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HIGHLIGHTS

« We propose a spectral decomposition based approach for unsupervised time series anomaly detection, which reduces the complexity of reconstruction on non-
stationary time series. Additionally, we introduce an entropy regularization to promote the model in fostering strong correlations between normal time steps,
thereby enhancing the distinguishability between normal and abnormal instances.

+ We design a new test-time adaptation (TTA) method for unsupervised time series anomaly detection to address the distribution gap between training and inference.
During inference, we assign pseudo labels based on the distribution of anomaly scores and expand the gap between the scores of different instances to improve the
performance.

» Our SDA achieves superior performance while cutting training time by two-thirds and using a model size of less than 2MB across three real-world benchmarks.
Extensive ablation experiments verify the efficiency of each component of our method.

ARTICLE INFO ABSTRACT

Communicated by R. Zhu Unsupervised anomaly detection in time series data is crucial for identifying unusual patterns across various
fields. However, existing methods often struggle when dealing with non-stationary time series, constraining their
practical application. In this paper, we delve into the challenges surrounding non-stationary time series and put

I;ieﬂ(;reﬁés forward a novel framework along with a test-time adaptation strategy. When it comes to the framework, non-

Anomaly detection stationary time series pose difficulties for modeling due to their blend of time-invariant statistics and evolving

Test-time adaptation temporal dependencies. To address this issue, we explicitly break down the input into variant and invariant
components through spectral analysis, with the aim of separately modeling these aspects. Besides, the absence
of anomalies during training leads to significant distribution discrepancies between training and testing phases,
which is ignored by most existing methods. To deal with this, we propose a flexible test-time adaptation strategy
to further amplify the normal-abnormal distinguishability. Our proposed Spectral Decomposition and Adaptation
method (SDA) outperforms existing detection frameworks in terms of effectiveness and efficiency. Specifically,
compared to state-of-the-art models, SDA achieves superior performance while reducing training time by 66.2 %
and memory usage by 98.8 %.

1. Introduction malfunctions, which are crucial for a broad variety of real-world appli-

cations, such as finance, healthcare, transportation, manufacturing and
other fields [4,10-14]. An anomaly is also referred to as an outlier or
novelty, denoting an observation that is deemed unusual, irregular, in-
consistent, or unexpected [15-17]. However, anomalies are usually rare
and hidden by vast normal points, making the data labeling hard and

Time series analysis encompasses a wide range of tasks, including
forecasting [1-3], classification [4-6], and anomaly detection [7,8].
Time series anomaly detection aims to detect abnormal patterns or
events in the sequence data collected over time [9]. It facilitates early
warnings and precautions in advance that potentially prevent large
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Fig. 1. Average model efficiency comparison over three benchmarks (PSM, SMD,
and SWaT). Our SDA achieves the best performance with a compact model size
and low time cost compared to other baselines.

expensive. Therefore, unsupervised time series anomaly detection is an
essential problem in data mining and industrial applications(Fig. 1 ).

Many unsupervised methodologies entail computing of an anomaly
score at each time step. The score is subsequently compared to a thresh-
old in order to determine whether a time step is an anomaly or not.
Researchers have designed various methods to deal with the issue of the
computation of anomaly scores, which can be categorized into three
main groups: dissimilarity-based methods [18-20], prediction-based
methods [21-23] and reconstruction-based methods [24-27]. Recently,
reconstruction-based methods have been developing rapidly due to their
ability to handle complex data by integrating with machine learning
models, as well as their interpretability in identifying anomalies.

However, due to the inherent non-stationarity in real-world time se-
ries, there still exist some challenges in practice. Non-stationary time
series are characterized by time-variant statistics and temporal depen-
dencies across various periods [28,29]. This dynamic nature often results
in a substantial distribution gap between different periods, making ac-
curate modeling and reconstruction a non-trivial task. Additionally, the
distribution gap between training and inference is also crucial to the
ultimate performance of unsupervised time series anomaly detection,
which is ignored by most existing methods [24,26,27]. A recent work
[30] has attempted to handle the "new normal” instances within the test
set, which removes the trend component and only updates model param-
eters with the remainder. However, rare abnormal instances may contain
unseen patterns that could offer more valuable knowledge compared to
commonplace normal points.

In this paper, we propose a novel Spectral Decomposition and
Reconstruction model as well as a new Test-Time Adaptation method
(SDA) to address these issues. The proposed SDA model is composed of
several stackable SDA Blocks. To deal with non-stationary time series,
each SDA Block aims to decompose a sequence into time-variant and
time-invariant components through spectral analysis. Through our spec-
tral decomposition, simple multi-layer perceptrons (MLPs) can be used
to reconstruct sequential associations, thereby significantly reducing
model complexity significantly. Moreover, for time-variant components
that exhibit strong local dependencies, we introduce an entropy reg-
ularization to promote normal time steps forming strong associations
with their nearby neighbors. In order to address the distribution gap
between training and inference, we assign pseudo labels based on the
distribution of anomaly scores during inference. Subsequently, the gap
between scores of pseudo-normal and pseudo-abnormal instances will be
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further amplified, leading to better performance. Through our adapta-
tion method, SDA can leverage patterns underlying in both abnormal
and normal data. Consequently, our SDA effectively performs unsu-
pervised anomaly detection in non-stationary time series and exhibits
robustness to distribution shifts between the training and test sets.
Additionally, due to MLP-based model and parameter-free decomposi-
tion, our SDA achieves superior performance compared to the baselines
with reduced model size and training time.
The contributions of our paper are summarised as follows:

We propose a spectral decomposition based approach for unsuper-
vised time series anomaly detection, which reduces the complexity
of reconstruction on non-stationary time series. Additionally, we in-
troduce an entropy regularization to encourage the model to foster
strong correlations between normal time steps, thereby enhancing
the distinguishability between normal and abnormal instances.

