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H I G H L I G H T S

• We propose a spectral decomposition based approach for unsupervised time series anomaly detection, which reduces the complexity of reconstruction on non-

stationary time series. Additionally, we introduce an entropy regularization to promote the model in fostering strong correlations between normal time steps, 

thereby enhancing the distinguishability between normal and abnormal instances.

• We design a new test-time adaptation (TTA) method for unsupervised time series anomaly detection to address the distribution gap between training and inference. 

During inference, we assign pseudo labels based on the distribution of anomaly scores and expand the gap between the scores of different instances to improve the 

performance.

• Our SDA achieves superior performance while cutting training time by two-thirds and using a model size of less than 2MB across three real-world benchmarks. 

Extensive ablation experiments verify the efficiency of each component of our method.
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A B S T R A C T

Unsupervised anomaly detection in time series data is crucial for identifying unusual patterns across various 

fields. However, existing methods often struggle when dealing with non-stationary time series, constraining their 

practical application. In this paper, we delve into the challenges surrounding non-stationary time series and put 

forward a novel framework along with a test-time adaptation strategy. When it comes to the framework, non-

stationary time series pose difficulties for modeling due to their blend of time-invariant statistics and evolving 

temporal dependencies. To address this issue, we explicitly break down the input into variant and invariant 

components through spectral analysis, with the aim of separately modeling these aspects. Besides, the absence 

of anomalies during training leads to significant distribution discrepancies between training and testing phases, 

which is ignored by most existing methods. To deal with this, we propose a flexible test-time adaptation strategy 

to further amplify the normal-abnormal distinguishability. Our proposed Spectral Decomposition and Adaptation 

method (SDA) outperforms existing detection frameworks in terms of effectiveness and efficiency. Specifically, 

compared to state-of-the-art models, SDA achieves superior performance while reducing training time by 𝟔𝟔.𝟐 %
and memory usage by 𝟗𝟖.𝟖 %.

1 . Introduction

Time series analysis encompasses a wide range of tasks, including 

forecasting [1–3], classification [4–6], and anomaly detection [7,8]. 

Time series anomaly detection aims to detect abnormal patterns or 

events in the sequence data collected over time [9]. It facilitates early 

warnings and precautions in advance that potentially prevent large 

malfunctions, which are crucial for a broad variety of real-world appli­

cations, such as finance, healthcare, transportation, manufacturing and 

other fields [4,10–14]. An anomaly is also referred to as an outlier or 

novelty, denoting an observation that is deemed unusual, irregular, in­

consistent, or unexpected [15–17]. However, anomalies are usually rare 

and hidden by vast normal points, making the data labeling hard and 
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Fig. 1. Average model efficiency comparison over three benchmarks (PSM, SMD, 

and SWaT). Our SDA achieves the best performance with a compact model size 

and low time cost compared to other baselines.

expensive. Therefore, unsupervised time series anomaly detection is an 

essential problem in data mining and industrial applications(Fig. 1 ).

Many unsupervised methodologies entail computing of an anomaly 

score at each time step. The score is subsequently compared to a thresh­

old in order to determine whether a time step is an anomaly or not. 

Researchers have designed various methods to deal with the issue of the 

computation of anomaly scores, which can be categorized into three 

main groups: dissimilarity-based methods [18–20], prediction-based 

methods [21–23] and reconstruction-based methods [24–27]. Recently, 

reconstruction-based methods have been developing rapidly due to their 

ability to handle complex data by integrating with machine learning 

models, as well as their interpretability in identifying anomalies.

However, due to the inherent non-stationarity in real-world time se­

ries, there still exist some challenges in practice. Non-stationary time 

series are characterized by time-variant statistics and temporal depen­

dencies across various periods [28,29]. This dynamic nature often results 

in a substantial distribution gap between different periods, making ac­

curate modeling and reconstruction a non-trivial task. Additionally, the 

distribution gap between training and inference is also crucial to the 

ultimate performance of unsupervised time series anomaly detection, 

which is ignored by most existing methods [24,26,27]. A recent work 

[30] has attempted to handle the ”new normal” instances within the test 

set, which removes the trend component and only updates model param­

eters with the remainder. However, rare abnormal instances may contain 

unseen patterns that could offer more valuable knowledge compared to 

commonplace normal points.

In this paper, we propose a novel Spectral Decomposition and 

Reconstruction model as well as a new Test-Time Adaptation method 

(SDA) to address these issues. The proposed SDA model is composed of 

several stackable SDA Blocks. To deal with non-stationary time series, 

each SDA Block aims to decompose a sequence into time-variant and 

time-invariant components through spectral analysis. Through our spec­

tral decomposition, simple multi-layer perceptrons (MLPs) can be used 

to reconstruct sequential associations, thereby significantly reducing 

model complexity significantly. Moreover, for time-variant components 

that exhibit strong local dependencies, we introduce an entropy reg­

ularization to promote normal time steps forming strong associations 

with their nearby neighbors. In order to address the distribution gap 

between training and inference, we assign pseudo labels based on the 

distribution of anomaly scores during inference. Subsequently, the gap 

between scores of pseudo-normal and pseudo-abnormal instances will be 

further amplified, leading to better performance. Through our adapta­

tion method, SDA can leverage patterns underlying in both abnormal 

and normal data. Consequently, our SDA effectively performs unsu­

pervised anomaly detection in non-stationary time series and exhibits 

robustness to distribution shifts between the training and test sets. 

Additionally, due to MLP-based model and parameter-free decomposi­

tion, our SDA achieves superior performance compared to the baselines 

with reduced model size and training time.

The contributions of our paper are summarised as follows:

• We propose a spectral decomposition based approach for unsuper­

vised time series anomaly detection, which reduces the complexity 

of reconstruction on non-stationary time series. Additionally, we in­

troduce an entropy regularization to encourage the model to foster 

strong correlations between normal time steps, thereby enhancing 

the distinguishability between normal and abnormal instances.

• We design a new test-time adaptation (TTA) method for unsuper­

vised time series anomaly detection to address the distribution gap 

between training and inference. During inference, we assign pseudo 

labels based on the distribution of anomaly scores and expand 

the gap between the scores of different instances to improve the 

performance.

