i.e., A,=0), the performance is slightly better. We conjecture that since the
generated hard positives are located in the borderline area between positives and negatives, allowing
the generated hard positives to close to negatives may have a margin effect on contrastive learning
and thus boosts performance. Despite this, Core-tuning with a large )\, performs similarly well.

Table 22: Threshold analysis for hard pair generation in Core-tuning on ImageNet20 based on
MoCo-v2 pre-trained ResNet-50. Each run tests one parameter and fixes another one to 0.8.

Thresholds 0 0.2 0.4 0.6 0.8

Negative pair threshold A\, 91.55 91.94 92.19 92.36 92.59
Positive pair threshold A, ~ 92.73  92.68 92.64 92.60 92.59

E.5 Relationship Between Pre-Training and Fine-Tuning Accuracies

We further explore the relationship between ImageNet performance and Core-tuning fine-tuning
performance on Caltech-101 for various contrastive self-supervised models. Here, the ImageNet
performance of a contrastive self-supervised model is obtained by training a new linear classifier
on the frozen pre-trained representation and then evaluate the model on the ImageNet test set.
For convenience, we directly follow the ImageNet performance reported in the original paper of
the corresponding methods. As shown in Figure [6] the fine-tuning result of each contrastive self-
supervised model on Caltech-101 is highly correlated with the model result on ImageNet. This
implies that the ImageNet performance can be a good predictor for the fine-tuning performance
of contrastive self-supervised models. Such a finding is consistent with supervised pre-trained
models [28]]. Even so, note that the correlation is not perfect, where a contrastive pre-trained model
with better ImageNet performance does not necessarily mean better fine-tuning performance, e.g.,
SimCLR-v2 vs MoCo-v2.
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Figure 6: The relationship between ImageNet performance and Core-tuning fine-tuning performance
on Caltech-101 for contrastive self-supervised ResNet-50 models. Better viewed in color.
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E.6 Effectiveness of Hard Pair Generation for Contrastive Fine-Tuning

In our proposed Core-tuning, we use all the generated positive sample pairs and the original samples
as positive pairs for contrastive fine-tuning. In this appendix, to better evaluate the effectiveness of
hard pair generation, we do not use original data as positive pairs but only use the generated hard
positive pairs for contrastive learning. As shown in Table [23] only using the generated hard positive
pairs for contrastive learning is enough to obtain comparable performance. Such results further verify
the effectiveness of our hardness-directed mixup strategy as well as the importance of hard positive
pairs for contrastive fine-tuning.

Table 23: Comparisons with only using the generating hard positive pairs for contrast on CIFAR10.

Pre-training  Fine-tuning  The used positive pairs for contrast? ~ Top-1 accuracy

MoCo-v2 [8]  CE-tuning X 94.70+/-0.39
MoCo-v2 [8] Core-tuning only the generated hard positive pairs ~ 97.31+/-0.09
MoCo-v2 [8] Core-tuning all positive pairs 97.31+/-0.10

E.7 Effectiveness of Smooth Classifier Learning

In Core-tuning, to better exploit the learned discriminative feature space by contrastive fine-tuning,
we use the mixed samples for classifier training, so that the classifier can be more smooth and far
away from the original training data. In this appendix, to better evaluate the effectiveness of smooth
classifier learning, we compare Core-tuning with a variant that does not use the mixed data for
classifier learning. As shown in Table [24] smooth classifier learning contributes to the fine-tuning
performance of contrastive self-supervised models on downstream tasks. The results demonstrate the
effectiveness of smooth classifier learning and also show its importance in Core-tuning.

Table 24: Influence of smooth classifier learning on CIFAR10.

Pre-training  Fine-tuning  Smooth classifier learning?  Top-1 accuracy

MoCo-v2 [8]  CE-tuning X 94.70+/-0.39
MoCo-v2 [8]  CE-tuning v 95.434/-0.20
MoCo-v2 [8] Core-tuning X 96.13+/-0.11
MoCo-v2 [8] Core-tuning v 97.31+/-0.10
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