We design a new test-time adaptation (TTA) method for unsuper-
vised time series anomaly detection to address the distribution gap
between training and inference. During inference, we assign pseudo
labels based on the distribution of anomaly scores and expand
the gap between the scores of different instances to improve the
performance.

Our SDA achieves superior performance while cutting training time
by two-thirds and using a model size of less than 2MB across three
real-world benchmarks. Extensive ablation experiments verify the
efficiency of each component of our method.

2. Related work

Unsupervised time series anomaly detection. Unsupervised time-
series anomaly detection methods aim to identify observations that
significantly deviate from normal patterns without relying on labeled
data [31-33]. Early approaches include classical outlier detection algo-
rithms, such as Local Outlier Factor (LOF)[18] and Isolation Forest[34,
35], which estimate anomaly scores based on the density or isolation
of data points in a feature space. Variants like Deep Isolation Forest
(DIF) combine neural networks with isolation mechanisms to improve
performance[36]. Traditional one-class classification techniques (e.g.,
One-Class SVM/SVDD) have also been applied by learning a decision
boundary around normal data[37]. Modern deep learning approaches
for time-series anomalies can be broadly categorized by their learning
objectives: Forecasting-based methods [21-23] rely on detecting anoma-
lies by comparing the prediction of the subsequent value within the
time series with the actual value. Density estimation-based methods
[18,38] transform time series data into a feature space and estimate
the probability density function of normal data points. Reconstruction-
based methods [24,27,32,33,39], reconstruct normal time-series data
and identify abnormal time-series data with high reconstruction errors.
Another line of work uses contrastive learning to learn discriminative
representations: DCdetector[40] is a recent method that foregoes explicit
forecasting/reconstruction and instead trains a model on self-supervised
tasks. Similarly, one-class neural networks have been adapted for time
series: for example, COUTA[41] learns a robust boundary of normal-
ity by penalizing uncertain predictions and by generating synthetic
anomalies to inform the model. These methods are effective in capturing
complex patterns, but may be sensitive to the choice of reconstruction
models. Additionally, they are also computationally expensive. To han-
dle non-stationary time series, [27] propose a dynamic decomposition
reconstruction method based on transformers. However, it only recon-
structs the stable component of input, which limits its performance in the
real-world time series. In contrast, SDA proposes a novel spectral decom-
position method, which can better understand the underlying dynamics
and identify anomalies more efficiently. Additionally, with MLP-based
modules, SDA significantly reduces the training time and model size.

Test-time adaptation. In order to mitigate the performance degra-
dation caused by distribution shifts, a range of fully TTA methods
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[42-44] have been developed. In the broader machine learning litera-
ture, representative approaches include entropy minimization strategies,
such as Tent[43], which adjust model parameters to make predictions
more confident on test samples, and pseudo-label-based self-training
approaches[45-47], which iteratively update the model using test in-
stances with high-confidence predictions. These methods have been
extensively explored in computer vision tasks such as image classi-
fication and segmentation, showing strong robustness under domain
shifts. A recent work [30] has attempted to employ TTA methods in
unsupervised time series anomaly detection by denormalizing the input
and minimizing the reconstruction loss of the pseudo-normal instances.
However, using moving average to estimate the trend may cause ex-
tra reconstruction errors. Besides, updating only with all pseudo-normal
instances can also introduce bias. In contrast, SDA designs a new TTA
strategy using both pseudo-normal and pseudo-abnormal instances for
model updating, thereby expanding the gap between the scores of the
normal and abnormal instances.

3. Proposed method

Preliminary: An input of multivariate time series anomaly detec-
tion is denoted by x = [x(V,x®, ... x(M] € R"™¢, where n is the length
of timestamps, ¢ is the number of channels, and x*) represents the kth
instance. The task is to produce an output vector y = [y, y@, ..., y™] e
R", where ¥ e {0,1} denotes whether the kth timestamp is an
anomaly.

Overview: The overall SDA framework is shown in Fig. 2. We
propose a model architecture for spectral decomposition and recon-
struction. The model is composed of N SDA Blocks. Each SDA Block is
designed to decompose and reconstruct the non-stationary time series.
Inspired by [48], a residual structure is employed to capture hierarchical
dynamics and facilitate deep decomposition. The detailed model archi-
tecture is shown in Fig. 3(a). During the training phase, the model is
trained adhering to the reconstruction loss and entropy regularization.
During the test phase, the model allocates pseudo labels to the test sam-
ples in terms of the anomaly score. And a mixture of Gaussians is adopted
for TTA, which confers an advantage in augmenting the distinction be-
tween anomaly scores of normal and abnormal samples. The overall SDA
framework results in improved performance for unsupervised anomaly
detection.

3.1. SDA block

3.1.1. Spectral decomposition:

We adopt a divide-and-conquer strategy to decompose a complex
non-stationary time series into various dynamic factors and then recon-
struct each independent component separately. By breaking down time
series into time-invariant and time-variant components, the model can

Training Phase

| Entropy Regularization |

! minimize

v
Training Instances
[

Reconstruction

-—
- >

minimize l

\ Reconstruction Loss |

Neurocomputing 662 (2026) 131978

better learn the underlying dynamics and identify anomalies more ef-
fectively. Specifically, we perform the Fast Fourier Transform (FFT) of
each input, to compute the average amplitude of each spectrum S =
{0,1,...,[n/2]}, and order them based on their respective amplitudes.
We select the upper a percentile spectrums, encompassing dominant
spectrums shared across all subsequences and reflecting time-invariant
dynamics inherent in the dataset. The remaining spectrums constitute
the distinctive elements for varying subsequences during different pe-
riods. Consequently, we partition the spectrum set S into S, and its
complementary set Ea. Then the decomposition outputs x“* and x™
are obtained by employing inverse FFT for further reconstruction. The
input of the ith SDA Block is denoted as x; € R"*“. As shown in Fig. 3(a),
the decomposition process is formulated as follows:

x;, xﬁ"” = Fourier Filter(x;). (€8]
3.1.2. Reconstruction modules:

We introduce two separate MLP-based modules to reconstruct time-
varying and time-invariant components, respectively.