• Our SDA achieves superior performance while cutting training time 

by two-thirds and using a model size of less than 2MB across three 

real-world benchmarks. Extensive ablation experiments verify the 

efficiency of each component of our method.

2 . Related work

Unsupervised time series anomaly detection. Unsupervised time-

series anomaly detection methods aim to identify observations that 

significantly deviate from normal patterns without relying on labeled 

data [31–33]. Early approaches include classical outlier detection algo­

rithms, such as Local Outlier Factor (LOF)[18] and Isolation Forest[34,

35], which estimate anomaly scores based on the density or isolation 

of data points in a feature space. Variants like Deep Isolation Forest 

(DIF) combine neural networks with isolation mechanisms to improve 

performance[36]. Traditional one-class classification techniques (e.g., 

One-Class SVM/SVDD) have also been applied by learning a decision 

boundary around normal data[37]. Modern deep learning approaches 

for time-series anomalies can be broadly categorized by their learning 

objectives: Forecasting-based methods [21–23] rely on detecting anoma­

lies by comparing the prediction of the subsequent value within the 

time series with the actual value. Density estimation-based methods 

[18,38] transform time series data into a feature space and estimate 

the probability density function of normal data points. Reconstruction-

based methods [24,27,32,33,39], reconstruct normal time-series data 

and identify abnormal time-series data with high reconstruction errors. 

Another line of work uses contrastive learning to learn discriminative 

representations: DCdetector[40] is a recent method that foregoes explicit 

forecasting/reconstruction and instead trains a model on self-supervised 

tasks. Similarly, one-class neural networks have been adapted for time 

series: for example, COUTA[41] learns a robust boundary of normal­

ity by penalizing uncertain predictions and by generating synthetic 

anomalies to inform the model. These methods are effective in capturing 

complex patterns, but may be sensitive to the choice of reconstruction 

models. Additionally, they are also computationally expensive. To han­

dle non-stationary time series, [27] propose a dynamic decomposition 

reconstruction method based on transformers. However, it only recon­

structs the stable component of input, which limits its performance in the 

real-world time series. In contrast, SDA proposes a novel spectral decom­

position method, which can better understand the underlying dynamics 

and identify anomalies more efficiently. Additionally, with MLP-based 

modules, SDA significantly reduces the training time and model size.

Test-time adaptation. In order to mitigate the performance degra­

dation caused by distribution shifts, a range of fully TTA methods 
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[42–44] have been developed. In the broader machine learning litera­

ture, representative approaches include entropy minimization strategies, 

such as Tent[43], which adjust model parameters to make predictions 

more confident on test samples, and pseudo-label–based self-training 

approaches[45–47], which iteratively update the model using test in­

stances with high-confidence predictions. These methods have been 

extensively explored in computer vision tasks such as image classi­

fication and segmentation, showing strong robustness under domain 

shifts. A recent work [30] has attempted to employ TTA methods in 

unsupervised time series anomaly detection by denormalizing the input 

and minimizing the reconstruction loss of the pseudo-normal instances. 

However, using moving average to estimate the trend may cause ex­

tra reconstruction errors. Besides, updating only with all pseudo-normal 

instances can also introduce bias. In contrast, SDA designs a new TTA 

strategy using both pseudo-normal and pseudo-abnormal instances for 

model updating, thereby expanding the gap between the scores of the 

normal and abnormal instances.

3 . Proposed method

Preliminary: An input of multivariate time series anomaly detec­

tion is denoted by 𝑥 = [𝑥(1), 𝑥(2),… , 𝑥(𝑛)] ∈ R𝑛×𝑐 , where 𝑛 is the length 

of timestamps, 𝑐 is the number of channels, and 𝑥(𝑘) represents the 𝑘th 

instance. The task is to produce an output vector 𝑦 = [𝑦(1), 𝑦(2),… , 𝑦(𝑛)] ∈
R𝑛, where 𝑦(𝑘) ∈ {0, 1} denotes whether the 𝑘th timestamp is an 

anomaly.

Overview: The overall SDA framework is shown in Fig. 2. We 

propose a model architecture for spectral decomposition and recon­

struction. The model is composed of 𝑁  SDA Blocks. Each SDA Block is 

designed to decompose and reconstruct the non-stationary time series. 

Inspired by [48], a residual structure is employed to capture hierarchical 

dynamics and facilitate deep decomposition. The detailed model archi­

tecture is shown in Fig. 3(a). During the training phase, the model is 

trained adhering to the reconstruction loss and entropy regularization. 

During the test phase, the model allocates pseudo labels to the test sam­

ples in terms of the anomaly score. And a mixture of Gaussians is adopted 

for TTA, which confers an advantage in augmenting the distinction be­

tween anomaly scores of normal and abnormal samples. The overall SDA 

framework results in improved performance for unsupervised anomaly 

detection.

3.1 . SDA block

3.1.1 . Spectral decomposition:

We adopt a divide-and-conquer strategy to decompose a complex 

non-stationary time series into various dynamic factors and then recon­

struct each independent component separately. By breaking down time 

series into time-invariant and time-variant components, the model can 

better learn the underlying dynamics and identify anomalies more ef­

fectively. Specifically, we perform the Fast Fourier Transform (FFT) of 

each input, to compute the average amplitude of each spectrum S =
{0, 1,… , [𝑛∕2]}, and order them based on their respective amplitudes. 

We select the upper 𝛼 percentile spectrums, encompassing dominant 

spectrums shared across all subsequences and reflecting time-invariant 

dynamics inherent in the dataset. The remaining spectrums constitute 

the distinctive elements for varying subsequences during different pe­

riods. Consequently, we partition the spectrum set S into S𝛼  and its 

complementary set S𝛼 . Then the decomposition outputs 𝑥𝑣𝑎𝑟 and 𝑥𝑖𝑛𝑣

are obtained by employing inverse FFT for further reconstruction. The 

input of the 𝑖th SDA Block is denoted as 𝑥𝑖 ∈ R𝑛×𝑐 . As shown in Fig. 3(a), 

the decomposition process is formulated as follows:

𝑥𝑣𝑎𝑟𝑖 , 𝑥𝑖𝑛𝑣𝑖 = Fourier Filter(𝑥𝑖). (1)

3.1.2 . Reconstruction modules:

We introduce two separate MLP-based modules to reconstruct time-

varying and time-invariant components, respectively.