Time-invariant reconstruction module: The module is designed to
learn the globally shared dynamics, which model the long-term temporal
patterns for reconstruction. We use the MLP as the Encoder and Decoder
in the module. The complete reconstruction process is depicted in the
following formula:

z"" = Encoder(x™"), 2" = Decoder(z""). (@)

Time-variant reconstruction module: The time-variant dynamics
change continuously and present a greater level of complexity compared
to the time invariant component. Hence, a self-attention mechanism is
employed in preparation for subsequent encoding in the Time-variant
Reconstruction Module. To reduce the computational complexity, the in-
put x"" is first divided into m = [@J + 1 patches X e R>¢ of
length /, where s represents the non-overlapping stride between adja-
cent patches. Before dividing, s repeated numbers of the last time step
value are padded to the end of the original sequence. Then, we calculate
self-attention in each patch as follows:

_ var Qo K |4
[Qp,Kp,V]—xp [VV[J ,VVP ,VV[J 1
KT
Correlation : T, = Softmax(u

m

), 3)
var _
X = (T, V),
where Q,.K,.V, € R~ represent the query, key, and value.
W,,Q, WPK, WpV € R represent the learnable projection matrices for
0,.K,,V,, respectively. T, € R denotes the learned correlations across

Voo
time steps within the pth patch. And f(-) is a linear layer for mapping.

Test Phase

Reconstruction Loss I

Test Instances

ekl i

T ; maximize

Reconstruction

Normal

] I Abnormal

l f minimize

Reconstruction Loss

Fig. 2. The overview of SDA. During training, the model decomposes and reconstructs the input from the training set under the constraints of reconstruction loss and
the proposed entropy regularization. During test, we employ a Gaussian mixture model to fit the anomaly scores of normal and abnormal instances and expand the

gap between them to make anomalies easier to be detected.
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(b) Test-Time Adaptation

Fig. 3. (a) Model architecture: Our SDA is composed of N stackable SDA Blocks and each SDA Block contains a Fourier Filter, a Time-Variant Reconstruction Module
and a Time-invariant Reconstruction Module. (b) Test-Time adaptation: The anomaly score of all instances resembles a mixture of Gaussian distributions. As shown
in the upper plot, we identify pseudo-normal instances (the dark blue shaded area) and pseudo-abnormal instances (the dark red shaded area) by setting two bounds
U and L. Our TTA strategy is to expand the gap between their scores during inference.

We obtain the output X" = [Eg‘", ,?;"”, ,Yﬁl‘”]. Similar to the Time-
invariant Reconstruction Module, we also employ MLP as the Encoder
and Decoder. The subsequent reconstruction process is depicted in the

following formula:

z"" = Encoder(x"?"), '*" = Decoder(z"*"). (€)]

In general, the different modules achieve reconstruction of distinct
components respectively:

vary, fcﬁ”” = TimeInvRec(x;"). 5)

%7“" = TimeVarRec(x;

X

The final reconstructed data &%; is the sum of the outputs de-
rived from both Time-invariant Reconstruction Module and Time-variant
Reconstruction Module. Meanwhile, the residual x,, is fed to next SDA
Block for further decomposition and reconstruction. The outputs are
achieved as follows:

R =RV 4R X = XV - R (6)
It is noted that both reconstruction modules are primarily based on MLP,
which significantly reduces the model size compared to transformer-
based models.

3.2. Reconstruction with entropy regularization

Following previous work [27,33], we minimize the reconstruction
loss L., during training. Due to the intricate nature of time variant
components, which encompass detailed patterns and demonstrate strong
local dependencies, normal time steps tend to form more robust corre-
lations with the nearest normal steps within the patch. By contrast, it
is harder for anomalous time steps to establish strong correlations with
other normal steps. Thus, we further introduce an entropy regularization
loss to make normal time steps foster close associations with their local
neighbors as much as possible, as the training set only contains normal

samples. The entropy regularization loss is defined as:

b4

M=

1 . .
[’em = N 4 _TI;IOgT‘;’ 7

i 1

I p

where le represents the pth correlation in ith Block. Consequently, we
minimize the entropy regularization along with the reconstruction loss
during training. The specific training loss is:

L =L + 2 Lo 8

train recon ent

where A, is the weight of the entropy regularization.

3.3. Anomaly detection with test-time adaptation

With the assistance of our SDA model, the majority of abnormal in-
stances can be identified through the anomaly score. The score of each
instance x( is obtained through the reconstruction error between test
samples and their respective reconstructions:

c
Score(x) = 1 Z (x0D) — )?(i'j))z. (C)]
c o

To further increase the the disparity between normal and abnormal
instances, we minimize the reconstruction loss of pseudo-normal in-
stances, denoted as L,,, and maximize the reconstruction loss of
pseudo-abnormal instances, denoted as £,,,. However, the allocation of
pseudo labels is challenging in unsupervised time series anomaly detec-
tion. In our empirical studies, we noted that the distribution of normal
instances and abnormal instances closely resembles a Gaussian mixture
model, akin to the upper plot in Fig. 3(b).! Although most anomalies
are detected by the threshold, it is typical for certain abnormal in-
stances to escape accurate differentiation because of low anomaly scores.
Furthermore, some normal instances may be erroneously classified as

1 We visualize the anomaly score distribution for all instances in Sec. 4.8.
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anomalies due to the elevated anomaly scores. Therefore, directly assign-
ing pseudo labels based on the threshold may lead to a significant drop
in performance due to numerous misclassified instances. To address this
issue, we first fit a Gaussian mixture model with p modes based on the
anomaly scores of all test samples. Then the first two dominant modes
(N (1, 01) and N, (u,, 6,)) are selected as the distributions of normal in-
stances and abnormal instances, respectively. Next, we define the upper
bound U and lower bound L as follows:

L=y +o0;; U=y, —o,. 10$)

Instances with anomaly scores less than L are displayed in the dark blue
shaded area in the upper plot of Fig. 3(b), labeled as pseudo-normal in-
stances. Conversely, instances with scores greater than U, are labeled
as pseudo-abnormal instances, as shown in the dark red shaded area. By
introducing U and L, the model can update with samples of high con-
fidence without label. The specific loss functions during inference are
formulated as follows:

n c
Loor = n_lc Z z 1(Score(x?) < L)(x") — A(i’j))z,
i=1 j=1

188 . o ) an
Lipn = — Z z 1(Score(xV) > U)(xU) — £y
nc
i=1 j=1
[:test = Enor - }’abn : S(Eabn)s

where L, is the final loss during testing, 4., is the weight of £, and
S represents the sigmoid operation for avoiding disruption caused by
extreme values. After adaptation, the anomaly scores of real normal and
abnormal instances will differ more significantly, making them easier to
distinguish.

4. Experiments
4.1. Datasets

We evaluate SDA extensively on three real-world multivariate
datasets: Pooled server metrics dataset: The Pooled Server Metrics
(PSM) dataset is proposed by eBay and consists of 26 dimensional data
captured internally from application server nodes [49]. Server machine
dataset: The Server Machine Dataset (SMD) is a 5-week-long server sta-
tus log dataset, which is collected by large Internet company. It contains
performance metrics from servers with 38 dimensions [31]. Secure wa-
ter treatment dataset: The Secure Water Treatment (SWaT) dataset is a
reduced representation of a real industrial water treatment plant and has
51 different values in an observation [50]. HexagonML (UCR) dataset:
This is a dataset of multiple univariate time series that was used in the
KDD 2021 Cup [51]. We include only the datasets obtained from natural
sources (the InternalBleeding and ECG datasets). Since Fourier trans-
form requires continuous signals, we follow [27] and do not employ MSL
(Mars Science Laboratory rover) and SMAP (Soil Moisture Active Passive
satellite) [22]. The statistical details of these datasets are provided in
Table 1. We split the training data into 80 % for training and 20 % for
validation. Besides, anomalies are only present in the testing data.

4.2. Metrics

For performance evaluation, we use precision, recall, and F1 score
in our main experiments and ablation analysis. The point adjustment

Table 1

Statistics of the datasets.
Dataset Training Test Anomaly Anomaly Frequency

Size Size Durations Rate

PSM 132,481 87,841 178,861 0.2776 1 minute
SMD 23,688 23,689 373,161 0.1565 1 minute
SwaT 6840 7500 37599 0.1263 1 minute
UCR 1600 5900 127358 0.0188 -
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method has been widely used in previous work [33,39,52]. However,
as [27,53] pointed out, it is unreasonable and creates the illusion of
progress. Therefore, we employ the recently proposed evaluation mea-
sures based on affiliation [54], which are a theoretically grounded,
robust and interpretable extensions to precision/recall metrics.

4.3. Baselines

We extensively compare our method with 17 baselines for com-
prehensive evaluations, including the probability-based methods:
COPOD [55], ECOD [56]; the linear transformation-based methods:
OCSVM [57]; the outlier-based methods: IForest [34], LODA [58]; the
proximity-based methods: CBLOF [59], HBOS [60], and MSAD [61];
the neural network-based methods: VAE [62], DeepSVDD [63], LSTM-
AE [64], MTAD-GAT [39], TFAD [24], Anomaly Transformer [33],
PUAD [65], LUAD [8], NPSR [26] and D3R [27]. All baselines are based
on our runs or sourced from previous work [27], We employ official
or open-source implementations published on GitHub and follow the
configurations recommended in their papers.

4.4. Implementation details

In our experiment, the sliding window has a fixed size of 64 for all
datasets. We use grid search to obtain the best SPOT parameters for each
dataset and record the results with the highest F1 scores. All experiments
are performed on an Ubuntu Server with a 12th Gen Intel(R) Core(TM)
i9-12900 K @ 3.60 GHz processor and an NVIDIA GeForce RTX 4090
Graphics Card. For reproducibility, we list detailed hyperparameters of
model structure below and report the following best hyperparameters
for our method:

1. For PSM, we train for 8 epochs, with a learning rate of 1.0xe~3, a
weight decay of 1.0x e, and the weight of entropy loss 4., set to
0.006. Besides, the length of patch is set to 16 and the number of
SDA Blocks is 2. In Fourier Filter, the « is set to 0.2. During testing,
we set the learning rate to 5.0 X e~> and the maximum loss weight
Amax to 1.0. And we set the dimensionality n of the multivariate
Gaussian distribution to 3.

2. For SMD, we train for 8 epochs, with a learning rate of 1.0xe ™3, a
weight decay of 1.0 x e™*, and the weight of entropy loss Ay, is set
to 1.0. Besides, the length of patch is set to 32 and the number of
SDA Blocks is 2. In Fourier Filter, the a is set to 0.1.During testing,
we set the learning rate to 5.0 X e™* and the maximum loss weight
Amax to 1.0. And we set the dimensionality n of the multivariate
Gaussian distribution to 3.