Time-invariant reconstruction module: The module is designed to 

learn the globally shared dynamics, which model the long-term temporal 

patterns for reconstruction. We use the MLP as the Encoder and Decoder 

in the module. The complete reconstruction process is depicted in the 

following formula: 

𝑧𝑖𝑛𝑣 = Encoder(𝑥𝑖𝑛𝑣), 𝑥̂𝑖𝑛𝑣 = Decoder(𝑧𝑖𝑛𝑣). (2)

Time-variant reconstruction module: The time-variant dynamics 

change continuously and present a greater level of complexity compared 

to the time invariant component. Hence, a self-attention mechanism is 

employed in preparation for subsequent encoding in the Time-variant 

Reconstruction Module. To reduce the computational complexity, the in­

put 𝑥𝑣𝑎𝑟 is first divided into 𝑚 = ⌊

(𝑛−𝑙)
𝑠 ⌋ + 1 patches 𝑥𝑣𝑎𝑟𝑝 ∈ R𝑙×𝑐  of 

length 𝑙, where 𝑠 represents the non-overlapping stride between adja­

cent patches. Before dividing, 𝑠 repeated numbers of the last time step 

value are padded to the end of the original sequence. Then, we calculate 

self-attention in each patch as follows: 

[𝑄𝑝, 𝐾𝑝, 𝑉𝑝] = 𝑥𝑣𝑎𝑟𝑝 [𝑊 𝑄
𝑝 ,𝑊 𝐾

𝑝 ,𝑊 𝑉
𝑝 ],

Correlation ∶ 𝑇𝑝 = Softmax(
𝑄𝑝 ⋅𝐾𝑇

𝑝
√

𝑑𝑚
),

𝑥𝑣𝑎𝑟𝑝 = 𝑓 (𝑇𝑝 ⋅ 𝑉𝑝),

(3)

where 𝑄𝑝, 𝐾𝑝, 𝑉𝑝 ∈ R𝑙×𝑑𝑚  represent the query, key, and value. 

𝑊 𝑄
𝑝 ,𝑊 𝐾

𝑝 ,𝑊 𝑉
𝑝 ∈ R𝑐×𝑑𝑚  represent the learnable projection matrices for 

𝑄𝑝, 𝐾𝑝, 𝑉𝑝, respectively. 𝑇𝑝 ∈ R𝑙×𝑙 denotes the learned correlations across 

time steps within the 𝑝th patch. And 𝑓 (⋅) is a linear layer for mapping. 

Fig. 2. The overview of SDA. During training, the model decomposes and reconstructs the input from the training set under the constraints of reconstruction loss and 

the proposed entropy regularization. During test, we employ a Gaussian mixture model to fit the anomaly scores of normal and abnormal instances and expand the 

gap between them to make anomalies easier to be detected.
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Fig. 3. (a) Model architecture: Our SDA is composed of 𝑁  stackable SDA Blocks and each SDA Block contains a Fourier Filter, a Time-Variant Reconstruction Module 

and a Time-invariant Reconstruction Module. (b) Test-Time adaptation: The anomaly score of all instances resembles a mixture of Gaussian distributions. As shown 

in the upper plot, we identify pseudo-normal instances (the dark blue shaded area) and pseudo-abnormal instances (the dark red shaded area) by setting two bounds 

𝑈  and 𝐿. Our TTA strategy is to expand the gap between their scores during inference.

We obtain the output 𝑥𝑣𝑎𝑟 = [𝑥𝑣𝑎𝑟0 ,… , 𝑥𝑣𝑎𝑟𝑝 ,… , 𝑥𝑣𝑎𝑟𝑚 ]. Similar to the Time-

invariant Reconstruction Module, we also employ MLP as the Encoder 

and Decoder. The subsequent reconstruction process is depicted in the 

following formula: 

𝑧𝑣𝑎𝑟 = Encoder(𝑥𝑣𝑎𝑟), 𝑥̂𝑣𝑎𝑟 = Decoder(𝑧𝑣𝑎𝑟). (4)

In general, the different modules achieve reconstruction of distinct 

components respectively: 

𝑥̂𝑣𝑎𝑟𝑖 = TimeVarRec(𝑥𝑣𝑎𝑟𝑖 ), 𝑥̂𝑖𝑛𝑣𝑖 = TimeInvRec(𝑥𝑖𝑛𝑣𝑖 ). (5)

The final reconstructed data 𝑥̂𝑖 is the sum of the outputs de­

rived from both Time-invariant Reconstruction Module and Time-variant 

Reconstruction Module. Meanwhile, the residual 𝑥𝑖+1 is fed to next SDA 

Block for further decomposition and reconstruction. The outputs are 

achieved as follows: 

𝑥̂𝑖 = 𝑥̂𝑣𝑎𝑟𝑖 + 𝑥̂𝑖𝑛𝑣𝑖 , 𝑥𝑖+1 = 𝑥𝑣𝑎𝑟𝑖 − 𝑥̂𝑣𝑎𝑟𝑖 . (6)

It is noted that both reconstruction modules are primarily based on MLP, 

which significantly reduces the model size compared to transformer-

based models.

3.2 . Reconstruction with entropy regularization

Following previous work [27,33], we minimize the reconstruction 

loss Lrecon during training. Due to the intricate nature of time variant 

components, which encompass detailed patterns and demonstrate strong 

local dependencies, normal time steps tend to form more robust corre­

lations with the nearest normal steps within the patch. By contrast, it 

is harder for anomalous time steps to establish strong correlations with 

other normal steps. Thus, we further introduce an entropy regularization 

loss to make normal time steps foster close associations with their local 

neighbors as much as possible, as the training set only contains normal 

samples. The entropy regularization loss is defined as: 

Lent =
1
𝑁

𝑁
∑

𝑖=1

𝑚
∑

𝑝=1
−𝑇 𝑖

𝑝 log𝑇 𝑖
𝑝 , (7)

where 𝑇 𝑖
𝑝  represents the 𝑝th correlation in 𝑖th Block. Consequently, we 

minimize the entropy regularization along with the reconstruction loss 

during training. The specific training loss is: 

Ltrain = Lrecon + 𝜆ent ⋅ Lent, (8)

where 𝜆ent is the weight of the entropy regularization.

3.3 . Anomaly detection with test-time adaptation

With the assistance of our SDA model, the majority of abnormal in­

stances can be identified through the anomaly score. The score of each 

instance 𝑥(𝑖) is obtained through the reconstruction error between test 

samples and their respective reconstructions: 

Score(𝑥(𝑖)) = 1
𝑐

𝑐
∑

𝑗=1
(𝑥(𝑖,𝑗) − 𝑥̂(𝑖,𝑗))2. (9)

To further increase the the disparity between normal and abnormal 

instances, we minimize the reconstruction loss of pseudo-normal in­

stances, denoted as Lnor, and maximize the reconstruction loss of 

pseudo-abnormal instances, denoted as Labn. However, the allocation of 

pseudo labels is challenging in unsupervised time series anomaly detec­

tion. In our empirical studies, we noted that the distribution of normal 

instances and abnormal instances closely resembles a Gaussian mixture 

model, akin to the upper plot in Fig. 3(b).1 Although most anomalies 

are detected by the threshold, it is typical for certain abnormal in­

stances to escape accurate differentiation because of low anomaly scores. 

Furthermore, some normal instances may be erroneously classified as 

1 We visualize the anomaly score distribution for all instances in Sec. 4.8.

Neurocomputing 662 (2026) 131978 

4 



H. Zhang, Y.-F. Zhang, J. Liang et al.

anomalies due to the elevated anomaly scores. Therefore, directly assign­

ing pseudo labels based on the threshold may lead to a significant drop 

in performance due to numerous misclassified instances. To address this 

issue, we first fit a Gaussian mixture model with 𝑝 modes based on the 

anomaly scores of all test samples. Then the first two dominant modes 

(N1(𝜇1, 𝜎1) and N2(𝜇2, 𝜎2)) are selected as the distributions of normal in­

stances and abnormal instances, respectively. Next, we define the upper 

bound 𝑈  and lower bound 𝐿 as follows: 

𝐿 = 𝜇1 + 𝜎1; 𝑈 = 𝜇2 − 𝜎2. (10)

Instances with anomaly scores less than 𝐿 are displayed in the dark blue 

shaded area in the upper plot of Fig. 3(b), labeled as pseudo-normal in­

stances. Conversely, instances with scores greater than 𝑈 , are labeled 

as pseudo-abnormal instances, as shown in the dark red shaded area. By 

introducing 𝑈  and 𝐿, the model can update with samples of high con­

fidence without label. The specific loss functions during inference are 

formulated as follows: 

Lnor =
1
𝑛𝑐

𝑛
∑

𝑖=1

𝑐
∑

𝑗=1
𝟙(Score(𝑥(𝑖)) < 𝐿)(𝑥(𝑖,𝑗) − 𝑥̂(𝑖,𝑗))2,

Labn = 1
𝑛𝑐

𝑛
∑

𝑖=1

𝑐
∑

𝑗=1
𝟙(Score(𝑥(𝑖)) > 𝑈 )(𝑥(𝑖,𝑗) − 𝑥̂(𝑖,𝑗))2,

Ltest = Lnor − 𝜆abn ⋅ 𝑆(Labn),

(11)

where Ltest is the final loss during testing, 𝜆abn is the weight of Labn and 

𝑆 represents the sigmoid operation for avoiding disruption caused by 

extreme values. After adaptation, the anomaly scores of real normal and 

abnormal instances will differ more significantly, making them easier to 

distinguish.

4 . Experiments

4.1 . Datasets

We evaluate SDA extensively on three real-world multivariate 

datasets: Pooled server metrics dataset: The Pooled Server Metrics 

(PSM) dataset is proposed by eBay and consists of 26 dimensional data 

captured internally from application server nodes [49]. Server machine 

dataset: The Server Machine Dataset (SMD) is a 5-week-long server sta­

tus log dataset, which is collected by large Internet company. It contains 

performance metrics from servers with 38 dimensions [31]. Secure wa­

ter treatment dataset: The Secure Water Treatment (SWaT) dataset is a 

reduced representation of a real industrial water treatment plant and has 

51 different values in an observation [50]. HexagonML (UCR) dataset:

This is a dataset of multiple univariate time series that was used in the 

KDD 2021 Cup [51]. We include only the datasets obtained from natural 

sources (the InternalBleeding and ECG datasets). Since Fourier trans­

form requires continuous signals, we follow [27] and do not employ MSL 

(Mars Science Laboratory rover) and SMAP (Soil Moisture Active Passive 

satellite) [22]. The statistical details of these datasets are provided in 

Table 1. We split the training data into 80 % for training and 20 % for 

validation. Besides, anomalies are only present in the testing data.

4.2 . Metrics

For performance evaluation, we use precision, recall, and F1 score 

in our main experiments and ablation analysis. The point adjustment 

Table 1 

Statistics of the datasets.

Dataset Training Test Anomaly Anomaly Frequency

Size Size Durations Rate

PSM 132,481 87,841 1∼8,861 0.2776 1 minute

SMD 23,688 23,689 3∼3,161 0.1565 1 minute

SWaT 6840 7500 3∼599 0.1263 1 minute

UCR 1600 5900 12∼358 0.0188 –

method has been widely used in previous work [33,39,52]. However, 

as [27,53] pointed out, it is unreasonable and creates the illusion of 

progress. Therefore, we employ the recently proposed evaluation mea­

sures based on affiliation [54], which are a theoretically grounded, 

robust and interpretable extensions to precision/recall metrics.

4.3 . Baselines

We extensively compare our method with 17 baselines for com­

prehensive evaluations, including the probability-based methods: 

COPOD [55], ECOD [56]; the linear transformation-based methods: 

OCSVM [57]; the outlier-based methods: IForest [34], LODA [58]; the 

proximity-based methods: CBLOF [59], HBOS [60], and MSAD [61]; 

the neural network-based methods: VAE [62], DeepSVDD [63], LSTM-

AE [64], MTAD-GAT [39], TFAD [24], Anomaly Transformer [33], 

PUAD [65], LUAD [8], NPSR [26] and D3R [27]. All baselines are based 

on our runs or sourced from previous work [27], We employ official 

or open-source implementations published on GitHub and follow the 

configurations recommended in their papers.