3. For SWaT, we train for 8 epochs, with a learning rate of 1.0 x e=,
a weight decay of 1.0 x e™*, and the weight of entropy loss A, set
to 0.7. Besides, the length of patch is set to 8 and the number of
SDA Blocks is 3. In Fourier Filter, the a is set to 0.3.During testing,
we set the learning rate to 7.0 X e™* and the maximum loss weight
Amax 10 0.08. And we set the dimensionality » of the multivariate
Gaussian distribution to 3.

4. For UCR, we train for 8 epochs, with a learning rate of 1.0xe™3, a
weight decay of 1.0 x e™*, and the weight of entropy loss Ay, is set
to 1.0. Besides, the length of patch is set to 8 and the number of
SDA Blocks is 3. In Fourier Filter, the a is set to 0.1.During testing,
we set the learning rate to 5.0 X e™* and the maximum loss weight
Amax to 0.08. And we set the dimensionality » of the multivariate
Gaussian distribution to 3.

4.5. Main results

The SDA without TTA is denoted as SDA(base). As shown in
Table 2, both SDA(base) and SDA outperform all the baselines across
three real-world datasets, which verifies the superiority of our method.
Specifically, SDA achieves the best F1 performance with an average im-
provement of 4.33 % compared to the strongest baseline. Besides, our
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Results on real-world multivariate datasets. The higher values for all metrics represent the better performance, and the best F1 scores are highlighted in bold. The
SDA without TTA is denoted as SDA(base).

Method PSM SMD SWaT UCR Average
P R F1 P R F1 P R F1 P R F1 F1
COPOD [55] 0.7602 0.3175 0.4479 0.6676 0.1366 0.2268 0.9876 0.1180 0.2108 0.7251 0.2208 0.3385 0.3059
ECOD [56] 0.7460 0.3384 0.4656 0.7398 0.1615 0.2651 0.9761 0.1151 0.2059 0.6279 0.4592 0.5305 0.3667
OCSVM [57] 0.8761 0.4744 0.6155 0.0000 0.0000 0.0000 0.6196 0.7558 0.6810 0.5978 0.8687 0.7082 0.5011
CBLOF [59] 0.5990 0.9845 0.7449 0.8667 0.3352 0.4834 0.6308 0.7091 0.6677 0.4772 0.8525 0.6119 0.6269
HBOS [60] 1.0000 0.0654 0.1228 0.5628 0.8007 0.6610 0.5771 0.8049 0.6722 0.6529 0.6683 0.6605 0.5291
IForest [34] 1.0000 0.0335 0.0648 1.0000 0.0937 0.1713 0.6127 0.6280 0.6203 0.5394 0.8654 0.6646 0.3802
LODA [58] 0.9266 0.4017 0.5605 0.5902 0.6618 0.6240 0.6117 0.7014 0.6535 0.6184 0.5526 0.5837 0.6053
VAE [62] 0.6221 0.8772 0.7280 0.8209 0.4349 0.5686 0.6355 0.7218 0.6759 0.7468 0.6113 0.6723 0.6611
DeepSVDD [63] 0.7405 0.5064 0.6015 0.6498 0.6477 0.6488 0.5911 0.9353 0.7244 0.7853 0.7144 0.7482 0.6806
LSTM-AE [64] 0.7511 0.7586 0.7548 0.8496 0.4349 0.5753 0.6018 0.7219 0.6564 0.7354 0.6295 0.6783 0.6662
MTAD-GAT [39] 0.7990 0.6014 0.6863 0.8590 0.6769 0.7571 0.6590 0.7751 0.7123 0.7917 0.7255 0.7572 0.7282
TFAD [24] 0.7914 0.7163 0.7520 0.5632 0.9783 0.7149 0.6038 0.8196 0.6953 0.6556 0.6956 0.6750 0.7092
Anomaly Transformer [33] 0.5201 0.8504 0.6455 1.0000 0.0319 0.0619 0.5541 0.5994 0.5759 0.4567 0.5981 0.5179 0.4503
LUAD [8] 0.7962 0.7214 0.7569 0.7352 0.9516 0.8295 0.6914 0.8726 0.7715 0.6681 0.8366 0.7429 0.7751
PUAD [65] 0.8319 0.7167 0.7675 0.7471 0.9559 0.8387 0.7165 0.8448 0.7754 0.7779 0.7193 0.7475 0.7871
NPSR [26] 0.6296 0.8537 0.7247 0.8249 0.9603 0.8875 0.7501 0.8238 0.7852 0.7414 0.8019 0.7705 0.7919
MSAD [61] 0.7832 0.7211 0.7805 0.8612 0.9257 0.8923 0.7288 0.7951 0.7605 0.7045 0.8217 0.7586 0.7979
D3R [27] 0.6294 0.9619 0.7609 0.7715 0.9926 0.8682 0.7206 0.8529 0.7812 0.7915 0.8351 0.8127 0.8057
SDA(base) 0.8314 0.7330 0.7791 0.8358 0.9941 0.9081 0.6628 0.9647 0.7857 0.7983 0.8664 0.8310 0.8259
SDA 0.8610 0.7542 0.8041 0.8747 0.9867 0.9273 0.6700 0.9796 0.7958 0.8211 0.8917 0.8549 0.8455
Table 3

Ablation studies on SDA(base). F1 scores are reported, with higher values indicating better performance.
Seasonal-Trend and High-Low represent seasonal-trend decomposition and High-Low Pass Filter. Spectrum

and Entropy represent our spectral decomposition and entropy regularization.