4.4 . Implementation details

In our experiment, the sliding window has a fixed size of 64 for all 

datasets. We use grid search to obtain the best SPOT parameters for each 

dataset and record the results with the highest F1 scores. All experiments 

are performed on an Ubuntu Server with a 12th Gen Intel(R) Core(TM) 

i9-12900 K @ 3.60 GHz processor and an NVIDIA GeForce RTX 4090 

Graphics Card. For reproducibility, we list detailed hyperparameters of 

model structure below and report the following best hyperparameters 

for our method:

1. For PSM, we train for 8 epochs, with a learning rate of 1.0 × 𝑒−3, a 

weight decay of 1.0× 𝑒−4, and the weight of entropy loss 𝜆ent set to 

0.006. Besides, the length of patch is set to 16 and the number of 

SDA Blocks is 2. In Fourier Filter, the 𝛼 is set to 0.2. During testing, 

we set the learning rate to 5.0 × 𝑒−3 and the maximum loss weight 

𝜆max to 1.0. And we set the dimensionality 𝑛 of the multivariate 

Gaussian distribution to 3.

2. For SMD, we train for 8 epochs, with a learning rate of 1.0× 𝑒−3, a 

weight decay of 1.0× 𝑒−4, and the weight of entropy loss 𝜆ent is set 

to 1.0. Besides, the length of patch is set to 32 and the number of 

SDA Blocks is 2. In Fourier Filter, the 𝛼 is set to 0.1.During testing, 

we set the learning rate to 5.0 × 𝑒−4 and the maximum loss weight 

𝜆max to 1.0. And we set the dimensionality 𝑛 of the multivariate 

Gaussian distribution to 3.

3. For SWaT, we train for 8 epochs, with a learning rate of 1.0 × 𝑒−3, 
a weight decay of 1.0 × 𝑒−4, and the weight of entropy loss 𝜆ent set 

to 0.7. Besides, the length of patch is set to 8 and the number of 

SDA Blocks is 3. In Fourier Filter, the 𝛼 is set to 0.3.During testing, 

we set the learning rate to 7.0 × 𝑒−4 and the maximum loss weight 

𝜆max to 0.08. And we set the dimensionality 𝑛 of the multivariate 

Gaussian distribution to 3.

4. For UCR, we train for 8 epochs, with a learning rate of 1.0 × 𝑒−3, a 

weight decay of 1.0× 𝑒−4, and the weight of entropy loss 𝜆ent is set 

to 1.0. Besides, the length of patch is set to 8 and the number of 

SDA Blocks is 3. In Fourier Filter, the 𝛼 is set to 0.1.During testing, 

we set the learning rate to 5.0 × 𝑒−4 and the maximum loss weight 

𝜆max to 0.08. And we set the dimensionality 𝑛 of the multivariate 

Gaussian distribution to 3.

4.5 . Main results

The SDA without TTA is denoted as SDA(base). As shown in 

Table 2, both SDA(base) and SDA outperform all the baselines across 

three real-world datasets, which verifies the superiority of our method. 

Specifically, SDA achieves the best F1 performance with an average im­

provement of 4.33 % compared to the strongest baseline. Besides, our 

Neurocomputing 662 (2026) 131978 

5 



H. Zhang, Y.-F. Zhang, J. Liang et al.

Table 2 

Results on real-world multivariate datasets. The higher values for all metrics represent the better performance, and the best F1 scores are highlighted in bold. The 

SDA without TTA is denoted as SDA(base).

Method PSM SMD SWaT UCR Average

P R F1 P R F1 P R F1 P R F1 F1

COPOD [55] 0.7602 0.3175 0.4479 0.6676 0.1366 0.2268 0.9876 0.1180 0.2108 0.7251 0.2208 0.3385 0.3059

ECOD [56] 0.7460 0.3384 0.4656 0.7398 0.1615 0.2651 0.9761 0.1151 0.2059 0.6279 0.4592 0.5305 0.3667

OCSVM [57] 0.8761 0.4744 0.6155 0.0000 0.0000 0.0000 0.6196 0.7558 0.6810 0.5978 0.8687 0.7082 0.5011

CBLOF [59] 0.5990 0.9845 0.7449 0.8667 0.3352 0.4834 0.6308 0.7091 0.6677 0.4772 0.8525 0.6119 0.6269

HBOS [60] 1.0000 0.0654 0.1228 0.5628 0.8007 0.6610 0.5771 0.8049 0.6722 0.6529 0.6683 0.6605 0.5291

IForest [34] 1.0000 0.0335 0.0648 1.0000 0.0937 0.1713 0.6127 0.6280 0.6203 0.5394 0.8654 0.6646 0.3802

LODA [58] 0.9266 0.4017 0.5605 0.5902 0.6618 0.6240 0.6117 0.7014 0.6535 0.6184 0.5526 0.5837 0.6053

VAE [62] 0.6221 0.8772 0.7280 0.8209 0.4349 0.5686 0.6355 0.7218 0.6759 0.7468 0.6113 0.6723 0.6611

DeepSVDD [63] 0.7405 0.5064 0.6015 0.6498 0.6477 0.6488 0.5911 0.9353 0.7244 0.7853 0.7144 0.7482 0.6806

LSTM-AE [64] 0.7511 0.7586 0.7548 0.8496 0.4349 0.5753 0.6018 0.7219 0.6564 0.7354 0.6295 0.6783 0.6662

MTAD-GAT [39] 0.7990 0.6014 0.6863 0.8590 0.6769 0.7571 0.6590 0.7751 0.7123 0.7917 0.7255 0.7572 0.7282

TFAD [24] 0.7914 0.7163 0.7520 0.5632 0.9783 0.7149 0.6038 0.8196 0.6953 0.6556 0.6956 0.6750 0.7092

Anomaly Transformer [33] 0.5201 0.8504 0.6455 1.0000 0.0319 0.0619 0.5541 0.5994 0.5759 0.4567 0.5981 0.5179 0.4503