Decomposition Module Entropy  PSM SMD SWaT UCR Average
Seasonal-Trend  High-Low  Spectrum

X X X - 0.7233  0.7838  0.7006  0.7222  0.7325
v X X 0.7426  0.8355  0.7483  0.7674  0.7735
X v X - 0.7361  0.7628 07115  0.7911  0.7503
X X 4 X 0.7667  0.8832  0.7626  0.8195  0.8080
X X v v 0.7791  0.9081 0.7857 0.8310  0.8259

TTA method also achieves an average improvement of 2.20 %, which
verifies the effectiveness of the proposed adaptation strategy. These
findings highlight the significance of our contributions and underscore
the value of our proposed method in addressing non-stationary time
series.

4.6. Ablation studies

4.6.1. Training phase

To assess the effectiveness of each design in our SDA during training,
we carry out an ablation study on SDA(base) and present the results in
Table 3. The first line does not utilize any of our designs, instead it uses
only MLP as the encoder and decoder for reconstruction.

Decomposition module: Based on the MLP-based model, we use
various decomposition methods as shown in the second to fourth
line. In the 2nd and 3rd lines, a seasonal-trend decomposition us-
ing STL [66] or a High-Low Pass Filter is employed to replace our
decomposition module. Compared to them, the employment of decom-
position, as shown in the 4th line, leads to a significant improvement
in all the datasets. It demonstrates that the proposed Fourier Filter
conducts effective disentanglement, where the amplitude statistics of
frequency spectrums from different periods are utilized to exhibit time-
agnostic information. Therefore, the model is able to capture temporal
patterns underlying in the data and reconstruct non-stationary time
series.

Entropy regularization: Subsequently, to further encourage the
establishment of correlation between normal steps, the entropy regu-
larization is employed. As a result, the performance is further enhanced
and surpasses the best baseline, as shown in the last line.

4.6.2. Test phase

We compare different Test-Time Adaptation (TTA) methods and
present the results in Table 4. The recent work M2N2 [30] designed
a TTA method based on trend estimation and updated the model only
with pseudo-normal instances during inference. We evaluate its perfor-
mance without the point adjustment method, which is provided in the
second line.

Because M2N2 only uses MLP as the backbone and removes the
trend component for adaptation, its performance is even worse than
the SDA(base). Similar to M2N2, we attempt to assign pseudo labels
based on the threshold and only minimize the reconstruction loss of
pseudo-normal instances. As indicated in the third row, the performance
improves on the PSM and SMD datasets due to high precision before
adaptation. However, on the SWaT dataset, directly using the threshold
to differentiate normal and abnormal results in performance degradation
because of numerous misclassified samples. Besides, we also update the
model with both pseudo normal and abnormal instances, as shown in
the fourth line. Since the pseudo labels are still allocated by the thresh-
old, the misclassified instances result in decreased performance on the
PSM and SWaT datasets. On the contrary, high precision and recall on
the SMD dataset mean few misclassified samples. Thus, the performance
gets improved.

To address the decrease caused by numerous misclassified samples,
our proposed TTA method assigns pseudo labels based on the distribu-
tion of anomaly scores. With the defined upper and lower bounds in
Eq. (10), the model is updated with confident instances, resulting in
improved performance across all datasets. In addition, learning unseen
patterns in abnormal instances further enhances the results, as illustrated
in the last line.
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Results of different test-time adaptation methods. The SDA without TTA is denoted as SDA(base) and the best F1 scores are highlighted in
bold. SDA(threshold) represents that the assignment of pseudo labels is based on the threshold.

Method Normal Only  PSM SMD SWaT Average
Precision Recall F1 Precision  Recall F1 Precision  Recall F1 F1
SDA(base) - 0.8314 0.7330 0.7791 0.8358 0.9941 0.9081 0.6628 0.9647 0.7857 0.8243
M2N2 [30] v 0.7632 0.7661  0.7478  0.8299 0.9553  0.8882  0.6108 0.8848  0.7227  0.7862
SDA(threshold) v 0.8126 0.7536 0.7820 0.8621 0.9789 0.9168 0.6702 0.9167 0.7743 0.8244
SDA(threshold) X 0.8146 0.7493 0.7806 0.8721 0.9867 0.9259 0.6615 0.8891 0.7586 0.8217
SDA v 0.8199 0.7587 0.7881 0.8638 0.9869 0.9212 0.6777 0.9449 0.7893 0.8329
SDA (ours) X 0.8610 0.7542  0.8041  0.8747 0.9867  0.9273  0.6700 0.9796  0.7958  0.8424
Table 5 while the y-axis illustrates the corresponding instance counts, with the

The performance (F1) of different modes p in Gaussian
mixture model.

P PSM SMD SWaT UCR Average
3 0.8041 0.9273 0.7958 0.8549 0.8455
0.8040 0.9250 0.7892 0.8412 0.8398
10 0.6943 0.9243 0.7889 0.8399 0.8118
20 0.6943 0.9243 0.7888 0.8345 0.8105

4.7. Mixture of Gaussian distributions

We evaluate the impact of using a mixture of Gaussian distributions
with varying modes (p) for fitting as shown in Table 5, where each
mode represents a distinct Gaussian distribution. The results indicate
that the choice of dimensionality has a notable effect on the perfor-
mance. When p is less than 3, the existence of samples with extremely
high scores (greater than 103) causes underfitting, resulting in a nega-
tive upper bound. As the value of p increases, the process of data fitting
becomes more precise, consequently impacting the two Gaussian distri-
butions with the highest weights. As illustrated in Table 5, it is evident
that with the increase in p, the performance on all three datasets shows
a varying degree of decrease. As higher value of p leads to overfitting,
the model updated with fewer instances results in limited performance.
The trade-off is an important consideration in the process of data fit-
ting. Consequently, we set the value of p as 3 in order to achieve the
best performance.