LUAD [8] 0.7962 0.7214 0.7569 0.7352 0.9516 0.8295 0.6914 0.8726 0.7715 0.6681 0.8366 0.7429 0.7751

PUAD [65] 0.8319 0.7167 0.7675 0.7471 0.9559 0.8387 0.7165 0.8448 0.7754 0.7779 0.7193 0.7475 0.7871

NPSR [26] 0.6296 0.8537 0.7247 0.8249 0.9603 0.8875 0.7501 0.8238 0.7852 0.7414 0.8019 0.7705 0.7919

MSAD [61] 0.7832 0.7211 0.7805 0.8612 0.9257 0.8923 0.7288 0.7951 0.7605 0.7045 0.8217 0.7586 0.7979

D3R [27] 0.6294 0.9619 0.7609 0.7715 0.9926 0.8682 0.7206 0.8529 0.7812 0.7915 0.8351 0.8127 0.8057

SDA(base) 0.8314 0.7330 0.7791 0.8358 0.9941 0.9081 0.6628 0.9647 0.7857 0.7983 0.8664 0.8310 0.8259

SDA 0.8610 0.7542 0.8041 0.8747 0.9867 0.9273 0.6700 0.9796 0.7958 0.8211 0.8917 0.8549 0.8455

Table 3 

Ablation studies on SDA(base). F1 scores are reported, with higher values indicating better performance. 

Seasonal-Trend and High-Low represent seasonal-trend decomposition and High-Low Pass Filter. Spectrum 

and Entropy represent our spectral decomposition and entropy regularization.

Decomposition Module Entropy PSM SMD SWaT UCR Average

Seasonal-Trend High-Low Spectrum

✘ ✘ ✘ – 0.7233 0.7838 0.7006 0.7222 0.7325

✓ ✘ ✘ – 0.7426 0.8355 0.7483 0.7674 0.7735

✘ ✓ ✘ – 0.7361 0.7628 0.7115 0.7911 0.7503

✘ ✘ ✓ ✘ 0.7667 0.8832 0.7626 0.8195 0.8080

✘ ✘ ✓ ✓ 0.7791 0.9081 0.7857 0.8310 0.8259

TTA method also achieves an average improvement of 2.20 %, which 

verifies the effectiveness of the proposed adaptation strategy. These 

findings highlight the significance of our contributions and underscore 

the value of our proposed method in addressing non-stationary time

series.

4.6 . Ablation studies

4.6.1 . Training phase

To assess the effectiveness of each design in our SDA during training, 

we carry out an ablation study on SDA(base) and present the results in 

Table 3. The first line does not utilize any of our designs, instead it uses 

only MLP as the encoder and decoder for reconstruction.

Decomposition module: Based on the MLP-based model, we use 

various decomposition methods as shown in the second to fourth 

line. In the 2nd and 3rd lines, a seasonal-trend decomposition us­

ing STL [66] or a High-Low Pass Filter is employed to replace our 

decomposition module. Compared to them, the employment of decom­

position, as shown in the 4th line, leads to a significant improvement 

in all the datasets. It demonstrates that the proposed Fourier Filter 

conducts effective disentanglement, where the amplitude statistics of 

frequency spectrums from different periods are utilized to exhibit time-

agnostic information. Therefore, the model is able to capture temporal 

patterns underlying in the data and reconstruct non-stationary time

series.

Entropy regularization: Subsequently, to further encourage the 

establishment of correlation between normal steps, the entropy regu­

larization is employed. As a result, the performance is further enhanced 

and surpasses the best baseline, as shown in the last line.

4.6.2 . Test phase

We compare different Test-Time Adaptation (TTA) methods and 

present the results in Table 4. The recent work M2N2 [30] designed 

a TTA method based on trend estimation and updated the model only 

with pseudo-normal instances during inference. We evaluate its perfor­

mance without the point adjustment method, which is provided in the 

second line.

Because M2N2 only uses MLP as the backbone and removes the 

trend component for adaptation, its performance is even worse than 

the SDA(base). Similar to M2N2, we attempt to assign pseudo labels 

based on the threshold and only minimize the reconstruction loss of 

pseudo-normal instances. As indicated in the third row, the performance 

improves on the PSM and SMD datasets due to high precision before 

adaptation. However, on the SWaT dataset, directly using the threshold 

to differentiate normal and abnormal results in performance degradation 

because of numerous misclassified samples. Besides, we also update the 

model with both pseudo normal and abnormal instances, as shown in 

the fourth line. Since the pseudo labels are still allocated by the thresh­

old, the misclassified instances result in decreased performance on the 

PSM and SWaT datasets. On the contrary, high precision and recall on 

the SMD dataset mean few misclassified samples. Thus, the performance 

gets improved.

To address the decrease caused by numerous misclassified samples, 

our proposed TTA method assigns pseudo labels based on the distribu­

tion of anomaly scores. With the defined upper and lower bounds in 

Eq. (10), the model is updated with confident instances, resulting in 

improved performance across all datasets. In addition, learning unseen 

patterns in abnormal instances further enhances the results, as illustrated 

in the last line.
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Table 4 

Results of different test-time adaptation methods. The SDA without TTA is denoted as SDA(base) and the best F1 scores are highlighted in 

bold. SDA(threshold) represents that the assignment of pseudo labels is based on the threshold.

Method Normal Only PSM SMD SWaT Average

Precision Recall F1 Precision Recall F1 Precision Recall F1 F1

SDA(base) – 0.8314 0.7330 0.7791 0.8358 0.9941 0.9081 0.6628 0.9647 0.7857 0.8243

M2N2 [30] ✓ 0.7632 0.7661 0.7478 0.8299 0.9553 0.8882 0.6108 0.8848 0.7227 0.7862

SDA(threshold) ✓ 0.8126 0.7536 0.7820 0.8621 0.9789 0.9168 0.6702 0.9167 0.7743 0.8244

SDA(threshold) ✘ 0.8146 0.7493 0.7806 0.8721 0.9867 0.9259 0.6615 0.8891 0.7586 0.8217

SDA ✓ 0.8199 0.7587 0.7881 0.8638 0.9869 0.9212 0.6777 0.9449 0.7893 0.8329

SDA (ours) ✘ 0.8610 0.7542 0.8041 0.8747 0.9867 0.9273 0.6700 0.9796 0.7958 0.8424

Table 5 

The performance (F1) of different modes 𝑝 in Gaussian 

mixture model.

𝑝 PSM SMD SWaT UCR Average

3 0.8041 0.9273 0.7958 0.8549 0.8455

5 0.8040 0.9250 0.7892 0.8412 0.8398

10 0.6943 0.9243 0.7889 0.8399 0.8118

20 0.6943 0.9243 0.7888 0.8345 0.8105

4.7 . Mixture of Gaussian distributions

We evaluate the impact of using a mixture of Gaussian distributions 

with varying modes (𝑝) for fitting as shown in Table 5, where each 

mode represents a distinct Gaussian distribution. The results indicate 

that the choice of dimensionality has a notable effect on the perfor­

mance. When 𝑝 is less than 3, the existence of samples with extremely 

high scores (greater than 103) causes underfitting, resulting in a nega­

tive upper bound. As the value of 𝑝 increases, the process of data fitting 

becomes more precise, consequently impacting the two Gaussian distri­

butions with the highest weights. As illustrated in Table 5, it is evident 

that with the increase in 𝑝, the performance on all three datasets shows 

a varying degree of decrease. As higher value of 𝑝 leads to overfitting, 

the model updated with fewer instances results in limited performance. 

The trade-off is an important consideration in the process of data fit­

ting. Consequently, we set the value of 𝑝 as 3 in order to achieve the 

best performance.

4.8 . Anomaly score analysis

The visualization of anomaly scores on the SWaT dataset before and 

after TTA is shown in Fig. 4. The x-axis depicts anomaly score values, 

while the y-axis illustrates the corresponding instance counts, with the 

blue and red denoting normal and abnormal instances, respectively. To 

enhance clarity, we omit the portions where the sample count exceeds 

500 and the score exceeds 3.5. Specifically, the distribution of anomaly 

scores before TTA is shown in Fig. 4(a), while Fig. 4(b) illustrates the 

distribution after TTA.

As shown in Fig. 4(a), the distribution of normal instances and ab­

normal instances closely approximates a Gaussian mixture model. Most 

normal instances and abnormal instances are clustered within the first 

two dominant Gaussian distributions, which facilitate the assignment 

of pseudo labels. In addition, the average distance from the threshold 

to all normal instances is 0.2088, while the average distance from the 

threshold to all abnormal instances is 0.5059. Therefore, the disparity 

in anomaly scores between normal and abnormal instances is 0.7147. 

After employing TTA, it is observed that the disparity in anomaly scores 

between normal and abnormal instances increased to 0.9001, as de­

picted in Fig. 4(b). Besides, the anomaly score distribution of both 

normal and abnormal instances becomes more concentrated. The visu­

alizations of other datasets are provided in Fig. 5, which demonstrate 

similar observations. These findings confirm that our proposed TTA 

method successfully amplifies the normal-abnormal distinguishability. 

Furthermore, this enhancement in the anomaly score disparity indicates 

a more robust differentiation capability of the model, allowing for better 

identification of abnormal instances within the dataset.

4.9 . Distribution comparison

We compare different mixed distribution fitting in Fig. 6. We use log-

normal mixture and mixed Gaussian models to fit the anomaly scores. 

As illustrated in Fig. 6, the mixed Gaussian distribution is more suit­

able for our TTA method. Furthermore, as shown in the visualization 

Fig. 4. Visualization of anomaly scores before and after TTA on SWaT dataset. The distribution of anomaly scores before TTA and after TTA are illustrated in Fig. 4(a) 

and Fig. 4(b). After employing TTA, the distinction in anomaly scores between normal and abnormal instances becomes more significant.

Neurocomputing 662 (2026) 131978 

7 



H. Zhang, Y.-F. Zhang, J. Liang et al.

Fig. 5. The visualization of anomaly scores before and after TTA on PSM and SMD dataset. The distributions of anomaly scores before TTA are illustrated in Fig. 5(a) 

and Fig. 5(c), while Fig. 5(b) and Fig. 5(d) illustrate the distributions after TTA. The green dashed line represents the threshold.

Fig. 6. Mixed distribution fitting comparison. Compared to log-normal mixture, 

the mixed Gaussian distribution is more suitable for our TTA method.

in Sec. 4.8, we observe that the log-normal mixture fails to capture 

the underlying patterns of the anomaly scores, which do not align well 

with the actual data distribution. In contrast, the mixed Gaussian model 

demonstrates a tighter fit. This outcome confirms our hypothesis that 

the mixed Gaussian distribution is not only more flexible but also better 

at representing the distinct clusters present in the data.

4.10 . Model efficiency

We provide the entire model efficiency comparison in Table 6. 

Training time represents the time required to train the data for 5 epochs 

with the same batch size. Inference time is the duration needed to pro­

cess the entire test dataset. Compared to the state-of-the art model D3R, 

SDA saves 66.2 % training time and 98.5 % memory across the three 

real-world datasets with superior performance. Since our TTA method 

needs to obtain anomaly scores for all the samples and update the 

model during inference, our inference time is slightly higher than base­

lines. Compared to the substantial enhancement (4.33 %) in detection 

accuracy that we have achieved, the inference time remains afford­

able within the context of the expanding hardware resources of the 

present era. The combination of reduced training time, lower memory 

usage, and enhanced accuracy presents a compelling case for the adop­

tion of our TTA method in practical applications. We anticipate that 

ongoing advancements in hardware will further optimize our model’s 

performance, paving the way for broader implementation in various

domains.

4.11 . Anomaly detection visualization

In Fig. 7, we present the anomaly detection results of different 

methods. Compared to the baselines, our SDA demonstrates superior de­

tection accuracy, once again confirming the effectiveness of our model 

architecture and TTA method. Furthermore, our visualization reveals 

that the proposed approach not only improves detection accuracy but 

also enhances the model’s robustness against various types of anomalies.
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Table 6 

Model Efficiency on real-world multivariate datasets. Training time represents the time required to train the data for 1 epoch with the same batch size. Inference 

time is the duration needed to process the entire test dataset.