4.8. Anomaly score analysis

The visualization of anomaly scores on the SWaT dataset before and
after TTA is shown in Fig. 4. The x-axis depicts anomaly score values,

500 .
1
| Threshold=0.2482 Label
E mmm Normal
400 i Abnormal
i
1
) |
300 ;
= i
© I
+ I
%] ]
<200 !
* i Distance(normal)=0.2088
i Distance(abnormal)=0.5059
i Gap=0.7147
100 i
i
N
1
0 b . =

0.0 0.5 1.0 1.5 2.0 2.5
Anomaly Score
(a) Visualization before TTA

blue and red denoting normal and abnormal instances, respectively. To
enhance clarity, we omit the portions where the sample count exceeds
500 and the score exceeds 3.5. Specifically, the distribution of anomaly
scores before TTA is shown in Fig. 4(a), while Fig. 4(b) illustrates the
distribution after TTA.

As shown in Fig. 4(a), the distribution of normal instances and ab-
normal instances closely approximates a Gaussian mixture model. Most
normal instances and abnormal instances are clustered within the first
two dominant Gaussian distributions, which facilitate the assignment
of pseudo labels. In addition, the average distance from the threshold
to all normal instances is 0.2088, while the average distance from the
threshold to all abnormal instances is 0.5059. Therefore, the disparity
in anomaly scores between normal and abnormal instances is 0.7147.
After employing TTA, it is observed that the disparity in anomaly scores
between normal and abnormal instances increased to 0.9001, as de-
picted in Fig. 4(b). Besides, the anomaly score distribution of both
normal and abnormal instances becomes more concentrated. The visu-
alizations of other datasets are provided in Fig. 5, which demonstrate
similar observations. These findings confirm that our proposed TTA
method successfully amplifies the normal-abnormal distinguishability.
Furthermore, this enhancement in the anomaly score disparity indicates
a more robust differentiation capability of the model, allowing for better
identification of abnormal instances within the dataset.

4.9. Distribution comparison

We compare different mixed distribution fitting in Fig. 6. We use log-
normal mixture and mixed Gaussian models to fit the anomaly scores.
As illustrated in Fig. 6, the mixed Gaussian distribution is more suit-
able for our TTA method. Furthermore, as shown in the visualization
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(b) Visualization after TTA

Fig. 4. Visualization of anomaly scores before and after TTA on SWaT dataset. The distribution of anomaly scores before TTA and after TTA are illustrated in Fig. 4(a)
and Fig. 4(b). After employing TTA, the distinction in anomaly scores between normal and abnormal instances becomes more significant.
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(b) Visualization on PSM after TTA
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Fig. 5. The visualization of anomaly scores before and after TTA on PSM and SMD dataset. The distributions of anomaly scores before TTA are illustrated in Fig. 5(a)
and Fig. 5(c), while Fig. 5(b) and Fig. 5(d) illustrate the distributions after TTA. The green dashed line represents the threshold.
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Fig. 6. Mixed distribution fitting comparison. Compared to log-normal mixture,
the mixed Gaussian distribution is more suitable for our TTA method.

in Sec. 4.8, we observe that the log-normal mixture fails to capture
the underlying patterns of the anomaly scores, which do not align well
with the actual data distribution. In contrast, the mixed Gaussian model
demonstrates a tighter fit. This outcome confirms our hypothesis that
the mixed Gaussian distribution is not only more flexible but also better
at representing the distinct clusters present in the data.

4.10. Model efficiency

We provide the entire model efficiency comparison in Table 6.
Training time represents the time required to train the data for 5 epochs
with the same batch size. Inference time is the duration needed to pro-
cess the entire test dataset. Compared to the state-of-the art model D3R,
SDA saves 66.2 % training time and 98.5 % memory across the three
real-world datasets with superior performance. Since our TTA method
needs to obtain anomaly scores for all the samples and update the
model during inference, our inference time is slightly higher than base-
lines. Compared to the substantial enhancement (4.33 %) in detection
accuracy that we have achieved, the inference time remains afford-
able within the context of the expanding hardware resources of the
present era. The combination of reduced training time, lower memory
usage, and enhanced accuracy presents a compelling case for the adop-
tion of our TTA method in practical applications. We anticipate that
ongoing advancements in hardware will further optimize our model’s
performance, paving the way for broader implementation in various
domains.

4.11. Anomaly detection visualization

In Fig. 7, we present the anomaly detection results of different
methods. Compared to the baselines, our SDA demonstrates superior de-
tection accuracy, once again confirming the effectiveness of our model
architecture and TTA method. Furthermore, our visualization reveals
that the proposed approach not only improves detection accuracy but
also enhances the model’s robustness against various types of anomalies.
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Model Efficiency on real-world multivariate datasets. Training time represents the time required to train the data for 1 epoch with the same batch size. Inference

time is the duration needed to process the entire test dataset.

Method PSM SMD

SWaT

Training (s) Inference (s) Model Size (MB) Training (s)

Inference (s) Model Size (MB) Training (s) Inference (s) Model Size (MB)

VAE [62] 189.24 47.61 0.02 157.91
DeepSVDD [63] 81.09 17.25 0.01 60.70

LSTM-AE [64] 437.55 125.18 0.03 283.61
MTAD-GAT [39] 242.78 107.84 1.25 188.52
TFAD [24] 390.14 75.12 1.04 315.39
A-Transformer [33] 529.47 151.82 37.27 422.43
TranAD [25] 275.14 82.49 10.58 153.84
PUAD [65] 350.94 137.41 43.81 256.85
NPSR [26] 206.78 124.16 15.34 152.58
D3R [27] 533.08 280.68 108.46 399.32
SDA 177.18 343.57 1.11 136.27

30.90 0.02 49.45 8.27 0.02
12.61 0.01 24.58 3.15 0.01
72.82 0.04 204.58 15.77 0.05
60.23 1.20 164.35 12.18 1.24
38.54 1.04 282.64 8.97 1.25
94.36 28.15 399.07 30.31 27.49
37.62 11.47 89.14 8.25 11.02
78.67 38.27 225.67 18.53 28.14
55.31 11.05 132.16 14.17 9.35
104.12 109.35 126.20 25.91 208.68
121.25 0.86 84.36 17.13 2.98
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Fig. 7. The visualization of anomaly detection results on real-world multivariate datasets. The red markers represent real anomalies. The red shaded area represents

the detected anomalies.