Method PSM SMD SWaT

Training (s) Inference (s) Model Size (MB) Training (s) Inference (s) Model Size (MB) Training (s) Inference (s) Model Size (MB)

VAE [62] 189.24 47.61 0.02 157.91 30.90 0.02 49.45 8.27 0.02

DeepSVDD [63] 81.09 17.25 0.01 60.70 12.61 0.01 24.58 3.15 0.01

LSTM-AE [64] 437.55 125.18 0.03 283.61 72.82 0.04 204.58 15.77 0.05

MTAD-GAT [39] 242.78 107.84 1.25 188.52 60.23 1.20 164.35 12.18 1.24

TFAD [24] 390.14 75.12 1.04 315.39 38.54 1.04 282.64 8.97 1.25

A-Transformer [33] 529.47 151.82 37.27 422.43 94.36 28.15 399.07 30.31 27.49

TranAD [25] 275.14 82.49 10.58 153.84 37.62 11.47 89.14 8.25 11.02

PUAD [65] 350.94 137.41 43.81 256.85 78.67 38.27 225.67 18.53 28.14

NPSR [26] 206.78 124.16 15.34 152.58 55.31 11.05 132.16 14.17 9.35

D3R [27] 533.08 280.68 108.46 399.32 104.12 109.35 126.20 25.91 208.68

SDA 177.18 343.57 1.11 136.27 121.25 0.86 84.36 17.13 2.98

Fig. 7. The visualization of anomaly detection results on real-world multivariate datasets. The red markers represent real anomalies. The red shaded area represents 

the detected anomalies.

4.12 . Additional detection results

In order to avoid the influence of SPOT parameters and thresholds 

on the results, we evaluate the methods based on the original anomaly 

scores. Prolonged anomalies receive increased weight, potentially lead­

ing to inaccurate metrics. Thus, we aggregate each anomaly event. An 

anomaly event after aggregation is equivalent to only one timestamp, la­

beled as an anomaly, and scored as the maximum of the original anomaly 

range. We use area under the ROC curve (AUC) to evaluate the anomaly 

scores of each method. The value of AUC ranges between 0.5 and 1, 

with the closer it is to 1.0, the better the method. The results of the 

experiments are shown in Table 7.

4.13 . Hyperparameter analysis

We conduct a series of hyperparameter analysis across three datasets 

and present the experimental results in Fig. 8. We study the number 

of SDA blocks, the length of segments, the weight of entropy regular­

ization and abnormal loss, 𝛼, and test-time learning rate. The results 

show that the number of blocks has a significant impact on the overall 

performance, with a clear trade-off between model complexity and gen­

eralization. The length of segments also plays a crucial role, as different 

datasets have varying temporal patterns. Additionally, we find that the 

weight of entropy constraint and max loss has a non-linear effect on 

the model’s performance, with an optimal value that varies across dif­

ferent datasets. These findings provide valuable insights for fine-tuning 

hyperparameters in real-world applications.

Table 7 

AUC results on real-world multivariate datasets. The higher values represent the 

better performance.

Method PSM SMD SWaT Average

COPOD [55] 0.8526 0.9230 0.7396 0.8384

ECOD [56] 0.8394 0.9220 0.7532 0.8382

OCSVM [57] 0.8708 0.6789 0.5379 0.6959

CBLOF [59] 0.8681 0.9694 0.5378 0.7918

HBOS [60] 0.8150 0.7393 0.8085 0.7876

IForest [34] 0.8892 0.9218 0.7238 0.8450

LODA [58] 0.8619 0.9180 0.6780 0.8193

VAE [62] 0.8583 0.9674 0.5325 0.7861

DeepSVDD [63] 0.8100 0.9187 0.5063 0.7450

LSTM-AE [64] 0.8894 0.9698 0.6255 0.8283

MTAD-GAT [39] 0.9093 0.9443 0.6386 0.8307

TFAD [24] 0.8185 0.9386 0.6966 0.8179

Anomaly Transformer [33] 0.7074 0.7150 0.6638 0.6954

LUAD [8] 0.6914 0.8726 0.7715 0.7859

PUAD [65] 0.8962 0.9148 0.8224 0.8778

NPSR [26] 0.8875 0.9783 0.8561 0.9073

MSAD [61] 0.8962 0.9729 0.8413 0.9035

D3R [27] 0.9223 0.9759 0.8554 0.9179

SDA 0.9358 0.9816 0.8579 0.9251

4.14 . Decomposition visualization

We present the original data, along with the time-variant and time-

invariant components from each dataset in Fig. 9. The red markers 
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Fig. 8. Results of hyperparameter analysis. The better performance means higher F1 score.

Fig. 9. The visualization of decomposition results. The original data, along with the time-variant and time-invariant components from the PSM, SMD, and SWaT 

datasets, are presented from left to right. The red markers represent anomalies.

represent abnormal time steps. To provide a clearer comparison with 

the original data, the displayed results are the outcomes of the first 

Fourier Filter in SDA. As shown in Fig. 9, our Fourier Filter robustly 

extracts the time-invariant and time-variant components. The abnor­

mal pattern becomes more distinctive after decomposition. Compared 

to the normal instances, abnormal patterns exhibit a significantly 

greater degree of irregularity, making them challenging to reconstruct. 

Besides, owing to the constraints of entropy regularization, abnor­

mal steps encounter difficulty in establishing correlations with normal 

steps within the time-variant component, leading to higher anomaly 

scores. Therefore, our approach demonstrates its effectiveness in iso­

lating abnormal patterns, which are characterized by increased irreg­

ularity and reduced correlation with normal instances. This spectral 

decomposition module provides a clearer understanding of the under­

lying structures in the data, enabling enhanced anomaly detection and

interpretation.

5 . Conclusion

This paper proposes a novel unsupervised time series anomaly detec­

tion algorithm, named SDA. We design a spectral decomposition model 

and a test-time adaptation method to deal with the non-stationary data 

in the real world. Our model decomposes time series into time-variant 

and time-invariant components to capture the underlying temporal pat­

terns for reconstruction. Besides, we introduce an entropy regularization 

to encourage the establishment of relationships between normal time 

steps. To address the distribution gap between training and inference, 

our adaptation method enhances the distinction between normal and 

abnormal instances during inference. Furthermore, our algorithm has 

been extensively evaluated on various real-world datasets, demonstrat­

ing superior and effective performance in detecting anomalies. As our 

TTA method is currently offline, we plan to explore online options in the 

future. In summary, the proposed method exhibits robustness in identify­

ing anomalies in the presence of complex and evolving patterns, making 

it a valuable tool for practical applications where non-stationary data is 

prevalent.
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