4.12. Additional detection results

In order to avoid the influence of SPOT parameters and thresholds
on the results, we evaluate the methods based on the original anomaly
scores. Prolonged anomalies receive increased weight, potentially lead-
ing to inaccurate metrics. Thus, we aggregate each anomaly event. An
anomaly event after aggregation is equivalent to only one timestamp, la-
beled as an anomaly, and scored as the maximum of the original anomaly
range. We use area under the ROC curve (AUC) to evaluate the anomaly
scores of each method. The value of AUC ranges between 0.5 and 1,
with the closer it is to 1.0, the better the method. The results of the
experiments are shown in Table 7.

4.13. Hyperparameter analysis

We conduct a series of hyperparameter analysis across three datasets
and present the experimental results in Fig. 8. We study the number
of SDA blocks, the length of segments, the weight of entropy regular-
ization and abnormal loss, a, and test-time learning rate. The results
show that the number of blocks has a significant impact on the overall
performance, with a clear trade-off between model complexity and gen-
eralization. The length of segments also plays a crucial role, as different
datasets have varying temporal patterns. Additionally, we find that the
weight of entropy constraint and max loss has a non-linear effect on
the model’s performance, with an optimal value that varies across dif-
ferent datasets. These findings provide valuable insights for fine-tuning
hyperparameters in real-world applications.

Table 7
AUC results on real-world multivariate datasets. The higher values represent the
better performance.

Method PSM SMD SWaT Average
COPOD [55] 0.8526 0.9230 0.7396 0.8384
ECOD [56] 0.8394 0.9220 0.7532 0.8382
OCSVM [57] 0.8708 0.6789 0.5379 0.6959
CBLOF [59] 0.8681 0.9694 0.5378 0.7918
HBOS [60] 0.8150 0.7393 0.8085 0.7876
IForest [34] 0.8892 0.9218 0.7238 0.8450
LODA [58] 0.8619 0.9180 0.6780 0.8193
VAE [62] 0.8583 0.9674 0.5325 0.7861
DeepSVDD [63] 0.8100 0.9187 0.5063 0.7450
LSTM-AE [64] 0.8894 0.9698 0.6255 0.8283
MTAD-GAT [39] 0.9093 0.9443 0.6386 0.8307
TFAD [24] 0.8185 0.9386 0.6966 0.8179
Anomaly Transformer [33] 0.7074 0.7150 0.6638 0.6954
LUAD [8] 0.6914 0.8726 0.7715 0.7859
PUAD [65] 0.8962 0.9148 0.8224 0.8778
NPSR [26] 0.8875 0.9783 0.8561 0.9073
MSAD [61] 0.8962 0.9729 0.8413 0.9035
D3R [27] 0.9223 0.9759 0.8554 0.9179
SDA 0.9358 0.9816 0.8579 0.9251

4.14. Decomposition visualization

We present the original data, along with the time-variant and time-
invariant components from each dataset in Fig. 9. The red markers
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Fig. 8. Results of hyperparameter analysis. The better performance means higher F1 score.
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Fig. 9. The visualization of decomposition results. The original data, along with the time-variant and time-invariant components from the PSM, SMD, and SWaT

datasets, are presented from left to right. The red markers represent anomalies.

represent abnormal time steps. To provide a clearer comparison with
the original data, the displayed results are the outcomes of the first
Fourier Filter in SDA. As shown in Fig. 9, our Fourier Filter robustly
extracts the time-invariant and time-variant components. The abnor-
mal pattern becomes more distinctive after decomposition. Compared
to the normal instances, abnormal patterns exhibit a significantly
greater degree of irregularity, making them challenging to reconstruct.
Besides, owing to the constraints of entropy regularization, abnor-
mal steps encounter difficulty in establishing correlations with normal
steps within the time-variant component, leading to higher anomaly
scores. Therefore, our approach demonstrates its effectiveness in iso-
lating abnormal patterns, which are characterized by increased irreg-
ularity and reduced correlation with normal instances. This spectral
decomposition module provides a clearer understanding of the under-
lying structures in the data, enabling enhanced anomaly detection and
interpretation.

5. Conclusion

This paper proposes a novel unsupervised time series anomaly detec-
tion algorithm, named SDA. We design a spectral decomposition model
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and a test-time adaptation method to deal with the non-stationary data
in the real world. Our model decomposes time series into time-variant
and time-invariant components to capture the underlying temporal pat-
terns for reconstruction. Besides, we introduce an entropy regularization
to encourage the establishment of relationships between normal time
steps. To address the distribution gap between training and inference,
our adaptation method enhances the distinction between normal and
abnormal instances during inference. Furthermore, our algorithm has
been extensively evaluated on various real-world datasets, demonstrat-
ing superior and effective performance in detecting anomalies. As our
TTA method is currently offline, we plan to explore online options in the
future. In summary, the proposed method exhibits robustness in identify-
ing anomalies in the presence of complex and evolving patterns, making
it a valuable tool for practical applications where non-stationary data is
prevalent.
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